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Abstract

We provide an overall description of the Ciao multiparadigm programming system empha-

sizing some of the novel aspects and motivations behind its design and implementation.

An important aspect of Ciao is that, in addition to supporting logic programming (and,

in particular, Prolog), it provides the programmer with a large number of useful features

from different programming paradigms and styles and that the use of each of these features

(including those of Prolog) can be turned on and off at will for each program module. Thus,

a given module may be using, e.g., higher order functions and constraints, while another

module may be using assignment, predicates, Prolog meta-programming, and concurrency.

Furthermore, the language is designed to be extensible in a simple and modular way.

Another important aspect of Ciao is its programming environment, which provides a powerful

preprocessor (with an associated assertion language) capable of statically finding non-trivial
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bugs, verifying that programs comply with specifications, and performing many types of

optimizations (including automatic parallelization). Such optimizations produce code that

is highly competitive with other dynamic languages or, with the (experimental) optimizing

compiler, even that of static languages, all while retaining the flexibility and interactive

development of a dynamic language. This compilation architecture supports modularity and

separate compilation throughout. The environment also includes a powerful autodocumenter

and a unit testing framework, both closely integrated with the assertion system. The paper

provides an informal overview of the language and program development environment. It

aims at illustrating the design philosophy rather than at being exhaustive, which would be

impossible in a single journal paper, pointing instead to previous Ciao literature.

KEYWORDS: Prolog, logic programming system, assertions, verification, extensible languages

1 Origins and initial motivations

Ciao (Hermenegildo et al. 1994; Hermenegildo et al. 1999b; Bueno et al. 2009;

Hermenegildo and The Ciao Development Team 2006) is a modern, multiparadigm

programming language with an advanced programming environment. The ultimate

motivation behind the system is to develop a combination of programming language

and development tools that together help programmers produce in less time and

with less effort code that has fewer or no bugs. Ciao aims at combining the

flexibility of dynamic/scripting languages with the guarantees and performance of

static languages. It is designed to run very efficiently on platforms ranging from small

embedded processors to powerful multicore architectures. Figure 1 shows an overview

of the Ciao system architecture and the relationships among its components, which

will be explained throughout the paper.

Ciao has its main roots in the &-Prolog language and system (Hermenegildo and

Greene 1991). &-Prolog’s design was aimed at achieving higher performance than

state-of-the-art sequential logic programming systems by exploiting parallelism,

in particular, and-parallelism (Hermenegildo and Rossi 1995). This required the

development of a specialized abstract machine, derived from early versions of

SICStus Prolog (Swedish Institute for Computer Science 2009), capable of running a

large number of (possibly non-deterministic) goals in parallel (Hermenegildo 1986;

Hermenegildo and Greene 1991). The source language was also extended in order

to allow expressing parallelism and concurrency in programs, and later to support

constraint programming, including the concurrent and parallel execution of such

programs (Garcı́a de la Banda et al. 1996).

Parallelization was done either by hand or by means of the &-Prolog com-

piler, which was capable of automatically annotating programs for parallel ex-

ecution (Muthukumar and Hermenegildo 1990; Muthukumar et al. 1999). This

required developing advanced program analysis technology based on abstract

interpretation (Cousot and Cousot 1977), which led to the development of the

PLAI analyzer (Warren et al. 1988; Hermenegildo et al. 1992; Muthukumar and

Hermenegildo 1992), based on Bruynooghe’s approach (Bruynooghe 1991) but using

a highly efficient fixpoint including memo tables, convergence acceleration, and
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Fig. 1. A high-level view of the Ciao system.

dependency tracking. This analyzer inferred program properties such as indepen-

dence among program variables (Muthukumar and Hermenegildo 1991; Muthuku-

mar and Hermenegildo 1992), absence of side effects, non-failure (Bueno et al. 2004),

determinacy (López-Garcı́a et al. 2010a), data structure shape and instantiation state

(“moded types”) (Saglam and Gallagher 1995; Vaucheret and Bueno 2002), or upper

and lower bounds on the sizes of data structures and the cost of procedures (Debray

et al. 1990; Debray and Lin 1993; Debray et al. 1997). This was instrumental

for performing automatic granularity control (Debray et al. 1990; López-Garcı́a

et al. 1996). In addition to automatic parallelization, the &-Prolog compiler per-

formed other optimizations such as multiple (abstract) specialization (Puebla and

Hermenegildo 1995). Additional work was also performed to extend the system to

support other computation rules, such as the Andorra principle (Olmedilla et al.

1993; Warren 1993) and other sublanguages and control rules.

In the process of gradually extending the capabilities of the &-Prolog system in the

late 1980s/early 1990s, two things became clear. Firstly, the wealth of information

inferred by the analyzers would also be very useful as an aid in the program

development process. This led to the idea of the Ciao assertion language and

preprocessor, two fundamental components of the Ciao system (even if neither
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of them are strictly required for developing or compiling programs). The Ciao

assertion language (Puebla et al. 2000b) provides a homogeneous framework that

allows, among other things, static and dynamic verification to work cooperatively in

a unified way. The Ciao Preprocessor (CiaoPP (Hermenegildo et al. 1999a; Puebla

et al. 2000a; Hermenegildo et al. 2005)) is a powerful tool capable of statically finding

non-trivial bugs, verifying that the program complies with specifications (written in

the assertion language), and performing many types of program optimizations.

A second realization was that many desirable language extensions could be

supported efficiently within the same system if the underlying machinery imple-

mented a relatively limited set of basic constructs (a kernel language) (Hermenegildo

et al. 1994; Hermenegildo et al. 1999b) coupled with an easily programmable and

modular way of defining new syntax and giving semantics to it in terms of that

kernel language. This idea is not exclusive to Ciao, but in Ciao the facilities that

enable building up from a simple kernel are explicitly available from the system

programmer level to the application programmer level. The need to be able to

define extensions based on some basic blocks led to the development of a novel

module system (Cabeza and Hermenegildo 2000a), which allows writing language

extensions (packages) by grouping together syntactic definitions, compilation options,

and plugins to the compiler. The mechanisms provided for adding new syntax to the

language and giving semantics to such syntax can be activated or deactivated on a

per-compilation unit basis without interfering with other units. As a result all Ciao

operators, “builtins,” and most other syntactic and semantic language constructs are

user-modifiable and live in libraries.1 The Ciao module system also addresses the

needs for modularity deriving from global analysis. We will start precisely with the

introduction of the user view of packages.

2 Supporting multiple paradigms and useful features

Packages allow Ciao to support multiple programming paradigms and styles in

a single program. The different source-level sublanguages are supported by a

compilation process stated by the corresponding package, typically via a set of rules

defining source-to-source transformations into the kernel language. This kernel is

essentially pure Prolog plus a number of basic, instrumental additional functionalities

(such as the cut, non-logical predicates such as var/1 or assert/1, threads, and

attributed variables), all of which are in principle not visible to the user but can be

used if needed at the kernel level to support higher level functionality. However, the

actual nature of the kernel language is actually less important than the extensibility

mechanisms that allow these extensions to be, from the point of view of the compiler,

analyzers, autodocumenter, and language users, on a par with the native builtins.

We will now show some examples of how the extensibility provided by the module

1 In fact, some Ciao packages are portable with little modification to other logic and constraint logic
programming systems. Others require support from the kernel language (e.g., concurrency), to provide
the desired semantics or efficiency. In any case, packages offer a modularized view of language extensions
to the user.
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1 :- module(_, _, [functional , lazy ]).

2

3 nrev ([]) := [].

4 nrev([H|T]) := ~conc(nrev(T), [H]).

5

6 conc([], L) := L.

7 conc([H|T], K) := [H | conc(T, K)].

8

9 fact(N) := N=0 ? 1

10 | N>0 ? N * fact(--N).

11

12 :- lazy fun_eval nums_from /1.

13 nums_from(X) := [X | nums_from(X+1)].

14

15 :- use_module(library(’lazy/lazy_lib ’), [take /3]).

nums(N) := ~take(N, nums_from (0)).

Fig. 2. Some examples in Ciao functional notation.

system allows Ciao to incorporate the fundamental constructs from a number of

programming paradigms.

We will use the examples in Figure 2 to illustrate general concepts regarding the

module system and its extensibility. In Ciao, the first and second arguments of a

module declaration (line 1) hold the module name and list of exports in the standard

way. “ ” in the first argument means that the name of the module is the name of

the file, without suffix, and in the second one that all definitions are exported.

The third argument states a list of packages to be loaded (functional and lazy

in this case, which provide functional notation and lazy evaluation). Packages are

Ciao files that contain syntax and compilation rules and that are loaded by the

compiler as plugins and unloaded when compilation finishes. Packages only modify

the syntax and semantics of the module from where they are loaded, and therefore,

other modules can use packages introducing incompatible syntax/semantics without

clashing. Packages can also be loaded using use package declarations throughout

the module.

Functional programming: functional notation (Casas et al. 2006) is provided by a

set of packages, which, besides a convenient syntax to define predicates using a

function-like layout, gives support for semantic extensions, which include higher

order facilities (e.g., predicate abstractions and applications thereof) and, if so

required, lazy evaluation. Semantically, the extension is related to logic-functional

languages like Curry (Hanus et al. ) but relies on flattening and resolution, using

freeze/2 for lazy evaluation, instead of narrowing. For illustration, Figure 2 lists

a number of examples using the Ciao functional notation. Thanks to the packages

loaded by the module declaration, nrev and conc can be written in functional

style by using multiple :=/2 definitions. The ~ prefix operator in the second rule

for nrev states that its argument (conc) is an interpreted function (a call to a

predicate), as opposed to a data structure to unify with and return as a result of

function invocation. This eval mark can be omitted when the predicate is marked

for functional syntax. The recursive call to nrev does not need such a clarification,
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because it is called within its own definition. The list constructor in conc is not

marked for evaluation, and therefore, it stands for a data structure instead of a

predicate call.

fact is written using a disjunction (marked by “|”) of guards (delimited by “?”),

which together commit the system to the first matching choice. Arithmetic operators

are assumed to be evaluable by default, but this can be turned off with a special

declaration. nums from is declared lazy, which makes it possible to write a recursion

that is executed only up to the extent it is necessary. In this case, it is called by take

(imported from a library of lazy functions/predicates), which, in turns, allows nums

to (lazily) return a list of N numbers starting at 0.

The following queries produce the expected answer:

?- use_package(functional).

?- X = ~nrev([1,2,3]).

X = [3,2,1]

?- [3,2,1] = ~nrev(X).

X = [1,2,3]

Loading the functional package in the top level allows using functional notation

in it—the top level behaves in this sense essentially in the same way as a module.

Since, in general, functional notation is just syntax, and thus, no directionality is

implied, the second query to nrev/2 just instantiates its argument.

However, as mentioned before, other constructs such as conditionals do commit

the system to the first matching case. The assertion language includes func assertions

aimed at enforcing strictly “functional” behavior (e.g., being single moded, in the

sense that a fixed set of inputs must always be ground and for them a single output

is produced, etc.), and generating assertions (see later), which ensure that the code

is used in a functional way.

Figure 3 lists more examples using functional and other packages, and the result

after applying just the transformations brought in by the functional package. Note

that the use of higher order in list of: a predicate is called using a syntax, which

has a variable in the place of a predicate name. This is possible thanks to the hiord

package (more on it later), which adds the necessary syntax and a compile-time

translation into call/N.

Classic and ISO-Prolog: Ciao provides, through convenient defaults, an excellent

Prolog system with support for ISO-Prolog. Other classical “builtins” expected by

users, and which are provided by modern Prolog systems (YAP, SWI-Prolog, Quintus

Prolog, SICStus Prolog, XSB, GNU Prolog, B-Prolog, BinProlog, etc.), are also

conveniently available. In line with its design philosophy, in Ciao all of these features

are optional and brought in from libraries rather than being part of the language.

This is done in such a way that classical Prolog code runs without modifications: the

Prolog libraries are automatically loaded when module declarations have only the

first two arguments, which is the type of module declaration used by most Prolog

systems (see Fig. 4, left). This is equivalent to loading only the “classic” package

(Fig. 4, right).
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1 :- module(someprops , _, [functional , hiord ]).

2

3 color := red | blue | green.

4

5 list := [] | [_ | list].

6

7 list_of(T) := [] | [~T | list_of(T)].

8

9 sorted := [] | [_].

10 sorted ([X,Y|Z]) :- X @< Y, sorted ([Y|Z]).

1 :- module(someprops , _, []).

2

3 color(red). color(blue). color(green).

4

5 list ([]).

6 list([_|T]) :- list(T).

7

8 :- use_module(engine(hiord_rt )).

9

10 list_of(_, []).

11 list_of(T, [X|Xs]) :- call(T, X), list_of(T, Xs).

12

13 sorted ([]). sorted ([_]).

14 sorted ([X,Y|Z]) :- X @< Y, sorted ([Y|Z]).

Fig. 3. Examples in Ciao functional notation and state of translation after applying the

functional and hiord packages.

:- module(h,[main /1]).

main :- write("Hello world!").

:- module(h,[main /1],[ classic ]).

main :- write("Hello world!").

Fig. 4. Two equivalent Prolog modules.

The set of ISO builtins and other ISO compliance-related features (e.g., the

exceptions they throw) are triggered by loading the iso package (included in

classic). Facilities for testing ISO compliance (Section 5.4) are also available.

The classic Prolog package is also loaded by default in user files (i.e., those

without a module declaration) that do not load any packages explicitly via a

use package declaration. Also, the system top level comes up by default in Prolog

mode. This can be tailored by creating a ~/.ciaorc initialization file, which, among

other purposes, can be used to state packages to be loaded into the top level. As

a result of these defaults, Ciao users who come to the system looking for a Prolog

implementation do get what they expect. If they do not poke further into the menus

and manuals, they may never realize that Ciao is in fact quite a different beast under

the hood.

Other logic programming flavors: alternatively to the above, by not loading the

classic Prolog package(s) the user can restrict a given module to use only pure logic
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programming, without any of Prolog’s impure features.2 That means that if a call

to assert were to appear within the module, it would be signaled by the compiler

as a call to an undefined predicate. Features, for example, declarative I/O, can be

added to such pure modules by loading additional libraries. This also allows adding

individual features of Prolog to the pure kernel on a needed basis.

Higher order logic programming with predicate abstractions (similar to closures) is

supported through the hiord package. This is also illustrated in Figure 3, where the

list of/2 predicate receives a unary predicate, which is applied to all the arguments

of a list. As a further example of the capabilities of the hiord package, consider the

queries:

?- use_package(hiord), use_module(library(hiordlib)).

?- P = ( _(X,Y) :- Y = f(X) ), map([1, 3, 2], P, R).

where, after loading the higher order package hiord and instantiating P to the

anonymous predicate (X,Y) :- Y = f(X), the call map([1, 3, 2], P, R) applies

P to each element of the list [1, 3, 2] producing R = [f(1), f(3), f(2)]. The

(reversed) query works as expected, too:

?- P = ( _(X,Y) :- Y = f(X) ), map(M, P, [f(1), f(3), f(2)]).

M = [1, 3, 2]

If there is a free variable, say V, in the predicate abstraction and a variable with

the same name V in the clause within which the anonymous predicate is defined,

the variable in the predicate abstraction is bound to the value of the variable in the

clause. Otherwise, it is a free variable, in the logical sense (as any other existential

variable in a clause). This is independent from the environment where the predicate

abstraction is applied, and therefore, closures have syntactic scoping.

Additional computation rules: in addition to the usual depth-first, left-to-right exe-

cution of Prolog, other computation rules such as breadth-first, iterative deepening,

tabling (see later), and the Andorra model are available, again by loading suitable

packages. This has proved particularly useful when teaching, since it allows post-

poning the introduction of the (often useful in practice) quirks of Prolog (see the

slides of a course starting with pure logic programming and breadth-first search in

http://www.cliplab.org/logalg).

Constraint programming: several constraint solvers and classes of constraints using

these solvers are supported including CLP(Q), CLP(R) (a derivative of Holzbaur

1994), and a basic but usable CLP(FD) solver.3 The constraint languages and

solvers, which are built on more basic blocks such as attributed variables (Holzbaur

1992) and/or the higher level Constraint Handling Rules (CHR) (Frühwirth 2009),

also available in Ciao, are extensible at the user level.

2 The current implementation—as of version 1.13—does still leave a few builtins visible, some of them
useful for debugging. To avoid the loading of any impure builtins in 1.13 the pure pseudo-package
should be used.

3 CLP(X) stands for a Constraint Logic Programing System parametrized by the constraint domain X.
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1 :- module(_,_,[fsyntax ,clpqf ]).

2

3 fact (.=. 0) := .=. 1.

4 fact(N) := .=. N*fact (.=. N-1) :- N .>. 0.

5

6 sorted := [] | [_].

7 sorted ([X,Y|Z]) :- X .<. Y, sorted ([Y|Z]).

Fig. 5. Ciao constraints (combined with functional notation).

Figure 5 provides two examples using Ciao CLP(Q) constraints, combined with

functional notation. For example, line 3 can be read as: if the input argument of

fact is constrained to 0 then the “output” argument is constrained to 1. In the

next line, if the argument of fact is constrained to be greater than 0 then the

“output” is constrained to be equal to N*fact( .=. N-1 ). The two definitions

(fact and sorted) can be called with their arguments in any state of instantiation.

For example, the query

?- sorted(X).

returns (blanks in the answers have been edited to save space):

X = [] ? ;

X = [_] ? ;

X = [_A, _B], _A .<. _B ? ;

X = [_A, _B, _C], _B .<. _C, _A .<. _B ?

etc. As many other CLP systems Ciao is not, at the moment, a highly specialized

constraint system, and it does not intend to compete with very high performance

systems, e.g., Gecode (Schulte and Stuckey 2008) or Comet (Van Hentenryck and

Michael 2005). The purpose of the constraint solving support present in Ciao is to

offer some reasonable functionality for medium-sized problems and to be able to

explore new possibilities in the combination of paradigms.

Object-oriented programming: object oriented-style programming has been classi-

cally provided in Ciao through the O’Ciao class and object packages (Pineda

and Bueno 2002). These packages provide capabilities for class definition, object

instantiation, encapsulation and replication of state, inheritance, interfaces, etc. These

features are designed to be natural extensions of the underlying module system. There

is current work performed within the “optimcomp” branch (see later) revisiting these

issues in the context of abstract mechanisms for passing, maintaining, and updating

different notions of state. These extensions have also introduced imperative control

structures and nested syntactic scopes.

Concurrency, parallelism, and distributed execution: other packages bring in different

capabilities for expressing concurrency (including a concurrent, shared version of the

internal fact database that can be used for synchronization (Carro and Hermenegildo

1999)), distribution, and parallel execution (Cabeza and Hermenegildo 1995; Casas

et al. 2008). A notion of “active objects” also allows compiling objects so that they

are ultimately mapped to a standalone process, which can then be transparently
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accessed by the rest of an application. This provides simple ways to implement

servers and services in general.

In addition to the programming paradigm-specific characteristics above, many

additional features are available through libraries (that can also be activated or

deactivated on a per-module / class basis), including:

Structures with named arguments (feature terms), a trimmed-down version of ψ-

terms (Aı̈t-Kaci 1993), which translates structure unifications to Prolog unifications,

adding no overhead to the execution when argument names can be statically resolved,

and a small overhead when they are resolved at run time.

Partial support for advanced higher order logic programming features, like higher

order unification, based on the algorithms used in λProlog (Wolfram 1992) (experi-

mental).

Persistence, which allows Ciao to transparently save and restore the state of selected

facts of the dynamic database of a program on exit and startup. This is the basis of

a high-level interface with databases (Correas et al. 2004).

Tabled evaluation (Chen and Warren 1996), pioneered by XSB (experimental).

Answer Set Programming (ASP) (El-Khatib et al. 2005), which makes it possible to

execute logic programs under the stable model semantics (experimental).

WWW programming, which establishes a direct mapping of HTML/XML and other

formats to Herbrand terms, allowing the manipulation of WWW-related data easily

through unification, writing CGIs, etc. (Cabeza and Hermenegildo 2001).

3 Ciao assertions

An important feature of Ciao is the availability of a rich, multipurpose assertion

language. We now introduce (a subset of) this assertion language. Note that a great

deal of the capabilities of Ciao for supporting and processing assertions draws on

its extensibility features, which are used to define and give semantics to the assertion

language without having to change the low-level compiler.

Ciao assertion language syntax and meaning: assertions are linguistic constructs,

which allow expressing properties of programs. Syntactically, they appear as an ex-

tended set of declarations, and semantically, they allow talking about preconditions,

(conditional-) postconditions, whole executions, program points, etc. For clarity of

exposition, we will focus on the most commonly used subset of the Ciao assertion

language: pred assertions and program point assertions. A detailed description of

the full language can be found in Puebla et al. (2000b) and Bueno et al. (2009).

The first subset, pred assertions, is used to describe a particular predicate. They

can be used to state preconditions and postconditions on the (values of) variables

in the computation of predicates, as well as global properties of such computations

(e.g., the number of execution steps, determinacy, or the usage of some other

resource). Figure 7 includes a number of pred assertions whose syntax is made
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1 :- module(someprops , _, [functional , hiord , assertions ]).

2 :- prop color /1. color := red | blue | green.

3 :- prop list /1. list := [] | [_ | list].

4 :- prop list_of /2. list_of(T) := [] | [~T | list_of(T)].

5 :- prop sorted /1. sorted := [] | [_].

6 sorted ([X,Y|Z]) :- X @< Y, sorted ([Y|Z]).

Fig. 6. Examples of state property definitions.

1 :- module(_, [nrev/2], [assertions , nativeprops , functional ]).

2 :- entry nrev/2 : {list , ground} * var.

3 :- use_module(someprops ).

4

5 :- pred nrev(A, B) : list(A) => list(B).

6 :- pred nrev(A, B) : list_of(color , A) => list_of(color , B).

7 :- pred nrev(A, B) : list(A) + (not_fails , is_det , terminates ).

8 :- pred nrev(A, _) : list(A) + steps_o( length(A)).

9

10 nrev ([]) := [].

11 nrev([H|L]) := ~conc(nrev(L),[H]).

12

13 :- pred conc(A,B,C) : list(A) => size_ub(C, length(A)+ length(B))

14 + steps_o(length(A)).

15 conc([], L) := L.

16 conc([H|L], K) := [ H | conc(L,K) ].

Fig. 7. Naive reverse with some—partially erroneous—assertions.

available through the assertions package. For example, the assertion (line 5):

:- pred nrev(A,B) : list(A) => list(B). expresses that calls to predicate nrev/2

with the first argument bound to a list are admissible and that if such calls succeed

then the second argument should also be bound to a list. list/1 is an example of

a state property—a prop, for short: a predicate, which expresses properties of the

(values of) variables. Other examples are defined in Figure 6 (sorted/1, color/1,

list of/2), or arithmetic predicates such as >/2, etc. Note that A in list(A) above

refers to the first argument of nrev/2. We could have used the parametric type

list of/2 (also defined in Fig. 6), whose first argument is a type parameter, and

written list of(term,A) instead of list(A), where the type term/1 denotes any

term. As an additional example using the parametric type list of/2, the assertion

in line 6 of Figure 7 expresses that for any call to predicate nrev/2 with the first

argument bound to a list of colors, if the call succeeds, then the second argument

is also bound to a list of colors.

State properties defined by the user and exported/imported as usual. In Figure 7,

some properties (list/1, list of/2, color/1) are imported from the user module

someprops (Fig. 6) and others (e.g., size ub/2) from the system’s nativeprops.

In any case, props need to be marked explicitly as such (see Fig. 6) and this

flags that they need to meet some restrictions (Puebla et al. 2000b; Bueno et al.

2009). For example, their execution should terminate for any possible call since, as

discussed later, props will not only be checked at compile time, but may also be
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involved in run-time checks. Types are just a particular case (further restriction)

of state properties. Different type systems, such as regular types (regtypes) and

Hindley–Milner (hmtypes), are provided as libraries. Since, e.g., list of/2 in

Figure 6 is a property that is in addition a regular type, this can be flagged as

:- prop list of/2 + regtype. or, more compactly, :- regtype list of/2. Most

properties (including types) are “runnable” (useful for run-time checking) and can

be interacted with, i.e., the answers to a query ?- use package(someprops), X =

~list. are: X = [], X = [ ], X = [ , ], X = [ , , ], etc. Note also that assertions

such as the one in line 5 provide information not only on (a generalization of) types

but also on modes.

In general pred assertions follow the schema:

:- pred Pred [: Precond] [=> Postcond] [+ CompProps].

Pred is a predicate descriptor, i.e., a predicate symbol applied to distinct free

variables, e.g., nrev(A,B). Precond and Postcond are logic formulas about execution

states that we call StateFormulas. An execution state is defined by the bindings of

values to variables in a given execution step (in logic programming terminology, a

substitution, plus any global state). An atomic StateFormula (e.g., list(X), X > 3,

or sorted(X)) is a literal whose predicate symbol corresponds to a state property.

A StateFormula can also be a conjunction or disjunction of StateFormulas. Standard

(C)LP syntax is used, with comma representing conjunction (e.g., “(list(X),

list(Y))”) and semicolon disjunction (e.g., “(list(X) ; int(X))”). Precond is

the precondition under which the pred assertion is applicable. Postcond states a

conditional postcondition, i.e., it expresses that in any call to Pred, if Precond holds

in the calling state and the computation of the call succeeds, then Postcond should

also succeed in the success state. If Precond is omitted, the assertion is equivalent

to: :- pred Pred : true => Postcond. and it is interpreted as “for any call to Pred

that succeeds, Postcond should succeed in the success state.” As Figure 7 shows,

there can be several pred assertions for the same predicate. The set of preconditions

(Precond) in those assertions is considered closed in the sense that they must cover

all valid calls to the predicate.

Finally, pred assertions can include a CompProps field, used to describe properties

of the whole computation of the calls to predicate Pred that meet precondition

Precond. For example, the assertion in line 8 of Figure 7 states that for any call to

predicate nrev/2 with the first argument bound to a list, the number of resolution

steps, given as a function on the length of list A, is in O(length(A)) (i.e., such

function is linear in length(A)).4 The assertion in line 7 of Figure 7 is an example

where CompProps is a conjunction: it expresses that the previous calls do not fail

without first producing at least one solution are deterministic (i.e., they produce

at most one solution at most once) and terminate. Thus, in this case, CompProps

describes a terminating functional computation. The rest of the assertions in Figure 7

will be explained later, in the appropriate sections.

4 This is of course false, but we will let the compiler tell us—see later.



An overview of Ciao and its design philosophy 231

In order to facilitate writing assertions, Ciao also provides additional syntactic

sugar such as modes and Cartesian product notation. For example, consider the

following set of pred assertions providing information on a reversible sorting

predicate:

:- pred sort/2 : list(num) * var => list(num) * list(num) + is det.

:- pred sort/2 : var * list(num) => list(num) * list(num) + non det.

(in addition, curly brackets can be used to group properties—see Fig. 9). Using Ciao’s

isomodes library, which provides syntax and meaning for the ISO instantiation

operators, this can also be expressed as:

:- pred sort(+list(num), -list(num)) + is det.

:- pred sort(-list(num), +list(num)) + non det.

The pred assertion schema is in fact syntactic sugar for combinations of atomic

assertions of the following three types:

:- calls Pred [: Precond].

:- success Pred [: Precond] [=> Postcond].

:- comp Pred [: Precond] [+ CompProps].

which describe all the admissible call states, the success states, and computational

properties for each set of admissible call states (in this order).

Program-point assertions are of the form check(StateFormula ) and they can be

placed at the locations in programs in which a new literal may be added. They

should be interpreted as “whenever computation reaches a state corresponding to

the program point in which the assertion is, StateFormula should hold.” For example,

check((list of(color, A), var(B)))

is a program-point assertion, where A and B are variables of the clause where the

assertion appears.

Assertion status: independently of the schema, each assertion can be in a verification

status, marked by prefixing the assertion itself with the keywords, check, trust,

true, checked, and false. This specifies, respectively, whether the assertion is

provided by the programmer and is to be checked or to be trusted, or is the output

of static analysis and thus correct (safely approximated) information, or the result

of processing an input assertion and proving it correct or false, as will be discussed

in the next section. The check status is assumed by default when no explicit status

keyword is present (as in the examples so far).

Uses of assertions: as we will see, assertions find many uses in Ciao, ranging from

testing to verification and documentation (for the latter, see lpdoc (Hermenegildo

2000)). In addition to describing the properties of the module in which they appear,

assertions also allow programmers to describe properties of modules/classes, which

are not yet written or are written in other languages.5 This makes it possible to run

checkers/verifiers/documenters against partially developed code.

5 This is also done in other languages but, in contrast with Ciao, different kinds of assertions for each
purpose are often used.
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Fig. 8. The Ciao assertion framework (CiaoPP’s verification/testing architecture).

4 The Ciao unified assertion framework

We now describe the Ciao unified assertion framework (Bueno et al. 1997;

Hermenegildo et al. 1999a; Puebla et al. 2000b)), implemented in the Ciao pre-

processor, CiaoPP. Figure 8 depicts the overall architecture. Hexagons represent

tools and arrows indicate the communication paths among them. It is a design

objective of the framework that most of this communication be performed also

in terms of assertions. This has the advantage that at any point in the process

the information is easily readable by the user. The input to the process is the

user program, optionally including a set of assertions; this set always includes any

assertion present for predicates exported by any libraries used (left part of Fig. 8).

Run-time checking of assertions: after (assertion) normalization (which, e.g., takes

away syntactic sugar), the RT-check module transforms the program by adding

run-time checks to it that encode the meaning of the assertions (we assume for now

that the Comparator simply passes the assertions through). Note that the fact that

properties are written in the source language and runnable is very useful in this

process. Failure of these checks raises run-time errors referring to the corresponding

assertion. Correctness of the transformation requires that the transformed program

only produce an error if the assertion is in fact violated.

Compile-time checking of assertions: even though run-time checking can detect viola-

tions of specifications, it cannot guarantee that an assertion holds. Also, it introduces

run-time overhead. The framework performs compile-time checking of assertions by

comparing the results of Static Analysis (Fig. 8) with the assertions (Bueno et al.

1997; Hermenegildo et al. 1999a). This analysis is typically performed by abstract

interpretation (Cousot and Cousot 1977) or any other mechanism that provides

safe upper or lower approximations of relevant properties so that comparison with

assertions is meaningful despite precision losses in the analysis. The type of analysis

may be selected by the user or determined automatically based on the properties
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appearing in the assertions. Analysis results are given using also the assertion

language, to ensure interoperability and make them understandable by the pro-

grammer. As a possible result of the comparison, assertions may be proved to hold,

in which case they get checked status—Figure 8. If all assertions are checked then

the program is verified. In that case, a certificate can be generated that can be

shipped with programs and checked easily at the receiving end (using the abstraction

carrying code approach (Albert et al. 2008)). As another possible result, assertions

can be proved not to hold, in which case they get false status and a compile-time

error is reported. Even if a program contains no assertions, it can be checked against

the assertions contained in the libraries used by the program, potentially catching

bugs at compile time. Finally, and most importantly, if it is not possible to prove

nor to disprove (part of) an assertion, then such assertion (or part) is left as a check

assertion, for which optionally run-time checks can be generated as described above.

This can optionally produce a verification warning.

The fact that the system deals throughout with safe approximations of the meaning

of the program and that remaining in check status is an acceptable outcome of the

comparison process, allows dealing with complex properties in a correct way. For

example, in CiaoPP, the programmer has the possibility of stating assertions about

the efficiency of the program (lower and/or upper bounds on the computational

cost of procedures (López-Garcı́a et al. 2010b)), which the system will try to verify

or falsify, thus performing automatic debugging and verification of the performance

of programs (see Section 5.2). Other interesting properties are handled, such as

data structure shape (including pointer sharing), bounds on data structure sizes,

and other operational properties, as well as procedure-level properties, such as

determinacy (López-Garcı́a et al. 2010a), non-failure (Bueno et al. 2004), termination,

and bounds on the execution time (Mera et al. 2008), and the consumption of a

large class of user-defined resources (Navas et al. 2007). Assertion checking in

CiaoPP is also module-aware (Pietrzak et al. 2006; Pietrzak et al. 2008). Finally, the

information from analysis can be used to optimize the program in later compilation

stages, as we will discuss later.

5 Static verification, debugging, run-time checking, and unit testing in practice

We now present some examples, which illustrate the use of the Ciao assertion

framework discussed in the previous section, as implemented in CiaoPP. We also

introduce some more examples of the assertion language as we proceed.

5.1 Automatic inference of (non-trivial) code properties

We first illustrate with examples the automatic inference of code properties (box

“Static Analysis” in Fig. 8). Modes and types are inferred, as mentioned before,

using different methods including Muthukumar and Hermenegildo (1991, 1992)

for modes and Saglam and Gallagher (1995) and Vaucheret and Bueno (2002) for

types. As also mentioned before, CiaoPP includes a non-failure analysis (Bueno

et al. 2004), which can detect procedures and goals that can be guaranteed not to
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fail, i.e., to produce at least one solution or not to terminate. It also can detect

predicates that are “covered,” i.e., such that for any input (included in the calling

type of the predicate), there is at least one clause whose “test” (head unification and

body builtins) succeeds. CiaoPP also includes a determinacy analysis (López-Garcı́a

et al. 2010a), which can detect predicates, which produce at most one solution at

most once, or predicates whose clause tests are mutually exclusive, even if they are

not deterministic, because they call other predicates that can produce more than

one solution (it means that the predicate does not perform backtracking at the level

of its clauses).

Consider again the naive reverse program in Figure 7. The assertion in line 2 is an

example of an entry assertion: a pred assertion addressing calls from outside the

module.6 It informs the CiaoPP analyzers that in all external calls to nrev/2, the

first argument will be a ground list and the second one will be a free variable. Using

only the information specified in the entry assertion, the aforementioned analyses

infer different sorts of information, which include, among others, that expressed by

the following assertion:

:- true pred nrev(A,B): ( list(A), var(B) ) => ( list(A), list(B) )

+ ( not_fails, covered, is_det, mut_exclusive ).

As mentioned before, CiaoPP can also infer lower and upper bounds on the sizes

of terms and the computational cost of predicates (Debray et al. 1990; Debray and

Lin 1993; Debray et al. 1997), including user-defined resources (Navas et al. 2007).

The cost bounds are expressed as functions on the sizes of the input arguments and

yield the number of resolution steps. Note that obtaining a finite upper bound on

cost also implies proving termination of the predicate.

As an example, the following assertion is part of the output of the lower bounds

analysis (that also includes a non-failure analysis, without which a trivial lower

bound of 0 would be derived):

:- true pred conc(A,B,C) : ( list(A), list(B), var(C) )

=> ( list(A), list(B), list(C),

size_lb(A,length(A)), size_lb(B,length(B)),

size_lb(C,length(B)+length(A)) )

+ ( not_fails, covered, steps_lb(length(A)+1)).

Note that in this example the size measure used is list length. The property

size_lb(C,length(B)+length(A)) means that a (lower) bound on the size of the

third argument of conc/3 is the sum of the sizes of the first and second arguments.

The inferred lower bound on computational steps is the length of the first argument

of conc/3 plus one. The length/1 property used in the previous assertion is just

the length/2 predicate called using functional syntax that curries the last argument.

CiaoPP currently uses some predefined metrics for measuring the “size” of an input,

such as list length, term size, term depth, or integer value. These are automatically

assigned to the predicate arguments involved in the size and cost analysis according

6 Note that in CiaoPP the pred assertions of exported predicates can be used optionally instead of
entry.
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to the previously inferred type information. A new, experimental version of the

size analyzers is in development that can deal with user-defined size metrics (i.e.,

predicates) and is also able to synthesize automatically size metrics.

5.2 Static (performance) verification and debugging

We now illustrate static verification and debugging, i.e., statically proving or

disproving program assertions (i.e., specifications). This corresponds to the “Static

Comparator” box in Figure 8. We focus on verification of the resource usage of

programs, such as lower and/or upper bounds on execution steps or user defined

resources, but the process also applies to more traditional properties, such as types

and modes. Consider the assertion in line 8 of Figure 7, which states that nrev should

be linear in the length of the (input) argument A. With compile-time error checking

turned on, CiaoPP automatically selects mode, type, non-failure, and lower/upper

bound cost analyses and issues the following error message (corresponding to the

“compile-time error” exit in Figure 8):

ERROR: False assertion:

:- pred nrev(A, _) : list(A) + steps_o(length(A))

because on comp nrev:nrev(A,_):

[generic_comp] : steps_lb(0.5*exp(length(A),2)+1.5*length(A)+1)

This message states that nrev will take at least length(A)2+3 length(A)
2

+1 resolution steps

(a safe lower bound inferred by the cost analyzer), while the assertion requires the

cost to be in O(length(A)) resolution steps. As a result, the worst-case asymptotic

complexity stated in the user-provided assertion is proved wrong by the lower bound

cost assertion inferred by the analysis. Note that upper bound cost assertions can

be proved to hold by means of upper bound cost analysis if the bound computed

by analysis is lower or equal than the upper bound stated by the user in the

assertion. The converse holds for lower bound cost assertions (Bueno et al. 1997;

López-Garcı́a et al. 2010b). Thanks to this functionality, CiaoPP can also certify

programs with resource consumption assurances as well as efficiently checking such

certificates (Hermenegildo et al. 2004).

5.3 Run-time checking

As mentioned before, (parts of) assertions, which cannot be verified at compile time

(see again Fig. 8), are translated into run-time checks via a program transformation.

As an example, consider the assertion, property definitions, and (wrong) definition of

qsort/2 in Figure 10 (where conc/3 and partition/4 are defined as in Figures 2

and 9, respectively). The assertion states that qsort/2 always returns a ground,

sorted list of numbers. The program contains a bug to be discovered. With run-time

checking turned on, the following query produces the listed results:

?- qsort([1,2],X).

{In /tmp/qsort.pl

ERROR: (lns 5-5) Run-time check failure in assertion for: qsort:qsort/2.

In *success*, unsatisfied property: sorted_num_list.

ERROR: (lns 13-16) Failed in qsort:qsort/2.}
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1 :- module(qsort , [qsort/2], [assertions , functional ]).

2 :- use_module(compare , [geq/2, lt/2]).

3 :- entry qsort/2 : {list(num), ground} * var.

4

5 qsort ([]) := [].

6 qsort([X|L]) := ~conc(qsort(L1), [X|qsort(L2)])

7 :- partition(L, X, L1 , L2).

8

9 partition ([],_B ,[] ,[]).

10 partition ([E|R],C,[E|Left1],Right) :-

11 lt(E,C), partition(R,C,Left1 ,Right).

12 partition ([E|R],C,Left ,[E|Right1 ]) :-

13 geq(E,C), partition(R,C,Left ,Right1 ).

Fig. 9. A modular qsort program.

5 :- pred qsort(A,B) => (ground(B),sorted_num_list(B)).

6

7 :- prop sorted_num_list /1.

8

9 sorted_num_list ([]).

10 sorted_num_list ([X]):- num(X).

11 sorted_num_list ([X,Y|Z]):- num(X),num(Y),geq(Y,X),

12 sorted_num_list ([Y|Z]).

13 qsort ([] ,[]).

14 qsort([X|L],R) :- partition(L,X,L1 ,L2),

15 qsort(L2 ,R2), qsort(L1,R1),

16 conc(R2 ,[X|R1],R).

Fig. 10. An example for run-time checking.

Two errors are reported for a single run-time check failure: the first error shows

the actual assertion being violated and the second marks the first clause of the

predicate, which violates the assertion. However, not enough information is provided

to determine, which literal made the erroneous call. It is also possible to increase

the verbosity level of the messages and to produce a call stack dump up to the exact

program point where the violation occurs, showing for each predicate the body

literal that led to the violation:

?- set_ciao_flag(rtchecks_callloc,literal),

set_ciao_flag(rtchecks_namefmt,long), use_module(’/tmp/qsort.pl’).

yes

?- qsort([3,1,2],X).

{In /tmp/qsort.pl

ERROR: (lns 5-5) Run-time check failure in assertion for: qsort:qsort(A,B).

In *success*, unsatisfied property: sorted_num_list(B).

Because: [’B’=[2,1]].

ERROR: (lns 13-16) Failed in qsort:qsort(A,B).

ERROR: (lns 13-16) Failed when invocation of qsort:qsort([X|L],R)

called qsort:qsort(L1,R1) in its body.}

{In /tmp/qsort.pl

ERROR: (lns 5-5) Run-time check failure in assertion for: qsort:qsort(A,B).

In *success*, unsatisfied property: sorted_num_list(B).
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Because: [’B’=[3,2,1]].

ERROR: (lns 13-16) Failed in qsort:qsort(A,B).}

The output makes it easier to locate the error since the call stack dump provides

the list of calling predicates. Note that the first part of the assertion is not violated,

since B is ground. However, on success the output of qsort/2 is a sorted list but in

reverse order, which gives us a hint: the variables R1 and R2 in the call to conc/3

are swapped by mistake.

5.4 Unit testing

Unit tests need to express on one hand what to execute and on the other hand what

to check (at run time). A key characteristic of the Ciao approach to unit testing

(see Mera et al. 2009 for a full description) is that it (re)uses the assertion language

for expressing what to check. This avoids redundancies and allows reusing the

same assertions and properties used for static and/or run-time checking. However,

the assertion language does include a minimal number of additional elements for

expressing what to execute. In particular, it includes the following assertion schema:

:- texec Pred [: Precond] [+ ExecProps].

which states that we want to execute (as a test) a call to Pred with its variables

instantiated to values that satisfy Precond. ExecProps is a conjunction of properties

describing how to drive this execution. As an example, the assertion:

:- texec conc(A, B, C) : (A=[1,2],B=[3],var(C)).

expresses that the testing harness should execute a call to conc/3 with the first and

second arguments bound to [1,2] and [3], respectively, and the third one unbound.

In our approach, many of the properties that can be used in Precond (e.g., types)

can also be used as value generators for those variables so that input data can

be automatically generated for the unit tests (see, e.g., the technique described

in Gómez-Zamalloa et al. 2008). However, there are also some properties that are

specific for this purpose, e.g., random value generators.

We can define a complete unit test using the texec assertion together with other

assertions expressing what to check at run time, for example:

:- check success conc(A,B,C):(A=[1,2],B=[3],var(C)) => C=[1,2,3].

:- check comp conc(A,B,C):(A=[1,2],B=[3],var(C)) + not fails.

The success assertion states that if a call to conc/3 with the first and second

arguments bound to [1,2] and [3], respectively, and the third one unbound

terminates with success, then the third argument should be bound to [1,2,3]. The

comp assertion says that such a call should not fail.

One additional advantage of Ciao’s unified framework is that the execution

expressed by a Precond in a texec assertion for unit testing can also trigger the

checking of parts of other assertions that could not be checked at compile time

and thus remain as run-time checks. This way, a single set of run-time checking

machinery can deal with both run-time checks and unit tests. Conversely, static
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checking of assertions can safely avoid (possibly parts of) unit test execution (see

Fig. 8 again) so that sometimes unit tests can be checked without ever running them.

Finally, the system provides as syntactic sugar another predicate assertion schema,

the test schema: :- test Pred [: Precond] [=> Postcond] [+ CompExecProps].

This assertion is interpreted as the combination of the following three assertions:

:- texec Pred [: Precond] [+ ExecProps].

:- check success Pred [: Precond] [=> Postcond].

:- check comp Pred [: Precond] [+ CompProps].

For example, the assertion:

:- test conc(A,B,C): (A=[1,2],B=[3],var(C))=> C=[1,2,3] + not fails.

is conceptually equivalent to the three (texec, success, comp) shown previously as

examples (CompExecProps being the conjunction of ExecProps and CompProps).

The assertion language not only allows checking single solutions (as it is done

in the previous test assertion for conc/3), but also multiple solutions to calls. In

addition, it includes a set of predefined properties that can be used in ExecProps

that are specially useful in the context of unit tests, including: an upper bound N on

the number of solutions to be checked (try sols(N)); expressing that the execution

of the unit test should be repeated N times (times(N)); that a test execution

should throw a particular exception (exception(Excep)); or that a predicate should

write a given string into the current output stream (user output(String)) or the

current error stream (user error(String)). Similarly, properties are provided that

are useful in Precond, for example, to generate random input data with a given

probability distribution (e.g., for floating point numbers, including special cases like

infinite, not-a-number, or zero with sign).

The testing mechanism has proved very useful in practice. For example, with it, we

have developed a battery of tests that are used for checking ISO-Prolog compliance

in Ciao. The set contains 976 unit tests, based on the Stdprolog application (Szabó

and Szeredi 2006).

6 High performance with less effort

A potential benefit of strongly typed languages is performance: the compiler can

generate more efficient code with the additional type and mode information that

the user provides. Performance is a good thing, of course. However, it is also

attractive to avoid putting the burden of efficient compilation on the user by

requiring the presence of many program declarations: the compiler should certainly

take advantage of any information given by the user, but if the information is

not available, it should do the work of inferring such program properties whenever

possible. This is the approach taken in Ciao: as we have seen before, when assertions

are not present in the program, Ciao’s analyzers try to infer them. Most of these

analyses are performed at the kernel language level so that the same analyzers are

used for several of the supported programming models.

High-level optimization: the information inferred by the global analyzers is used to

perform high-level optimizations, including multiple abstract specialization (Puebla
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and Hermenegildo 1995), partial evaluation (Puebla et al. 2006), dead code removal,

goal reordering, reduction of concurrency/dynamic scheduling (Puebla et al. 1997),

etc.

Optimizing compilation: the objective is again to achieve the best of both worlds: with

no assertions or analysis information, the low-level Ciao compiler (ciaoc (Cabeza

and Hermenegildo 2000b)) generates code, which is competitive in speed and size

with the best dynamically typed systems. And then, when useful information is

present, either coming from the user or inferred by the system analyzers, the

experimental optimizing compiler, optimcomp (see, e.g., Morales et al. 2004 for

an early description) can produce code that is competitive with that of strongly

typed systems. Ciao’s highly optimized compilation has been successfully tested,

for example, in applications with tight memory and real-time constraints (Carro

et al. 2006), obtaining a seven-fold speed-up w.r.t. the default bytecode compilation.

The performance of the latter is already similar to that of state-of-the-art abstract

machine-based systems. The application involved the real-time spatial placement of

sound sources for a virtual reality suit, and ran in a small (“Gumstix”) processor

embedded within a headset. Interestingly, this performance level is only around

20%–40% slower than a comparable (but more involved) implementation in C of

the same application.

ImProlog: driven by the need of producing efficient final code in extreme cases,

we have also introduced in the more experimental parts of the system the design

and compilation of a variant of Prolog (which we termed ImProlog), which, besides

assertions for types and modes, introduces imperative features, such as low-level

pointers and destructive assignment. This restricted subset of the merge of the

imperative and logic paradigms is present (in beta) in the optimcomp branch and

has been used to write a complete WAM emulator including its instructions (Morales

et al. 2009), and part of its lower level data structures (Morales et al. 2008). This

source code is subject to several analysis and optimization stages to generate highly

efficient C code. This approach is backed by some early performance numbers,

which show this automatically generated machine to be on average just 8% slower

than that of a highly optimized emulator, such as YAP 5.1.2 (Costa et al. 2002)

(and actually faster in some benchmarks), and 44% faster than the stock Ciao

emulator. In this case, some of the annotations ImProlog takes advantage of cannot

be inferred by the analyzers, because, for example, they address issues (such as word

size) that depend on the targeted architecture, which must be entered by hand.

Automatic parallelization: a particularly interesting optimization performed by

CiaoPP, in the same vein of obtaining high performance with less effort from

the programmer, and which is inherited from the &-Prolog system, is automatic

parallelization (Hermenegildo 1997; Gupta et al. 2001). This is specially relevant

nowadays given that the wide availability of multicore processors has made parallel

computers mainstream. We illustrate this by means of a simple example using

goal-level program parallelization (Bueno et al. 1999; Casas et al. 2007). This

optimization is performed as a source-to-source transformation, in which the input

program is annotated with parallel expressions as a result. The parallelization
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qsort([X|L],R) :-

partition(L,X,L1,L2),

( indep(L1, L2) ->

qsort(L2,R2) & qsort(L1 ,R1)

;

qsort(L2,R2), qsort(L1,R1) ),

conc(R1 ,[X|R2],R).

Fig. 11. Parallel QuickSort w/run-time checks.

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2) &

qsort(L1,R1),

conc(R1 ,[X|R2],R).

Fig. 12. Parallel QuickSort.

algorithms, or annotators (Muthukumar et al. 1999), exploit parallelism under

certain independence conditions, which allow guaranteeing interesting correctness

and no-slowdown properties for the parallelized programs (Hermenegildo and Rossi

1995; Garcı́a de la Banda et al. 2000). This process is made more complex by the

presence of variables shared among goals and pointers among data structures at

run time.

Consider the program in Figure 9 (with conc/3 defined as in Fig. 2). A possible

parallelization (obtained in this case with the “MEL” annotator Muthukumar et al.

1999) is shown in Figure 11, which means that, provided that L1 and L2 do not

have variables in common at run time, then the recursive calls to qsort can be run

in parallel. Assuming that lt/2 and geq/2 in Figure 9 need their arguments to be

ground (note that this may be either inferred by analyzing the implementation of

lt/2 and geq/2 or stated by the user using suitable assertions), the information

collected by the abstract interpreter using, e.g., mode and sharing/freeness analysis,

can determine that L1 and L2 are ground after partition, and therefore, they do not

have variables to share. As a result, the independence check and the corresponding

conditional is simplified via abstract executability and the annotator yields instead

the code in Figure 12, which is much more efficient since it has no run-time check.

This check simplification process is described in detail in Bueno et al. (1999) where

the impact of abstract interpretation in the effectiveness of the resulting parallel

expressions is also studied.

The checks in the above example aim at strict independent and-parallelism

(Hermenegildo and Rossi 1995). However, the annotators are parametrized on the

notion of independence. Different checks can be used for different independence

notions: non-strict independence (Cabeza and Hermenegildo 1994), constraint-

based independence (Garcı́a de la Banda et al. 2000), etc. Moreover, all forms of

and-parallelism in logic programs can be seen as independent and-parallelism,
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provided the definition of independence is applied at the appropriate granularity

level.7

Ciao currently includes low-level, native support for the creation of (POSIX-based)

threads at the O.S. level, which are used as support for independent and-parallel

execution (Casas et al. 2008). Task stealing is used to achieve independence between

the number of O.S. threads and the number of parallel goals (Hermenegildo 1986;

Hermenegildo and Greene 1991).

Granularity control: the information produced by the CiaoPP cost analyzers is also

used to perform combined compile—time/run—time resource control. An example

of this is task granularity control (López-Garcı́a et al. 1996) of parallelized code.

Such parallel code can be the output of the process mentioned above or code

parallelized manually. In general, this run-time granularity control process includes

computing sizes of terms involved in granularity control, evaluating cost functions,

and comparing the result with a threshold to decide between parallel and sequential

execution. However, there are optimizations to this general process, such as cost

function simplification and improved term size computation.

Visualization of parallel executions: a tool (VisAndOr (Carro et al. 1993)) for de-

picting parallel executions was developed and used to help programmers and system

developers understand the program behavior and task scheduling performed. This

is very useful for tuning the abstract machine and the automatic parallelizers.

7 Incremental compilation and other support for programming

in the small and in the large

In addition to all the functionality provided by the preprocessor and assertions,

programming in the large is further supported again by the module system (Cabeza

and Hermenegildo 2000a). This design is the real enabler of Ciao’s modular program

development tools, effective global program analysis, modular static debugging, and

module-based automatic incremental compilation and optimization. The analyzers

and compiler take advantage of the module system and module dependencies to

reanalyze/recompile only the required parts of the application modules after one or

more of them is changed, automatically and implicitly, without any need to define

“makefiles” or similar dependency-related additional files, or to call explicitly any

“make”-style command.

Application deployment is enhanced beyond the traditional Prolog top level, since

the system offers a full-featured interpreter but also supports the use of Ciao as a

scripting language and a compiled language. Several types of executables can be

easily built, from multiarchitecture bytecode executables to single-architecture, stan-

dalone executables. Multiple platforms are supported, including the very common

Linux, Windows, Mac OS X, and other Un*x-based OSs, such as Solaris. Due to the

explicit effort in keeping the requirements of the virtual machine to a minimum, the

7 For example, stream and-parallelism can be seen as independent and-parallelism if the independence
of “bindings” rather than goals is considered.
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effort of porting to new operating systems has so far been reduced. Ciao is known to

run on several architectures, including Intel, Power PC, SPARC, and XScale/ARM

processors.

Modular distribution of user and system code in Ciao, coupled with modular anal-

ysis, allows the generation of stripped executables containing only those builtins and

libraries used by the program. Those reduced-size executables allow programming

in the small when strict space constraints are present.

Flexible development of applications and libraries that use components written in

several languages is also facilitated, by means of compiler and abstract machine

support for multiple bidirectional foreign interfaces to C/C++, Java, Tcl/Tk,

SQL databases (through a notion of predicate persistence), etc. The interfaces

are described by using assertions, as previously stated, and any necessary glue code

is automatically generated from them.

8 An advanced integrated development environment

Another design objective of Ciao has been to provide a truly productive program

development environment that integrates all of the tools mentioned before in order to

allow the development of correct and efficient programs in as little time and with as

little effort as possible. This includes a rich graphical development interface, based on

the latest graphical versions of Emacs and offering menu and widget-based interfaces

with direct access to the top-level/debugger, preprocessor, and autodocumenter, as

well as an embeddable source-level debugger with breakpoints, and several profiling

and execution visualization tools. In addition, a plugin with very similar functionality

is also available for the Eclipse programming environment.8

The programming environment makes it possible to start the top level, the

debugger, or the preprocessor, and to load the current module within them by

pressing a button or via a pair of keystrokes. Tracing the execution in the debugger

makes the current statement in the program be highlighted in an additional buffer

containing the debugged file.

The environment also provides automated access to the documentation, extensive

syntax highlighting, autocompletion, autolocation of errors in the source, etc., and

is highly customizable (to set, for example, alternative installation directories or the

location of some binaries). The direct access to the preprocessor allows interactive

control of all the static debugging, verification, and program transformation facilities.

For example, Figure 13 shows the menu that allows choosing the different options

for compile-time and run-time checking of assertions (this menu is the “naive” one

that offers reduced and convenient defaults for all others; selecting “expert” mode

allows changing all options).

As another example, Figure 14 shows CiaoPP indicating a semantic error in

the source. In particular, it is the cost-related error discussed in Section 5.2 where the

compiler detects (statically!) that the definition of nrev does not comply with

the assertion requiring it to be of linear complexity.

8 See http://eclipse.ime.usp.br/projetos/grad/plugin-prolog/index.html.
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Fig. 13. Menu for compile-time/run-time checking of assertions.

Fig. 14. Error location in the source—a cost error.

The direct access to the autodocumentation facilities (Hermenegildo 2000) allows

the easy generation of human-readable program documentation from the current

file in a variety of formats from the assertions, directives, and machine-readable

comments present in the program being developed or in the system’s libraries,

as well as all other program information available to the compiler. This direct

access to the documenter and on a per-module basis is very useful in practice for

incrementally building documentation and making sure that, for example, cross

references between files are well resolved and that the documentation itself is well

structured and formatted.
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9 Some final thoughts: Dynamic versus static languages, parallelism

We now provide as conclusions some final thoughts regarding how the now fairly

classical Ciao approach fares in the light of recent trends. We argue that in fact

many of the motivations and ideas behind the development of Ciao and CiaoPP

over the years have acquired presently even more importance.

The environment in which much software needs to be developed nowadays

(decoupled software development, use of components and services, increased in-

teroperability constraints, need for dynamic update or self-reconfiguration, mash-

ups) is posing requirements, which align with the classical arguments for dynamic

languages but which, in fact, go beyond them. Examples of often required dynamic

features include making it possible to (partially) test and verify applications, which

are partially developed, and which will never be “complete” or “final,” or which

evolve over time in an asynchronous, decentralized fashion (e.g., software service-

based systems). These requirements, coupled with the intrinsic agility in development

of dynamic programming languages, such as Python, Ruby, Lua, JavaScript, Perl,

and PHP (with Scheme or Prolog also in this class), have made such languages a

very attractive option for a number of purposes that go well beyond simple scripting.

Parts written in these languages often become essential components (or even the

whole implementation) of full, mainstream applications.

At the same time, detecting errors at compile time and inferring properties

required to optimize programs are still important issues in real-world applications.

Thus, strong arguments are also made for static languages. For example, modern

logic and functional languages (e.g., Mercury (Somogyi et al. 1996) or Haskell

(Hudak et al. 1992)) impose strong type-related requirements such as that all types

(and, when relevant, modes) have to be defined explicitly or that all procedures have

to be “well-typed” and “well-moded.” One argument supporting this approach is

that it clarifies interfaces and meanings and facilitates “programming in the large”

by making large programs more maintainable and better documented. Also, the

compiler can use the static information to generate more specific code, which can

be better in several ways (e.g., performance-wise).

In the design of Ciao, we certainly had the latter arguments in mind, but we also

wanted Ciao to be useful (as the scripting languages) for highly dynamic scenarios

such as those listed above, for “programming in the small,” for prototyping, for

developing simple scripts, or simply for experimenting with the solution to a problem.

We felt that compulsory type and mode declarations, and other related restrictions,

can sometimes get in the way in these contexts.

The solution we came up with involves the rich Ciao assertion language and the

Ciao methodology for dealing with such assertions (Bueno et al. 1997; Hermenegildo

et al. 1999a; Puebla et al. 2000b), which implies making a best effort to infer

and check these properties statically, using powerful and rigorous static analysis

tools based on safe approximations, while accepting that complete verification or

validation may not always be possible and run-time checks may be needed. This

approach opens up the possibility of dealing in a uniform way with a wide variety of

properties besides types (e.g., rich modes, determinacy, non-failure, sharing/aliasing,
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term linearity, cost, . . . ), while at the same time making assertions optional. We

argue that this solution has made Ciao very useful for programming both in the

small and in the large, combining effectively the advantages of the strongly typed

and untyped language approaches. In contrast, systems which focus exclusively on

automatic compile-time checking are often rather strict about the properties, which

the user can write. This is understandable because otherwise the underlying static

analyses are of little use for proving the assertions.

In this sense, the Ciao model is related to the soft typing approach (Cartwright

and Fagan 1991), but without being restricted to types. It is also related to the

NU–Prolog debugger (Naish et al. 1989), which performed compile-time checking

of decidable (regular) types and also allowed calling Prolog predicates at run

time as a form of dynamic type checks. However, as mentioned before, compile-

time inference and checking in the Ciao model is not restricted to types (nor

requires properties to be decidable), and it draws many new synergies from its

novel combination of assertion language, properties, certification, run-time checking,

testing, etc. The practical relevance of the combination of static and dynamic features

is in fact illustrated by the many other languages and frameworks, which have been

proposed lately aiming at bringing together ideas of both worlds. This includes recent

work in gradual typing for Scheme (Tobin-Hochstadt and Felleisen 2008) (and the

related PLT-Scheme/Racket language) or Prolog (Schrijvers et al. 2008), the recent

uses of “contracts” in verification (Logozzo et al. ), and the pragmatic viewpoint

of (Lamport and Paulson 1999), but applied to programming languages rather than

specification languages. The fifth edition of ECMAScript, on which the JavaScript

and ActionScript languages are based, includes optional (soft-)type declarations

to allow the compiler to generate more efficient code and detect more errors. The

Tamarin project (Mozilla 2008) intends to use this additional information to generate

faster code. The RPython (Ancona et al. 2007) language imposes constraints on the

programs to ensure that they can be statically typed. RPython is moving forward

as a general purpose language. This line has also brought the development of safe

versions of traditional languages, e.g., CCured (Necula et al. 2005) or Cyclone (Jim

et al. 2002) for C, as well as of systems that offer capabilities similar to those of

the Ciao assertion preprocessor, such as Deputy (http://deputy.cs.berkeley.edu/) or

Spec# (Leavens et al. 2007).

We believe that Ciao has pushed and is continuing to push the state of the

art in solving this currently very relevant and challenging conundrum between

statically and dynamically checked languages. It pioneered what we believe is the

most promising approach in order to be able to obtain the best of both worlds:

the combination of a flexible, multipurpose assertion language with strong program

analysis technology. This allows support for dynamic language features while at

the same time having the capability of achieving the performance and efficiency

of static systems. We believe that a good part of the power of the Ciao approach

also comes from the synergy that arises from using the same framework and

assertion language for different tasks (static verification, run-time checking, unit

testing, documentation, . . . ) and its interaction with the design of Ciao itself (its

module system, its extensibility, or the support for predicates and constraints). The
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fact that properties are written in the source language is instrumental in allowing

assertions, which cannot be statically verified to be translated easily into run-time

checks, and this is instrumental in turn in allowing users to get some benefits even if

a certain property cannot be verified at compile time. The assertion language design

also allows a smooth integration with unit testing. Moreover, as (parts of) the unit

tests that can be verified at compile time are eliminated, sometimes unit tests can

be checked without ever running them.

Another interesting current trend where Ciao’s early design choices have become

quite relevant is parallelism. Multicore processors are already the norm, and the

number of cores is expected to grow in the foreseeable future. This has renewed the

interest in language-related designs and tools, which can simplify the intrinsically

difficult (Karp and Babb 1988) but currently necessary task of parallelizing programs.

In the Ciao approach, programmers can choose between expressing manually the

parallelism with high-level constructs, letting the compiler discover the parallelism,

or a combination of both. The parallelizer also checks manual parallelizations for

correctness and, conversely, programmers can easily inspect and improve the (source

level) parallelizations produced by the compiler. These capabilities rely (again) on

the use of CiaoPP’s powerful, modular, and incremental abstract interpretation-

based static program analyzers. This approach was pioneered by &-Prolog and Ciao

(arguably one of the first direct uses of abstract interpretation in a real compiler)

and seems the most promising nowadays, being adopted by many systems (see,

e.g., Hermenegildo 1997 for further discussion).

Probing further: the reader is encouraged to explore the system, its documentation,

and the tutorial papers that have been published on it. At the time of writing, work is

progressing on the new 1.14 system version, which includes significant enhancements

with respect to the previous major release (1.10). In addition to the autodocumenter,

new versions also include within the default distribution the CiaoPP preprocessor

(initially beta versions), which was previously distributed on demand and installed

separately. The latest version of Ciao, 1.13, which is essentially a series of release

candidates for 1.14 has now been available for some time from the Ciao web site

(snapshots) and subversion repository.

Contact/download info/license: the latest versions of Ciao can be downloaded from

http://www.ciaohome.org or http://www.cliplab.org. Ciao is free software protected

to remain so by the GNU LGPL license and can be used freely to develop both free

and commercial applications.
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