Constraints

- Born within AI: e.g. house design
- Constraints used as problem representation:

 The man in yellow does not have green eyes

 The murderer knows no detective will ever wear dark clothes

- A solution is an assignment which agrees with the initial constraints:

 Murderer: López, green eyes, Magnum gun

- Or, alternatively, the solution can also be a set of constraints:

 The murderer is one of those who had met the cabaret entertainer

 (they represent several ground mappings from elements to variables)

- There may be no solution:

 Natural death
A General View

- Ancestors:
 - SKETCHPAD (1963), THINGLAB (1981), Waltz’s algorithm (1965?), MACSYMA (1983), ...

- Constraints in logic languages – the origin of “constraint programming”:
 - General theory developed.
 - Practical systems, generally based on Prolog + some constraint domain(s).

- Constraints in imperative languages:
 - Equation solving libraries (ILOG)
 - Timestamping of variables: \(x := x + 1 \leftrightarrow x_{i+1} := x_i + 1 \)
 (similar to iterative methods in numerical analysis)

- Constraints in functional languages, via extensions:
 - Evaluation of expressions including free variables.
 - Absolute Set Abstraction.

A comparison with LP (I)

- Example (Prolog): \(q(X, Y, Z) :- Z = f(X, Y) \).
 \[
 ?- q(3, 4, Z).
 Z = f(3,4)
 \]

- Example (Prolog): \(p(X, Y, Z) :- Z \text{ is } X + Y \).
 \[
 ?- p(3, 4, Z).
 Z = 7
 \]

 \[
 ?- p(X, 4, 7).
 \text{INSTANTIATION ERROR: in expression}
 \]
A Comparison with LP (II)

- Example (CLP(\(\mathbb{R}\))): \(\text{p}(X, Y, Z) : - Z = X + Y\).

2 \(?\) p(3, 4, Z).

\(Z = 7\)

*** Yes

3 \(?\) p(X, 4, 7).

\(X = 3\)

*** Yes

4 \(?\) p(X, Y, 7).

\(X = 7 - Y\)

*** Yes

A Comparison with LP (III)

- Features in CLP:
 - Domain of computation (reals, integers, booleans, etc).
 Have to meet some conditions.
 - Type of constraints allowed for each domain: e.g. arithmetic constraints (+, *, =, \(\leq\), \(\geq\), <, >)
 - Constraint solving algorithms: simplex, gauss, etc.
- LP can be viewed as a constraint logic language over Herbrand terms with a single constraint predicate symbol: “=”
A Comparison with LP (IV)

- Advantages:
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than traditional LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 * LP: generate-and-test.
 * CLP: constrain-and-generate.

- Disadvantages:
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- Solutions:
 - better algorithms
 - compile-time optimizations (program transformation, global analysis, etc)
 - parallelism

Example of Search Space Reduction

- Prolog (generate-and-test):

solution(X, Y, Z) :-
 p(X), p(Y), p(Z),
 test(X, Y, Z).

 test(X, Y, Z) :- Y is X + 1, Z is Y + 1.

- Query:

 | ?- solution(X, Y, Z). |
 | X = 14
 | Y = 15
 | Z = 16 ? ; |
 | no|

 458 steps (all solutions: 465 steps).
Example of Search Space Reduction

- CLP(\(\Re\)) (using generate–and–test):

 \[
 \text{solution}(X, Y, Z) :- \\
 p(X), p(Y), p(Z), \\
 \text{test}(X, Y, Z).
 \]

 \[
p(14). \ p(15). \ p(16). \ p(7). \ p(3). \ p(11).
 \]

 \[
 \text{test}(X, Y, Z) :- \ Y = X + 1, \ Z = Y + 1.
 \]

- Query:

 \[
 \text{?- solution}(X, Y, Z).
 \]

 \[
 Z = 16 \\
 Y = 15 \\
 X = 14 \\
 *** \text{Retry? y} \\
 *** \text{No}
 \]

- 458 steps (all solutions: 465 steps).

Generate–and–test Search Tree

```

```

```
Example of Search Space Reduction

- **Move** test(X, Y, Z) at the beginning (constrain–and–generate):

  solution(X, Y, Z) :-
  test(X, Y, Z),
  p(X), p(Y), p(Z).

- **Prolog:**
  test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
  | ?- solution(X, Y, Z).
  {INSTANTIATION ERROR: in expression}

- **CLP(β):**
  test(X, Y, Z) :- Y = X + 1, Z = Y + 1.
  ?- solution(X, Y, Z).
  Z = 16
  Y = 15
  X = 14

  *** Retry? y
  *** No

- 6 steps (all solutions: 11 steps).

---

**Constrain–and–generate Search Tree**

```
X=14 Y=15 Z=16
 / | \
 X=15 X=16 X=7
 / \
 X=3 X=11
```

6 steps (all solutions: 11 steps).
Constraint Domains

- Semantics parameterized by the constraint domain: \( CLP(\mathcal{X}) \), where \( \mathcal{X} \equiv (\Sigma, \mathcal{D}, \mathcal{L}, \mathcal{T}) \)
- Signature \( \Sigma \): set of predicate and function symbols, together with their arity
- \( \mathcal{L} \subseteq \Sigma \)-formulae: constraints
- \( \mathcal{D} \) is the set of actual elements in the domain
- \( \Sigma \)-structure \( \mathcal{D} \): gives the meaning of predicate and function symbols (and hence, constraints).
- \( \mathcal{T} \) a first-order theory (axiomatizes some properties of \( \mathcal{D} \))
- \( (\mathcal{D}, \mathcal{L}) \) is a constraint domain
- Assumptions:
  - \( \mathcal{L} \) built upon a first-order language
  - \( \mathcal{L} \) is closed w.r.t. renaming, conjunction and existential quantification

Domains (I)

- \( \Sigma = \{0, 1, +, \ast, =, <, \leq\} \), \( \mathcal{D} = \mathbb{R}, \mathcal{L} \) interprets \( \Sigma \) as usual, \( \mathcal{R} = (\mathcal{D}, \mathcal{L}) \)
  - Arithmetic over the reals
    - Eg.: \( x^2 + 2xy < \frac{y}{2} \land x > 0 \) (\( \equiv xxx + xxy + xyy < y \land 0 < x \))
  - Linear arithmetic
    - Eg.: \( 3x - y < 3 \) (\( \equiv x + x + x < 1 + 1 + 1 + y \))
- Question: is \( 0 \) needed? How can it be represented?
- Let us assume \( \Sigma' = \{0, 1, +, =, <, \leq\} \), \( \mathcal{R}_{Lin} = (\mathcal{D}', \mathcal{L}') \)
  - Linear equations
    - Eg.: \( 3x + y = 5 \land y = 2x \)
- Let us assume \( \Sigma'' = \{0, 1, +, =\} \), \( \mathcal{R}_{LinEq} = (\mathcal{D}'', \mathcal{L}'') \)
  - Linear equations
Domains (II)

- $\Sigma = \{ \text{<constant and function symbols>, } = \}$
- $D = \{ \text{finite trees } \}$
- $D$ interprets $\Sigma$ as tree constructors
- Each $f \in \Sigma$ with arity $n$ maps $n$ trees to a tree with root labeled $f$ and whose subtrees are the arguments of the mapping
- Constraints: syntactic tree equality
  - $FT = (D, L)$
    - Constraints over the Herbrand domain
    - Eg.: $g(h(Z), Y) = g(Y, h(a))$
- $LP \equiv CLP(FT)$

Domains (III)

- $\Sigma = \{ \text{<constants>, } \land, \lor, = \}$
- $D = \{ \text{finite strings of constants } \}$
- $D$ interprets . as string concatenation, :: as string length
  - Equations over strings of constants
    - Eg.: $X.A.X = X.A$
- $\Sigma = \{0, 1, \neg, \land, = \}$
- $D = \{ \text{true, false} \}$
- $D$ interprets symbols in $\Sigma$ as boolean functions
  - Boolean constraints
    - Eg.: $\neg(x \land y) = 1$
CLP(\mathcal{X}) Programs

- Recall that:
  - $\Sigma$ is a set of predicate and function symbols
  - $\mathcal{L} \subseteq \Sigma$—formulae are the constraints
- $\Pi$: set of predicate symbols definable by a program
- Atom: $p(t_1, t_2, \ldots, t_n)$, where $t_1, t_2, \ldots, t_n$ are terms and $p \in \Pi$
- Primitive constraint: $p(t_1, t_2, \ldots, t_n)$, where $t_1, t_2, \ldots, t_n$ are terms and $p \in \Sigma$ is a predicate symbol
- Every constraint is a (first–order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form $a \leftarrow b_1, \ldots, b_n$ where $a$ is an atom and the $b_i$’s are atoms or constraints
- A fact is a rule $a \leftarrow c$ where $c$ is a constraint
- A goal (or query) $G$ is a conjunction of constraints and atoms

A case study: CLP(\mathcal{R})

- CLP(\mathcal{R}) is a language based on Prolog, with the addition of constraint solving capabilities over the reals ($\mathbb{R}_{Lin}$)
- CLP(\mathcal{R}) uses the same execution strategy as Prolog (depth–first, left–to–right)
- CLP(\mathcal{R}) is able to solve directly linear (dis)equations over the reals
- Non–linear equations are delayed, waiting for them to eventually become linear
- Most relevant feature w.r.t. Prolog (for our purposes): `is/2` disappears, and is subsumed by `=/2` and (extended) unification
- Note: CLP(\mathcal{R}) is really CLP((\mathcal{R}; FT)) — $FT$ is often omitted
Linear Equations (CLP(R))

- Vector × vector multiplication (dot product):
  \[ \cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \]
  \[ (x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n \]

- Vectors represented as lists of numbers
  \[
  \text{prod}([], [], 0).
  \]
  \[
  \text{prod}([X|Xs], [Y|Ys], X * Y + \text{Rest}) :-
  \text{prod}(Xs, Ys, \text{Rest}).
  \]

- Unification becomes constraint solving!
  \[- \text{prod}([2, 3], [4, 5], K).
  K = 23
  \]
  \[- \text{prod}([2, 3], [5, X2], 22).
  X2 = 4
  \]
  \[- \text{prod}([2, 7, 3], [Vx, Vy, Vz], 0).
  Vx = -1.5*Vz - 3.5*Vy
  \]

- Any computed answer is, in general, an equation over the variables in the query

Systems of Linear Equations (CLP(R))

- Can we solve systems of equations? E.g.,
  \[
  3x + y = 5 \\
  x + 8y = 3
  \]

- Write them down at the top level prompt:
  \[- \text{prod}([3, 1], [X, Y], 5), \text{prod}([1, 8], [X, Y], 3).
  X = 1.6087, Y = 0.173913
  \]

- A more general predicate can be built mimicking the mathematical vector notation
  \[
  \begin{align*}
  A \cdot x &= b \\
  \text{system}(_{\text{Vars}}, [], []). \\
  \text{system}(\text{Vars}, [\text{Co|Coefs}], [\text{Ind|Indeps}]) :- \\
  \text{prod}(\text{Vars, Co, Ind}), \\
  \text{system}(\text{Vars, Coefs, Indeps}).
  \end{align*}
  \]

- We can now express (and solve) equation systems
  \[- \text{system}([X, Y], [[3, 1],[1, 8]], [5, 3]).
  X = 1.6087, Y = 0.173913
  \]
Non–linear Equations (CLP(\texttt{R}))

- Non–linear equations are delayed
  \texttt{?- \sin(X) = \cos(X).}
  \texttt{\sin(X) = \cos(X)}

- This is also the case if there exists some procedure to solve them
  \texttt{?- X*X + 2*X + 1 = 0.}
  \texttt{-2*X - 1 = X * X}

- Reason: no general solving technique is known. CLP(\texttt{R}) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:
  \texttt{?- X = \cos(\sin(Y)), Y = 2+Y*3.}
  \texttt{Y = -1, X = 0.666367}

- Disequations are solved using a modified, incremental Simplex
  \texttt{?- X + Y <= 4, Y >= 4, X >= 0.}
  \texttt{Y = 4, X = 0}

Fibonacci Revisited (Prolog)

- Fibonacci numbers:
  \[ F_0 = 0 \]
  \[ F_1 = 1 \]
  \[ F_{n+2} = F_{n+1} + F_n \]

- (The good old) Prolog version:
  \texttt{fib(0, 0).}
  \texttt{fib(1, 1).}
  \texttt{fib(N, F) :-}
  \texttt{N > 1,}
  \texttt{N1 is N - 1,}
  \texttt{N2 is N - 2,}
  \texttt{fib(N1, F1),}
  \texttt{fib(N2, F2),}
  \texttt{F is F1 + F2.}

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP($\mathbb{R}$))

- CLP($\mathbb{R}$) version: syntactically similar to the previous one
  fib(0, 0).
  fib(1, 1).
  fib(N, F1 + F2) :-
      N > 1, F1 >= 0, F2 >= 0,
      fib(N - 1, F1), fib(N - 2, F2).

- Note all constraints included in program (F1 >= 0, F2 >= 0) — good practice!

- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP($\mathbb{R}$)"

- Semantics greatly enhanced! E.g.
  \[\text{?- fib(N, F).} \]
  \[
  F = 0, N = 0 ; \\
  F = 1, N = 1 ; \\
  F = 1, N = 2 ; \\
  F = 2, N = 3 ; \\
  F = 3, N = 4 ; \\
  \]

Analog RLC circuits (CLP($\mathbb{R}$))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
  - A simple component, or
  - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series —→ Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- Entry point: circuit(C, V, I, W) states that:
  across the network C, the voltage is V, the current is I and the frequency is W
- V and I must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(\Re))

- Complex number $X + Yi$ modeled as $c(X, Y)$
- Basic operations:

  \[
  c_{\_add}(c(Re1, Im1), c(Re2, Im2), c(Re1+Re2, Im1+Im2)).
  \]

  \[
  c_{\_mult}(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
  Re3 = Re1 \ast Re2 - Im1 \ast Im2,
  Im3 = Re1 \ast Im2 + Re2 \ast Im1.
  \]

  (equality is $c_{\_equal}(c(R, I), c(R, I))$, can be left to [extended] unification)

Analog RLC circuits (CLP(\Re))

- Circuits in series:

  \[
  \text{circuit(series(N1, N2), V, I, W) :-}
  c_{\_add}(V1, V2, V),
  \text{circuit(N1, V1, I, W)},
  \text{circuit(N2, V2, I, W}).
  \]

- Circuits in parallel:

  \[
  \text{circuit(parallel(N1, N2), V, I, W) :-}
  c_{\_add}(I1, I2, I),
  \text{circuit(N1, V, I1, W)},
  \text{circuit(N2, V, I2, W}).
  \]
Analog RLC circuits (CLP(\mathbb{R}))

Each basic component can be modeled as a separate unit:

- **Resistor:** $V = I \times (R + 0i)$

  \[
  \text{circuit(resistor}(R), V, I, \_W) :- \\
  \text{c\_mult}(I, c(R, 0), V).
  \]

- **Inductor:** $V = I \times (0 + WL_i)$

  \[
  \text{circuit(inductor}(L), V, I, W) :- \\
  \text{c\_mult}(I, c(0, W \times L), V).
  \]

- **Capacitor:** $V = I \times (0 - \frac{1}{WC}i)$

  \[
  \text{circuit(capacitor}(C), V, I, W) :- \\
  \text{c\_mult}(I, c(0, -1 / (W \times C)), V).
  \]

Example:

\begin{array}{c}
\text{R = ?} & \text{C = ?} \\
\hline
\text{V = 4.5} & \omega = 2400 \\
\text{I = 0.65} & \\
\text{L = 0.073} & \\
\end{array}

?- circuit(parallel(inductor(0.073), \\
\text{series(capacitor}(C), \text{resistor}(R))), \\
\text{c}(4.5, 0), \text{c}(0.65, 0), 2400).

R = 6.91229, C = 0.00152546

?- circuit(C, \text{c}(4.5, 0), \text{c}(0.65, 0), 2400).
The N Queens Problem

- Problem: place \( N \) chess queens in a \( N \times N \) board such that they do not attack each other
- Data structure: a list holding the column position for each row
- The final solution is a permutation of the list \([1, 2, \ldots, N]\)

E.g.: the solution \(
\begin{array}{ccc}
& & \\
& & \\
& & \\
\end{array}
\) is represented as \([2, 4, 1, 3]\)

- General idea:
  - Start with partial solution
  - Nondeterministically select new queen
  - Check safety of new queen against those already placed
  - Add new queen to partial solution if compatible; start again with new partial solution

The N Queens Problem (Prolog)

```
queens(N, Qs) :- queens_list(N, Ns), queens(Ns, [], Qs).
queens([], Qs, Qs).
queens(Unplaced, Placed, Qs) :-
 select(Unplaced, Q, NewUnplaced),
 no_attack(Placed, Q, 1),
 queens(NewUnplaced, [Q|Placed], Qs).
no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 Queen =\= Y + Nb, Queen =\= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).
select([Y|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).
queens_list(0, []).
queens_list(N, [N|Ns]) :- N > 0, N1 is N - 1, queens_list(N1, Ns).
```
The N Queens Problem (Prolog)

The N Queens Problem (CLP(\(\mathcal{R}\)))

queens(N, Qs) :- constrain_values(N, N, Qs), place_queens(N, Qs).

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
    N > 0, X > 0, X <= Range,
    constrain_values(N - 1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
    abs(Queen - (Y + Nb)) > 0, % Queen =\= Y + Nb
    abs(Queen - (Y - Nb)) > 0, % Queen =\= Y - Nb
    no_attack(Ys, Queen, Nb + 1).

place_queens(0, _).
place_queens(N, Q) :- N > 0, member(N, Q), place_queens(N - 1, Q).

member(X, [X|_]).
member(X, [_|Xs]) :- member(X, Xs).
The N Queens Problem (CLP(\mathcal{R}))

- This last program can attack the problem in its most general instance:

```
?- queens(M, N).
N = [], M = 0 ;
M = [1], M = 1 ;
N = [2, 4, 1, 3], M = 4 ;
N = [3, 1, 4, 2], M = 4 ;
N = [5, 2, 4, 1, 3], M = 5 ;
N = [5, 3, 1, 4, 2], M = 5 ;
N = [3, 5, 2, 4, 1], M = 5 ;
N = [2, 5, 3, 1, 4], M = 5
...
```

- Remark: Herbrand terms used to build the data structures

- But also used as constraints (e.g., length of already built list \(Xs\) in no_attack(\(Xs\), \(X\), 1))

- Note that in fact we are using both \(\mathcal{R}\) and \(\mathcal{F}\mathcal{T}\)
The N Queens Problem (CLP(\(\mathcal{R}\)))

- CLP(\(\mathcal{R}\)) generates internally a set of equations for each board size
- They are non-linear and are thus delayed until instantiation wakes them up

?- constrain_values(4, 4, Q).
Q = [_t3, _t5, _t13, _t21]

\[
\begin{align*}
_t3 & \leq 4 & 0 < \text{abs}(-t_{13} + t_3 - 2) \\
_t5 & \leq 4 & 0 < \text{abs}(-t_{13} + t_3 + 2) \\
_t13 & \leq 4 & 0 < \text{abs}(-t_{21} + t_3 - 3) \\
_t21 & \leq 4 & 0 < \text{abs}(-t_{21} + t_3 + 3) \\
0 & < t_3 & 0 < \text{abs}(-t_{13} + t_5 - 1) \\
0 & < t_5 & 0 < \text{abs}(-t_{13} + t_5 + 1) \\
0 & < t_{13} & 0 < \text{abs}(-t_{21} + t_3 - 2) \\
0 & < t_{21} & 0 < \text{abs}(-t_{21} + t_3 + 2) \\
0 & < \text{abs}(-t_{13} + t_3 - 1) & 0 < \text{abs}(-t_{21} + t_{13} - 1) \\
0 & < \text{abs}(-t_{13} + t_3 + 1) & 0 < \text{abs}(-t_{21} + t_{13} + 1)
\end{align*}
\]

The N Queens Problem (CLP(\(\mathcal{R}\)))

- Constraints are (incrementally) simplified as new queens are added

?- constrain_values(4, 4, Qs), Qs = [3,1|OQs].
OQs = [_t16, _t24] \quad 0 < \text{abs}(-t_{24})
Qs = [3, 1, _t16, _t24] \quad 0 < \text{abs}(-t_{24} + 6)
\_t16 \leq 4 \quad 0 < \text{abs}(-t_{16})
\_t24 \leq 4 \quad 0 < \text{abs}(-t_{16} + 2)
0 < \_t16 \quad 0 < \text{abs}(-t_{24} - 1)
0 < \_t24 \quad 0 < \text{abs}(-t_{24} + 3)
0 < \text{abs}(-t_{16} + 1) \quad 0 < \text{abs}(-t_{24} + t_{16} - 1)
0 < \text{abs}(-t_{16} + 5) \quad 0 < \text{abs}(-t_{24} + t_{16} + 1)

- Bad choices are rejected using constraint consistency:

?- constrain_values(4, 4, Qs), Qs = [3,2|OQs].
*** No
Finite Domains (I)

- A **finite domain** constraint solver associates each variable with a finite subset of $\mathbb{Z}$

  - I.e., $E \in \{-123, -10..4, 10\}$
    (represented as $E :: [-123, -10..4, 10]$ [Eclipse notation] or as $E$ in $\{-123\}$ \(\setminus\) \((-10..4) \setminus \{10\}$ [SICStus notation])

- We can:
  - Perform arithmetic operations (+, -, *, /) on the variables
  - Establish linear relationships among arithmetic expressions (# =, # <, # =<)

- Those operations / relationships are intended to narrow the domains of the variables

Note: SICStus requires the use of the :- use_module(library(clpfd)). directive in the source code

Finite Domains (II)

- Example:
  
  ?- X #= A + B, A in 1..3, B in 3..7.
  X in 4..10, A in 1..3, B in 3..7

  - The respective minimums and maximums are added

  - There is no unique solution

  ?- X #= A - B, A in 1..3, B in 3..7.
  X in -6..0, A in 1..3, B in 3..7

  - The minimum value of $X$ is the minimum value of $A$ minus the maximum value of $B$

    (Similar for the maximum values)

  - Putting more constraints:

    ?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
    A = 3, B = 3, X = 0
Finite Domains (III)

Some useful primitives in finite domains:

- \texttt{fd\_min(X, T)}: the term \( T \) is the minimum value in the domain of the variable \( X \)
- This can be used to minimize (c.f., maximize) a solution
  \(-\ X \# = A - B, A \ in \ 1..3, B \ in \ 3..7, \ fd\_min(X, X). \)
  \( A = 1, B = 7, X = -6 \)
- \texttt{domain(Variables, Min, Max)}: A shorthand for several \texttt{in} constraints
- \texttt{labeling(Options, VarList)}:
  - instantiates variables in \texttt{VarList} to values in their domains
  - \texttt{Options} dictates the search order
  \(-\ X*X+Y*Y#=Z*Z, \ domain([[X, Y, Z],1,1000]),labeling([], [X,Y,Z]). \)
  \( X = 4, Y = 3, Z = 5 \)
  \( X = 8, Y = 6, Z = 10 \)
  \( X = 12, Y = 5, Z = 13 \)
  ...

A Project Management Problem (I)

- The job whose dependencies and task lengths are given by: should be finished in 10 time units or less

- Constraints:
  \[ \texttt{pn1(A,B,C,D,E,F,G) :-} \]
  \[ \texttt{A \ #>= 0, G \ #=< 10,} \]
  \[ \texttt{B \ #>= A, C \ #>= A, D \ #>= A,} \]
  \[ \texttt{E \ #>= B + 1, E \ #>= C + 2,} \]
  \[ \texttt{F \ #>= C + 2, F \ #>= D + 3,} \]
  \[ \texttt{G \ #>= E + 4, G \ #>= F + 1.} \]
A Project Management Problem (II)

- Query:
  \[- \text{pn1}(A,B,C,D,E,F,G) \]
  \[- A \text{ in } 0..4, B \text{ in } 0..5, C \text{ in } 0..4, \]
  \[- D \text{ in } 0..6, E \text{ in } 2..6, F \text{ in } 3..9, G \text{ in } 6..10, \]

- Note the slack of the variables

- Some additional constraints must be respected as well, but are not shown by default

- Minimize the total project time:
  \[- \text{pn1}(A,B,C,D,E,F,G), \text{fd}_{\text{min}}(G, G). \]
  \[- A = 0, B \text{ in } 0..1, C = 0, D \text{ in } 0..2, \]
  \[- E = 2, F \text{ in } 3..5, G = 6 \]

- Variables without slack represent critical tasks

A Project Management Problem (III)

- An alternative setting:

- We can accelerate task \( F \) at some cost
  \[- \text{pn2}(A, B, C, D, E, F, G, X) :- \]
  \[- A \#>= 0, G \#=< 10, \]
  \[- B \#>= A, C \#>= A, D \#>= A, \]
  \[- E \#>= B + 1, E \#>= C + 2, \]
  \[- F \#>= C + 2, F \#>= D + 3, \]
  \[- G \#>= E + 4, G \#>= F + X. \]

- We do not want to accelerate it more than needed!
  \[- \text{pn2}(A, B, C, D, E, F, G, X), \]
  \[- \text{fd}_{\text{min}}(G,G), \text{fd}_{\text{max}}(X, X). \]
  \[- A = 0, B \text{ in } 0..1, C = 0, D = 0, \]
  \[- E = 2, F = 3, G = 6, X = 3 \]
A Project Management Problem (IV)

- We have two independent tasks $B$ and $D$ whose lengths are not fixed:

- We can finish any of $B$, $D$ in 2 time units at best
- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units

A Project Management Problem (V)

- Constraints describing the net:

  \[
  \text{pn3}(A,B,C,D,E,F,G,X,Y) :-
  \]
  \[
  A \#\geq 0, \ G \#\leq 10, \\
  X \#\geq 2, \ Y \#\geq 2, \ X + Y \#= 6, \\
  B \#\geq A, \ C \#\geq A, \ D \#\geq A, \\
  E \#\geq B + X, \ E \#\geq C + 2, \\
  F \#\geq C + 2, \ F \#\geq D + Y, \\
  G \#\geq E + 4, \ G \#\geq F + 1.
  \]

- Query: \(?- \text{pn3}(A,B,C,D,E,F,G,X,Y), \text{fd}\_\text{min}(G,G).\)

  \[
  A = 0, \ B = 0, \ C = 0, \ D \text{ in } 0..1, \ E = 2, \ F \text{ in } 4..5, \ X = 2, \ Y = 4, \ G = 6
  \]

- I.e., we must devote more resources to task $B$
- All tasks but $F$ and $D$ are critical now
  
- Sometimes, $\text{fd}\_\text{min}/2$ not enough to provide best solution (pending constraints):

  \[
  \text{pn3}(A,B,C,D,E,F,G,X,Y), \\
  \text{labeling(}[\text{ff, minimize}(G)], \ [A,B,C,D,E,F,G,X,Y]).}
  \]
The N-Queens Problem Using Finite Domains (in SICStus Prolog)

- By far, the fastest implementation

```
queens(N, Qs, Type) :-
 constrain_values(N, N, Qs),
 all_different(Qs), % built-in constraint
 labeling(Type, Qs).
```

```
constrain_values(0, _, [])..
constrain_values(N, Range, [X|Xs]) :-
 N > 0, N1 is N - 1, X in 1 .. Range,
 constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).
```

```
no_attack([], _, _).
no_attack([Y|Ys], Queen, Nb) :-
 Queen #\= Y + Nb, Queen #\= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).
```

- Query. Type is the type of search desired.

```
?- queens(20, Q, [ff]).
Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?
```

CLP(\textit{FT}) (a.k.a. Logic Programming)

- Equations over Finite Trees

```
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
 iso(I1, D2),
 iso(D1, I2).
```

```
?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ;
L=b, X=u, Y=W, Z=v ;
L=b, W=t(_,_,B), X=u, Y=t(_,A,_,B), Z=v ;
L=b, W=t(_,E,t(_,D,_,C),_A), X=u, Y=t(_,E,_,A,t(_,D,_,B,_,C)), Z=v .
```
Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

```
?- "123".z = z."231", z::0. % no
?- "123".z = z."231", z::3. % no

?- "123".z = z."231", z::1. % z = "1"
?- "123".z = z."231", z::4. % z = "1231"

?- "123".z = z."231", z::2. % no
```

These constraint solvers are very complex
- Often incomplete algorithms are used

---

Word equations plus arithmetic over \( \mathbb{Q} \) (rational numbers)
- Prove that the sequence \( x_{i+2} = |x_{i+1} - x_i \) has a period of length 9 (for any starting \( x_0, x_1 \))

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

- Sequence description (syntax is Prolog III slightly modified):

```
seq(<Y, X>). abs(Y, Y) :- Y >= 0.
seq(<Y1 - X, Y, X>.U) :- abs(Y, -Y) :- Y < 0.
 seq(<Y, X>.U)
 abs(Y, Y1).
```

Query: Is there any 11-element sequence such that the 2-tuple initial seed is different from the 2-tuple final subsequence (the seed of the rest of the sequence)?

```
?- seq(U.V.W), U::2, V::7, W::2, U#W. fail
```
Summarizing

- In general:
  - Data structures (Herbrand terms) for free
  - Each logical variable may have constraints associated with it (and with other variables)

- Problem modeling:
  - Rules represent the problem at a high level
    - Program structure, modularity
    - Recursion used to set up constraints
  - Constraints encode problem conditions
  - Solutions also expressed as constraints

- Combinatorial search problems:
  - CLP languages provide backtracking: enumeration is easy
  - Constraints keep the search space manageable

- Tackling a problem:
  - Keep an open mind: often new approaches possible

Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints

- E.g.: cardinality operator \( \#(L, [c_1, \ldots, c_n], U) \) meaning that the number of true constraints lies between \( L \) and \( U \) (which can be variables themselves)
  - If \( L = U = n \), all constraints must hold
  - If \( L = U = 1 \), one and only one constraint must be true
  - Constraining \( U = 0 \), we force the conjunction of the negations to be true
  - Constraining \( L > 0 \), the disjunction of the constraints is specified

- Disjunctive constructive constraint: \( c_1 \lor c_2 \)
  - If properly handled, avoids search and backtracking

- E.g.:
  \[
  \begin{align*}
  nz(X) & \leftarrow X > 0. \\
  nz(X) & \leftarrow X < 0.
  \end{align*}
  \]
Other Primitives

- CLP(\(X\)) systems usually provide additional primitives
- E.g.:
  - \texttt{enum}(X) enumerates \(X\) inside its current domain
  - \texttt{maximize}(X) (c.f. \texttt{minimize}(X)) works out maximum (minimum value) for \(X\) under the active constraints
  - \texttt{delay Goal until Condition} specifies when the variables are instantiated enough so that \texttt{Goal} can be effectively executed
    * Its use needs deep knowledge of the constraint system
    * Also widely available in Prolog systems
    * Not really a constraint: control primitive

Implementation Issues: Satisfiability

- Algorithms must be \textit{incremental} in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a \textit{solved form} representation for satisfiable constraints
- Not possible in every domain
- E.g. in \(\mathcal{FT}\) constraints are represented in the form \(x_1 = t_1(y), \ldots, x_n = t_n(y)\), where
  - each \(t_i(y)\) denotes a term structure containing variables from \(y\)
  - no variable \(x_i\) appears in \(y\)
(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\( \lambda \))

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use time stamps to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X &< Y + Z, \; Y = Z + W \\
X &< Y + 4, \; Y = 4 + W, \; Z = 4 \\
X &< 9, \; Y = 5, \; Z = 4, \; W = 1
\end{align*}
\]

- trail W, timestamp it
- trail X, Y, Z, timestamp them
- timestamp X, Y, Z, W

Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
  - Attributed variables [Neumerkel, Holzbaur]:
    - Provide a hook into unification.
    - Allow attaching an attribute to a variable.
    - When unification with that variable occurs, user-defined code is called.
    - Used to implement constraint solvers (and other applications, e.g., distributed execution).
  - Constraint handling rules (CHRs):
    - Higher-level abstraction.
    - Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
    - Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
  - attach_attribute(X,C)
  - get_attribute(X,C)
  - detach_attribute(X)
  - update_attribute(X,C)
  - verify_attribute(C,T)
  - combine_attributes(C1,C2)

- **Example: Freeze**

```prolog
freeze(X, Goal) :-
 attach_attribute(V, frozen(V,Goal)),
 X = V.

verify_attribute(frozen(Var,Goal), Value) :-
 detach_attribute(Var),
 Var = Value,
 call(Goal).

combine_attributes(frozen(V1,G1), frozen(V2,G2)) :-
 detach_attribute(V1),
 detach_attribute(V2),
 V1 = V2,
 attach_attribute(V1, frozen(V1,(G1,G2))).
```

Programming Tips

- **Over-constraining:**
  - Seems to be against general advice “do not perform extra work”, but can actually cut more space search
  - Specially useful if `infer` is weak
  - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) very sparingly and carefully

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:
  - `max(X,Y,X) :- X > Y.`  
  - `max(X,Y,Y) :- X <= Y. Z = X, Y < X ;`

  with
  - `max(X,Y,X) :- X > Y, !.`  
  - `max(X,Y,Y) :- X <= Y. Z = X, Y < X`
Some Real Systems (I)

- CLP defines a class of languages obtained by
  - Specifying the particular constraint system(s)
  - Specifying Computation and Selection rules
- Most share the Herbrand domain with “=” but add different domains and/or solver algorithms
- Most use Computation and Selection rules of Prolog
- CLP(\text{RL}):  
  - Linear arithmetic over reals (\(-, \leq, >\))
  - Gauss elimination and an adaptation of Simplex
- Prolog\text{III}:  
  - Linear arithmetic over rationals (\(-, \leq, >, \neq\)), Simplex
  - Boolean (\(-\)), 2-valued Boolean Algebra
  - Infinite (rational) trees (\(-, \neq\))
  - Equations over finite strings

Some Real Systems (II)

- CHIP:
  - Linear arithmetic over rationals (\(-, \leq, >, \neq\)), Simplex
  - Boolean (\(-\)), larger Boolean algebra (symbolic values)
  - Finite domains
  - User–defined constraints and solver algorithms
- BNR-Prolog:  
  - Arithmetic over reals (closed intervals) (\(-, \leq, >\)), Simplex, propagation techniques
  - Boolean (\(-\)), 2-valued Boolean algebra
  - Finite domains, consistency techniques under user–defined strategy
- SICStus 3:  
  - Linear arithmetic over reals (\(-, \leq, >, \neq\))
  - Linear arithmetic over rationals (\(-, \leq, >, \neq\))
  - Finite domains (in recent versions)
Some Real Systems (III)

- **ECL/PS**:  
  - Finite domains  
  - Linear arithmetic over reals ($=, \leq, >, \neq$)  
  - Linear arithmetic over rationals ($=, \leq, >, \neq$)

- **clp(FD)/gprolog**:  
  - Finite domains

- **RISC-CLP**:  
  - Real arithmetic terms: any arithmetic constraint over reals  
  - Improved version of Tarski’s quantifier elimination

- **Ciao**:  
  - Linear arithmetic over reals ($=, \leq, >, \neq$)  
  - Linear arithmetic over rationals ($=, \leq, >, \neq$)  
  - Finite Domains (currently interpreted)  

(can be selected on a per-module basis)