Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

- **Variables**: start with uppercase character (or “.”), may include “.” and digits:

 Examples: X, Im4u, A_little_garden, _, _x, _22

- **Constants**: lowercase first character, may include “.” and digits. Also, numbers and some special characters. Quoted, any character:

 Examples: a, dog, a_big_cat, 23, ‘Hungry man’, []

- **Structures**: a **functor** (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

 Example: date(monday, Month, 1994)

 Arguments can in turn be variables, constants and structures.

 - **Arity**: is the number of arguments of a structure. Functors are represented as *name/arity*. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a “first–order language”): the **data structures** of a logic program.
Syntax: Terms

(Using Prolog notation conventions)

- Examples of terms:

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td>—</td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td>—</td>
</tr>
</tbody>
</table>

- Functors can be defined as prefix, postfix, or infix operators (just syntax!):

\[
\begin{align*}
 a + b & \text{ is the term } +'(a, b) \text{ if } +/2 \text{ declared infix} \\
 - b & \text{ is the term } -'(b) \text{ if } -/1 \text{ declared prefix} \\
 a < b & \text{ is the term } '<(a, b) \text{ if } </2 \text{ declared infix} \\
 \text{john father mary} & \text{ is the term } father(john, mary) \text{ if } father/2 \text{ declared infix}
\end{align*}
\]

We assume that some such operator definitions are always preloaded.

Syntax: Rules and Facts (Clauses)

- Rule: an expression of the form:

\[
p_0(t_1, t_2, \ldots, t_{n_0}) \leftarrow p_1(t_{11}, t_{21}, \ldots, t_{n_1}),
\]

\[
\ldots
\]

\[
p_m(t_{1m}, t_{2m}, \ldots, t_{nm}).
\]

- \(p_0(...)\) to \(p_m(...)\) are syntactically like terms.
- \(p_0(...)\) is called the head of the rule.
- The \(p_i\) to the right of the arrow are called literals and form the body of the rule. They are also called procedure calls.

- Fact: an expression of the form \(p(t_1, t_2, \ldots, t_n) \leftarrow \) (i.e., a rule with empty body).

Example:

meal(soup, beef, coffee) \(\leftarrow\).

meal(First, Second, Third) \(\leftarrow\)

appetizer(First),

main_dish(Second),

dessert(Third).

- Rules and facts are both called clauses.
Syntax: Predicates, Programs, and Queries

- **Predicate** (or procedure definition): a set of clauses whose heads have the same name and arity (called the **predicate name**).

 Examples:

 - `pet(spot) <- .`
 - `animal(spot) <- .`
 - `pet(X) <- animal(X), barks(X).`
 - `animal(barry) <- .`
 - `pet(X) <- animal(X), meows(X).`
 - `animal(hobbes) <- .`

 Predicate `pet/1` has three clauses. Of those, one is a fact and two are rules. Predicate `animal/1` has three clauses, all facts.

- **Logic Program:** a set of predicates.

- **Query:** an expression of the form: \[← p_1(t_1^1, \ldots, t_{n_1}^1), \ldots, p_n(t_1^n, \ldots, t_{n_n}^n). \]
 (i.e., a clause without a head).
 A query represents a **question to the program**.

 Example: \[← pet(X). \]

"Declarative" Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts:** state things that are true.
 (Note that a fact "\[p \leftarrow . \]" can be seen as the rule "\[p \leftarrow \text{true}. \]")

 Example: the fact \[\text{animal(spot)} \leftarrow . \]
 can be read as "spot is an animal".

- **Rules:**
 - Commas in rule bodies represent conjunction, i.e., \[p \leftarrow p_1, \ldots, p_m. \]
 represents \[p \leftarrow p_1 \land \cdots \land p_m. \]
 - "\[← \]" represents as usual logical implication.

 Thus, a rule \[p \leftarrow p_1, \ldots, p_m. \] means "if \[p_1 \land \cdots \land p_m \] are true, then \[p \] is true"

 Example: the rule \[\text{pet(X)} \leftarrow \text{animal(X)}, \text{barks(X)}. \]
 can be read as "X is a pet if it is an animal and it barks".
"Declarative" Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[p \leftarrow p_1, \ldots, p_n \]

 \[p \leftarrow q_1, \ldots, q_m \]

 provide different alternatives (for \(p \)).

Example: the rules

\[
\begin{align*}
\text{pet}(X) & \leftarrow \text{animal}(X), \text{barks}(X). \\
\text{pet}(X) & \leftarrow \text{animal}(X), \text{meows}(X).
\end{align*}
\]

express two ways for \(X \) to be a pet.

- **Note** (variable scope): the \(X \) vars. in the two clauses above are different, despite the same name. Vars. are **local to clauses** (and are **renamed** any time a clause is used—as with vars. local to a procedure in conventional languages).

- **A query** represents a question to the program.

 Examples:

 \[
 \begin{align*}
 & \leftarrow \text{pet}(\text{spot}). & \leftarrow \text{pet}(X). \\
 \text{asks whether spot is a pet.} & \text{asks: "Is there an X which is a pet?"}
 \end{align*}
 \]

"Execution" and Semantics

- **Example of a logic program**:

 \[
 \begin{align*}
 \text{pet}(X) & \leftarrow \text{animal}(X), \text{barks}(X). \\
 \text{pet}(X) & \leftarrow \text{animal}(X), \text{meows}(X). \\
 \text{animal}(\text{spot}) & \leftarrow. \\
 \text{animal}(\text{barry}) & \leftarrow. \\
 \text{animal(\text{hobbes})} & \leftarrow. \\
 \text{barks}(\text{spot}) & \leftarrow. \\
 \text{meows(\text{barry})} & \leftarrow. \\
 \text{roars(\text{hobbes})} & \leftarrow.
 \end{align*}
 \]

- **Execution**: given a program and a query, **executing** the logic program is attempting to find an answer to the query.

 Example: given the program above and the query \(\leftarrow \text{pet}(X) \).

 the system will try to find a "substitution" for \(X \) which makes \(\text{pet}(X) \) true.

 - The **declarative semantics** specifies what should be computed (all possible answers).

 \(\Rightarrow \) Intuitively, we have two possible answers: \(X = \text{spot} \) and \(X = \text{barry} \).

 - The **operational semantics** specifies how answers are computed (which allows us to determine how many steps it will take).
Running Pure Logic Programs: the Ciao System’s bf/af Packages

- We will be using Ciao, a multiparadigm programming system which includes (as one of its “paradigms”) a pure logic programming subsystem:
 - A number of fair search rules are available (breadth-first, iterative deepening, ...): we will use “breadth-first” (bf or af).
 - Also, a module can be set to pure mode so that impure built-ins are not accessible to the code in that module.
 - This provides a reasonable first approximation of “Greene’s dream” (of course, at a cost in memory and execution time).

- Writing programs to execute in bf mode:
 - All files should start with the following line:
    ```prolog
    :- module(_,_,[bf]).
    ```
 - The neck (arrow) of rules must be `<->`.
 - Facts must end with `<->`.

Ciao Programming Environment: file being edited and top-level
Top Level Interaction Example

- File pets.pl contains:
  ```prolog
  :- module(_,_,[bf]).
  + the pet example code as in previous slides.
  ```

- Interaction with the system query evaluator (the “top level”):

 Ciao 1.13 #0: Mon Nov 7 09:48:51 MST 2005
 ?- use_module(pets).
 yes
 ?- pet(spot).
 yes
 ?- pet(X).
 X = spot ? ;
 X = barry ? ;
 no
 ?-

Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of procedure definitions (the predicates).
- A query ← p is an initial procedure call.
- A procedure definition with one clause p ← p₁, ..., pₘ means:
 “to execute a call to p you have to call p₁ and ... and pₘ”
 ○ In principle, the order in which p₁, ..., pₘ are called does not matter, but, in practical systems it is fixed.
- If several clauses (definitions) p ← p₁, ..., pₘ means:
 p ← q₁, ..., qₙ
 “to execute a call to p, call p₁ ∧ ... ∧ pₘ, or, alternatively, q₁ ∧ ... ∧ qₙ, or ...”
 ○ Unique to logic programming – it is like having several alternative procedure definitions.
 ○ Means that several possible paths may exist to a solution and they should be explored.
 ○ System usually stops when the first solution found, user can ask for more.
 ○ Again, in principle, the order in which these paths are explored does not matter (if certain conditions are met), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in procedure calls to:
 - Pass parameters.
 - “Return” values.
- It is also used to:
 - Access parts of structures.
 - Give values to variables.

Unifying two terms (or literals) \(A \) and \(B \): is asking if they can be made syntactically identical by giving (minimal) values to their variables.

- I.e., find a **variable substitution** \(\theta \) such that \([A\theta = B\theta]\) (or, if impossible, fail).
- Only variables can be given values!
- Two structures can be made identical only by making their arguments identical.

E.g.:

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(\theta)</th>
<th>(A\theta)</th>
<th>(B\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>dog</td>
<td>(\emptyset)</td>
<td>dog</td>
<td>dog</td>
</tr>
<tr>
<td>(X)</td>
<td>a</td>
<td>({X = a})</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>(X)</td>
<td>Y</td>
<td>({X = Y})</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(f(X, g(t)))</td>
<td>(f(m(h), g(M)))</td>
<td>({X=m(h), M=t})</td>
<td>(f(m(h), g(t)))</td>
<td>(f(m(h), g(t)))</td>
</tr>
<tr>
<td>(f(X, g(t)))</td>
<td>(f(m(h), t(M)))</td>
<td>Impossible (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(X, X))</td>
<td>(f(Y, l(Y)))</td>
<td>Impossible (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**.
Unification

• Often several solutions exist, e.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>${ X=m(a), H=a, M=b, T=b }$</td>
<td>$f(m(a), g(b))$</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>${ X=m(H), M=f(A), T=f(A) }$</td>
<td>$f(m(H), g(f(A)))$</td>
</tr>
</tbody>
</table>

These are correct, but a simpler ("more general") solution exists:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>${ X=m(H), T=M }$</td>
<td>$f(m(H), g(M))$</td>
</tr>
</tbody>
</table>

• Always a unique (modulo variable renaming) most general solution exists (unless unification fails).

• This is the one that we are interested in.

• The unification algorithm finds this solution.

Unification Algorithm

• Let A and B be two terms:

1. $\theta = \emptyset$, $E = \{ A = B \}$

2. while not $E = \emptyset$:

 2.1 delete an equation $T = S$ from E

 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:

 * (occur check) if T occurs in the term $S \rightarrow$ halt with failure

 * substitute variable T by term S in all terms in θ

 * substitute variable T by term S in all terms in E

 * add $T = S$ to θ

 2.3 case T and S are non-variable terms:

 * if their names or arities are different \rightarrow halt with failure

 * obtain the arguments $\{ T_1, \ldots, T_n \}$ of T and $\{ S_1, \ldots, S_n \}$ of S

 * add $\{ T_1 = S_1, \ldots, T_n = S_n \}$ to E

3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

• Unify: $A = p(X,X)$ and $B = p(f(Z),f(W))$

\[
\begin{array}{c|c|c|c}
\theta & E & T & S \\
\hline
\{\} & \{p(X,X)=p(f(Z),f(W))\} & p(X,X) & p(f(Z),f(W)) \\
\{\} & \{X=f(Z),X=f(W)\} & X & f(Z) \\
\{X=f(Z)\} & \{f(Z)=f(W)\} & f(Z) & f(W) \\
\{X=f(Z)\} & \{Z=W\} & Z & W \\
\{X=f(W),Z=W\} & \{\} & \\
\end{array}
\]

• Unify: $A = p(X,f(Y))$ and $B = p(Z,X)$

\[
\begin{array}{c|c|c|c}
\theta & E & T & S \\
\hline
\{\} & \{p(X,f(Y))=p(Z,X)\} & p(X,f(Y)) & p(Z,X) \\
\{\} & \{X=Z,f(Y)=X\} & X & Z \\
\{X=Z\} & \{f(Y)=Z\} & f(Y) & Z \\
\{X=f(Y),Z=f(Y)\} & \{\} & \\
\end{array}
\]

Unification Algorithm Examples (II)

• Unify: $A = p(X,f(Y))$ and $B = p(a,g(b))$

\[
\begin{array}{c|c|c|c}
\theta & E & T & S \\
\hline
\{\} & \{p(X,f(Y))=p(a,g(b))\} & p(X,f(Y)) & p(a,g(b)) \\
\{\} & \{X=a,f(Y)=g(b)\} & X & a \\
\{X=a\} & \{f(Y)=g(b)\} & f(Y) & g(b) \\
\text{fail} & & & \\
\end{array}
\]

• Unify: $A = p(X,f(X))$ and $B = p(Z,Z)$

\[
\begin{array}{c|c|c|c}
\theta & E & T & S \\
\hline
\{\} & \{p(X,f(X))=p(Z,Z)\} & p(X,f(X)) & p(Z,Z) \\
\{\} & \{X=Z,f(X)=Z\} & X & Z \\
\{X=Z\} & \{f(Z)=Z\} & f(Z) & Z \\
\text{fail} & & & \\
\end{array}
\]
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program P, a query Q
Output: Q_μ (answer substitution) if Q is provable from P, failure otherwise

Algorithm:

1. Initialize the “resolvent” R to be \{ Q \}
2. While R is nonempty do:
 2.1. Take the leftmost literal A in R
 2.2. Choose a (renamed) clause $A' \leftarrow B_1, \ldots, B_n$ from P, such that A and A' unify with unifier θ (if no such clause can be found, branch is failure; explore another branch)
 2.3. Remove A from R, add B_1, \ldots, B_n to R
 2.4. Apply θ to R and Q
3. If R is empty, output Q (a solution). Explore another branch for more sol’s.

- Step 2.2 defines alternative paths to be explored to find answer(s); execution explores this tree (for example, breadth-first).

A (Schematic) Interpreter for Logic Programs (Contd.)

- Since step 2.2 is left open, a given logic programming system must specify how it deals with this by providing one (or more)
 - Search rule(s): “how are clauses/branches selected in 2.2.”
- If the search rule is not specified execution is nondeterministic, since choosing a different clause (in step 2.2) can lead to different solutions (finding solutions in a different order).
 Example (two valid executions):

 ?- pet(X). ?- pet(X).
 X = spot ? ; X = barry ? ;
 X = barry ? ; X = spot ? ;
 no no
 ?- ?-

- In fact, there is also some freedom in step 2.1, i.e., a system may also specify:
 - Computation rule(s): “how are literals selected in 2.1.”
Running programs

C_1: pet(X) <- animal(X), barks(X).
C_2: pet(X) <- animal(X), meows(X).
C_3: animal(spot) <-.
C_4: animal(barry) <-.
C_5: animal(hobbes) <-.
C_6: barks(spot) <-.
C_7: meows(barry) <-.
C_8: roars(hobbes) <-.

\leftarrow pet(P).

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C_1^*</td>
<td>${P = X_1}$</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), meows(X_1)</td>
<td>C_4^*</td>
<td>${X_1 = \text{barry}}$</td>
</tr>
<tr>
<td>pet(barry)</td>
<td>meows(barry)</td>
<td>C_7</td>
<td>{}</td>
</tr>
<tr>
<td>pet(barry)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* means there is a choice-point, i.e., there are other clauses whose head unifies.

- System response: $P = \text{barry}$?
- If we type ":[;" after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in C_5^* or C_4^*).

Running programs (different strategy)

C_1: pet(X) <- animal(X), barks(X).
C_2: pet(X) <- animal(X), meows(X).
C_3: animal(spot) <-.
C_4: animal(barry) <-.
C_5: animal(hobbes) <-.
C_6: barks(spot) <-.
C_7: meows(barry) <-.
C_8: roars(hobbes) <-.

\leftarrow pet(P). (different strategy)

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C_1^*</td>
<td>${P = X_1}$</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>C_5^*</td>
<td>${X_1 = \text{hobbes}}$</td>
</tr>
<tr>
<td>pet(hobbes)</td>
<td>barks(hobbes)</td>
<td>???</td>
<td>failure</td>
</tr>
</tbody>
</table>

→ explore another branch (different choice in C_1^* or C_5^*) to find a solution. We take C_1 instead of C_5:

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C_1^*</td>
<td>${P = X_1}$</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>C_4^*</td>
<td>${X_1 = \text{spot}}$</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>C_6</td>
<td>{}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Search Tree

- A query + a logic program together specify a search tree.
 Example: query ← pet(X) with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

```
  pet(X)  
  /  
animal(X), barks(X)  animal(X), meows(X)  
  /  
animal(spot)  animal(barry)  animal(hobbes)  
  /  
animal(spot)  animal(barry)  animal(hobbes)  
  /  
barks(spot)  
```

- Different query → different tree.
- The search and computation rules explain how the search tree will be explored during execution.
- How can we achieve completeness (guarantee that all solutions will be found)?

Characterization of The Search Tree

- All solutions are at finite depth in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.

Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s bf package).
Role of Unification in Execution and Modes

- As mentioned before, unification used to access data and give values to variables. Example: Consider query \(-\) animal(A), named(A,Name). with:
 \[
 \text{animal(dog(barry))} \leftarrow . \quad \text{named(dog(Name)}, \text{Name}) \leftarrow .
 \]
- Also, unification is used to pass parameters in procedure calls and to return values upon procedure exit.

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C₁*</td>
<td>{ P=X₁ }</td>
</tr>
<tr>
<td>pet(X₁) animal(X₁), barks(X₁)</td>
<td>C₂*</td>
<td>{ X₁=spot }</td>
<td></td>
</tr>
<tr>
<td>pet(spot) barks(spot)</td>
<td>C₃*</td>
<td>{}</td>
<td></td>
</tr>
</tbody>
</table>

- In fact, argument positions are not fixed a priori to be input or output. Example: Consider query \(-\) pet(spot). vs. \(-\) pet(X). or \(-\) add(s(0), s(s(0)), Z). vs. \(-\) add(s(0), Y, s(s(s(0))))).
- Thus, procedures can be used in different modes (different sets of arguments are input or output in each mode).

Database Programming

- A Logic Database is a set of facts and rules (i.e., a logic program):

 \[
 \begin{align*}
 \text{father_of(john, peter)} & \leftarrow . \\
 \text{father_of(john, mary)} & \leftarrow . \\
 \text{father_of(peter, michael)} & \leftarrow . \\
 \text{mother_of(mary, david)} & \leftarrow . \\
 \text{grandfather_of(L,M)} & \leftarrow \text{father_of(L,N)}, \\
 & \quad \text{father_of(N,M)}. \\
 \text{grandfather_of(X,Y)} & \leftarrow \text{father_of(X,Z)}, \\
 & \quad \text{mother_of(Z,Y)}. \\
 \end{align*}
 \]
- Given such database, a logic programming system can answer questions (queries) such as:

 \(-\) father_of(john, peter).
 Answer: Yes

 \(-\) father_of(john, david).
 Answer: No

 \(-\) father_of(john, X).
 Answer: \{X = peter\}
 Answer: \{X = mary\}

 \(-\) grandfather_of(X, Y)?
 Answer: \{X = john\}
 Answer: \{X = john, Y = michael\}
 Answer: \{X = john, Y = david\}
 Answer: No
Database Programming (Contd.)

- Another example:

```
resistor(power,n1) <-.
resistor(power,n2) <-.
transistor(n2,ground,n1) <-.
transistor(n3,n4,n2) <-.
transistor(n5,ground,n4) <-.
```

```
inverter(Input,Output) <-
    transistor(Input,ground,Output), resistor(power,Output).
```

```
nand_gate(Input1,Input2,Output) <-
    transistor(Input1,X,Output), transistor(Input2,ground,X),
    resistor(power,Output).
```

```
and_gate(Input1,Input2,Output) <-
    nand_gate(Input1,Input2,X), inverter(X, Output).
```

- Query `and_gate(In1,In2,Out)` has solution: \{In1=n3, In2=n5, Out=n1\}

Structured Data and Data Abstraction (and the ‘=’ Predicate)

- Data structures are created using (complex) terms.

- Structuring data is important:

```
course(complog,wed,19,00,20,30,’M.’,’Hermenegildo’,new,5102) <-.
```

- When is the Computational Logic course?

```
```

- Structured version:

```
course(complog,Time,Lecturer,Location) <-
    Time = t(wed,18:30,20:30),
    Lecturer = lect(’M.’,’Hermenegildo’),
    Location = loc(new,5102).
```

Note: “X=Y” is equivalent to “=/2(X,Y)” where the predicate “=/2” is defined as the fact “=/2(X,X) <-.” – Plain unification!

- Equivalent to:

```
course(complog, t(wed,18:30,20:30),
    lect(’M.’,’Hermenegildo’), loc(new,5102)) <-.
```
Structured Data and Data Abstraction (and The Anonymous Variable)

- Given:

 \[
 \text{course(complog,Time,Lecturer, Location) } \leftarrow \\
 \text{Time = } t(\text{wed},18:30,20:30), \\
 \text{Lecturer = lect(’M.’,’Hermenegildo’),} \\
 \text{Location = loc(new,5102).}
 \]

- When is the Computational Logic course?

 \[
 \leftarrow \text{course(complog,Time, A, B).}
 \]

 has solution:

 \[
 \{ \text{Time=t(wed,18:30,20:30), A=lect(’M.’,’Hermenegildo’), B=loc(new,5102)} \}
 \]

- Using the anonymous variable (“.”):

 \[
 \leftarrow \text{course(complog,Time, ,).}
 \]

 has solution:

 \[
 \{ \text{Time=t(wed,18:30,20:30)} \}
 \]

Structured Data and Data Abstraction (Contd.)

- The circuit example revisited:

 \[
 \begin{align*}
 \text{resistor(r1,power,n1) } & \leftarrow . \\
 \text{resistor(r2,power,n2) } & \leftarrow . \\
 \text{transistor(t1,n2,ground,n1) } & \leftarrow . \\
 \text{transistor(t2,n3,n4,n2) } & \leftarrow . \\
 \text{transistor(t3,n5,ground,n4) } & \leftarrow .
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{inverter(inv(T,R),Input,Output) } & \leftarrow . \\
 \text{transistor(T,Input,ground,Output), resistor(R,power,Output).}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{nand_gate(nand(T1,T2,R),Input1,Input2,Output) } & \leftarrow . \\
 \text{transistor(T1,Input1,X,Output), transistor(T2,Input2,ground,X),} \\
 \text{resistor(R,power,Output).}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{and_gate(and(N,I),Input1,Input2,Output) } & \leftarrow . \\
 \text{nand_gate(N,Input1,Input2,X), inverter(I,X,Output).}
 \end{align*}
 \]

- The query

 \[
 \leftarrow \text{and_gate(G,In1,In2,Out).}
 \]

 has solution:

 \[
 \{ G=\text{and(nand(t2,t3,r2),inv(t1,r1))}, In1=n3, In2=n5, Out=n1 \}
 \]
Logic Programs and the Relational DB Model

Traditional \rightarrow Codd's Relational Model

<table>
<thead>
<tr>
<th>File</th>
<th>Relation</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record</td>
<td>Tuple</td>
<td>Row</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute</td>
<td>Column</td>
</tr>
</tbody>
</table>

- **Example:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>

- The order of the rows is immaterial.
- (Duplicate rows are not allowed)

Logic Programs and the Relational DB Model (Contd.)

Relational Database \rightarrow Logic Programming

- **Relation Name** \rightarrow Predicate symbol
- **Relation** \rightarrow Procedure consisting of ground facts (facts without variables)
- **Tuple** \rightarrow Ground fact
- **Attribute** \rightarrow Argument of predicate

- **Example:**

 - `person(brown,20,male) <.-`
 - `person(jones,21,female) <.-`
 - `person(smith,36,male) <.-`

- **Example:**

 - `lived_in(brown,london,15) <.-`
 - `lived_in(brown,york,5) <.-`
 - `lived_in(jones,paris,21) <.-`
 - `lived_in(smith,brussels,15) <.-`
 - `lived_in(smith,santander,5) <.-`
The operations of the relational model are easily implemented as rules.

- **Union:**
 \[\text{r} \cup \text{s}(X_1, \ldots, X_n) \leftarrow \text{r}(X_1, \ldots, X_n). \]
 \[\text{r} \cup \text{s}(X_1, \ldots, X_n) \leftarrow \text{s}(X_1, \ldots, X_n). \]

- **Set Difference:**
 \[\text{r} \setminus \text{s}(X_1, \ldots, X_n) \leftarrow \text{r}(X_1, \ldots, X_n), \neg \text{s}(X_1, \ldots, X_n). \]
 \[\text{r} \setminus \text{s}(X_1, \ldots, X_n) \leftarrow \text{s}(X_1, \ldots, X_n), \neg \text{r}(X_1, \ldots, X_n). \]
 (we postpone the discussion on negation until later.)

- **Cartesian Product:**
 \[\text{r} \times \text{s}(X_1, \ldots, X_m, X_{m+1}, \ldots, X_{m+n}) \leftarrow \text{r}(X_1, \ldots, X_m), \text{s}(X_{m+1}, \ldots, X_{m+n}). \]

- **Projection:**
 \[\text{r}_{1,3}(X_1, X_3) \leftarrow \text{r}(X_1, X_2, X_3). \]

- **Selection:**
 \[\text{r}_{\text{selected}}(X_1, X_2, X_3) \leftarrow \text{r}(X_1, X_2, X_3), \leq(X_2, X_3). \]
 (see later for definition of \(\leq \))

- **Intersection:**
 \[\text{r} \cap \text{s}(X_1, \ldots, X_n) \leftarrow \text{r}(X_1, \ldots, X_n), \text{s}(X_1, \ldots, X_n). \]

- **Join:**
 \[\text{r} \cdot \text{s}(X_1, \ldots, X_n) \leftarrow \text{r}(X_1, X_2, X_3, \ldots, X_n), \text{s}(X'_1, X'_2, X'_3, \ldots, X'_n). \]

Duplicates an issue: see “setof” later in Prolog.
Deductive Databases

- The subject of “deductive databases” uses these ideas to develop logic-based databases.
 - Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).
 - Variations of a “bottom-up” execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.

Recursive Programming

- Example: ancestors.

 parent(X,Y) <- father(X,Y).
 parent(X,Y) <- mother(X,Y).

 ancestor(X,Y) <- parent(X,Y).
 ancestor(X,Y) <- parent(X,Z), parent(Z,Y).
 ancestor(X,Y) <- parent(X,Z), parent(Z,W), parent(W,Y).
 ancestor(X,Y) <- parent(X,Z), parent(Z,W), parent(W,K), parent(K,Y).
 ...

- Defining ancestor recursively:

 parent(X,Y) <- father(X,Y).
 parent(X,Y) <- mother(X,Y).

 ancestor(X,Y) <- parent(X,Y).
 ancestor(X,Y) <- parent(X,Z), ancestor(Z,Y).

- Exercise: define “related”, “cousin”, “same generation”, etc.
Types

- **Type**: a (possibly infinite) set of terms.
- **Type definition**: A program defining a type.
- **Example**: Weekday:
 - Set of terms to represent: Monday, Tuesday, Wednesday, ...
 - Type definition:
 - is_weekday('Monday') <-.
 - is_weekday('Tuesday') <-. ...
- **Example**: Date (weekday * day in the month):
 - Set of terms to represent: date('Monday',23), date(Tuesday,24), ...
 - Type definition:
 - is_date(date(W,D)) <- is_weekday(W), is_day_of_month(D).
 - is_day_of_month(1) <-.
 - is_day_of_month(2) <-.
 - ...
 - is_day_of_month(31) <-.

Recursive Programming: Recursive Types

- **Recursive types**: defined by recursive logic programs.
- **Example**: natural numbers (simplest recursive data type):
 - Set of terms to represent: 0, s(0), s(s(0)), ...
 - Type definition:
 - nat(0) <-.
 - nat(s(X)) <- nat(X).

A *minimal recursive predicate*:
one unit clause and one recursive clause (with a single body literal).

- **We can reason about complexity, for a given class of queries (“mode”).**
 E.g., for mode `nat(ground)` complexity is *linear* in size of number.
- **Example**: integers:
 - Set of terms to represent: 0, s(0), -s(0), ...
 - Type definition:
 - integer(X) <- nat(X).
 - integer(-X) <- nat(X).
Recursive Programming: Arithmetic

- Defining the natural order (≤) of natural numbers:
 \[
 \text{less_or_equal}(0, X) \leftarrow \text{nat}(X).
 \]
 \[
 \text{less_or_equal}(s(X), s(Y)) \leftarrow \text{less_or_equal}(X, Y).
 \]
- Multiple uses: \text{less_or_equal}(s(0), s(s(0))), \text{less_or_equal}(X, 0),...
- Multiple solutions: \text{less_or_equal}(X, s(0)), \text{less_or_equal}(s(s(0)), Y), etc.
- Addition:
 \[
 \text{plus}(0, X, X) \leftarrow \text{nat}(X).
 \]
 \[
 \text{plus}(s(X), Y, s(Z)) \leftarrow \text{plus}(X, Y, Z).
 \]
- Multiple uses: \text{plus}(s(s(0)), s(0), Z), \text{plus}(s(s(0)), Y, s(0))
- Multiple solutions: \text{plus}(X, Y, s(s(s(0)))), etc.

Recursive Programming: Arithmetic

- Another possible definition of addition:
 \[
 \text{plus}(X, 0, X) \leftarrow \text{nat}(X).
 \]
 \[
 \text{plus}(X, s(Y), s(Z)) \leftarrow \text{plus}(X, Y, Z).
 \]
- The meaning of \text{plus} is the same if both definitions are combined.
- Not recommended: several proof trees for the same query → not efficient, not concise. We look for minimal axiomatizations.
- The art of logic programming: finding compact and computationally efficient formulations!

- Try to define: \text{times}(X, Y, Z) (Z = X \cdot Y), \text{exp}(N, X, Y) (Y = X^N),
 \text{factorial}(N, F) (F = N!), \text{minimum}(N1, N2, Min),...
Recursive Programming: Arithmetic

- Definition of \(\text{mod}(X,Y,Z) \)
 “\(Z \) is the remainder from dividing \(X \) by \(Y \)”
 \((\exists \ Q \text{ s.t. } X = Y*Q + Z \text{ and } Z < Y) \):
 \[
 \text{mod}(X,Y,Z) \leftarrow \text{less}(Z,Y), \text{times}(Y,Q,W), \text{plus}(W,Z,X).
 \]

- Another possible definition:
 \[
 \text{mod}(X,Y,X) \leftarrow \text{less}(X,Y).
 \]
 \[
 \text{mod}(X,Y,Z) \leftarrow \text{plus}(X1,Y,X), \text{mod}(X1,Y,Z).
 \]

- The second is much more efficient than the first one (compare the size of the proof trees).

Recursive Programming: Arithmetic/Functions

- The Ackermann function:
 \[
 \text{ackermann}(0,N) = N+1
 \]
 \[
 \text{ackermann}(M,0) = \text{ackermann}(M-1,1)
 \]
 \[
 \text{ackermann}(M,N) = \text{ackermann}(M-1,\text{ackermann}(M,N-1))
 \]

- In Peano arithmetic:
 \[
 \text{ackermann}(0,N) = s(N)
 \]
 \[
 \text{ackermann}(s(M),0) = \text{ackermann}(M,s(0))
 \]
 \[
 \text{ackermann}(s(M),s(N)) = \text{ackermann}(M,\text{ackermann}(s(M),N))
 \]

- Can be defined as:
 \[
 \text{ackermann}(0,N,s(N)) \leftarrow .
 \]
 \[
 \text{ackermann}(s(M),0,Val) \leftarrow \text{ackermann}(M,s(0),Val).
 \]
 \[
 \text{ackermann}(s(M),s(N),Val) \leftarrow \text{ackermann}(s(M),N,Val1),
 \text{ackermann}(M,Val1,Val).
 \]

- In general, \textit{functions} can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).

- Syntactic support available (see, e.g., the Ciao \textit{functions} package).
Recursive Programming: Lists

- Binary structure: first argument is *element*, second argument is *rest* of the list.
- We need:
 - a constant symbol: the empty list denoted by the *constant* \([_]\)
 - a functor of arity 2: traditionally the dot “.” (which is overloaded).
- Syntactic sugar: the term \(.(X,Y)\) is denoted by \([X|Y]\) (X is the *head*, Y is the *tail*).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>Cons pair syntax</th>
<th>Element syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>.(a,[])</td>
<td>[a][]</td>
<td>[a]</td>
</tr>
<tr>
<td>.(a..(b,[]))</td>
<td>[a][b][]</td>
<td>[a,b]</td>
</tr>
<tr>
<td>.(a..(b..(c,[])))</td>
<td>[a][b][c][]</td>
<td>[a,b,c]</td>
</tr>
<tr>
<td>.(a,X)</td>
<td>[a][X]</td>
<td>[a][X]</td>
</tr>
<tr>
<td>.(a..(b,X))</td>
<td>[a][b][X]</td>
<td>[a,b][X]</td>
</tr>
</tbody>
</table>

- Note that:
 - \([a,b]\) and \([a][X]\) unify with \(\{X = b\}\)
 - \([a]\) and \([a][X]\) unify with \(\{X = _\}\)
 - \([a]\) and \([a,b][X]\) do not unify
 - \([_]\) and \([X]\) do not unify

Recursive Programming: Lists

- Type definition (no syntactic sugar):
  ```
  list([]) <- .
  list(.(X,Y)) <- list(Y).
  ```
- Type definition (with syntactic sugar):
  ```
  list([]) <- .
  list([X|Y]) <- list(Y).
  ```
Recursive Programming: Lists (Contd.)

• X is a member of the list Y:

\[\text{member}(a,[a]) \leftarrow. \text{member}(b,[b]) \leftarrow. \text{etc.} \Rightarrow \text{member}(X,[X]) \leftarrow.\]
\[\text{member}(a,[a,c]) \leftarrow. \text{member}(b,[b,d]) \leftarrow. \text{etc.} \Rightarrow \text{member}(X,[X,Y]) \leftarrow.\]
\[\text{member}(a,[a,c,d]) \leftarrow. \text{member}(b,[b,d,l]) \leftarrow. \text{etc.} \Rightarrow \text{member}(X,[X,Y,Z]) \leftarrow.\]
\[\Rightarrow \text{member}(X,[X|Y]) \leftarrow \text{list}(Y).\]

\[\text{member}(a,[c,a]), \text{member}(b,[d,b]). \text{etc.} \Rightarrow \text{member}(X,[Y,X]).\]
\[\text{member}(a,[c,d,a]), \text{member}(b,[s,t,b]). \text{etc.} \Rightarrow \text{member}(X,[Y,Z,X]).\]
\[\Rightarrow \text{member}(X,[Y|Z]) \leftarrow \text{member}(X,Z).\]

• Resulting definition:

\[\text{member}(X,[X|Y]) \leftarrow \text{list}(Y).\]
\[\text{member}(X,[_|T]) \leftarrow \text{member}(X,T).\]

Recursive Programming: Lists (Contd.)

• Resulting definition:

\[\text{member}(X,[X|Y]) \leftarrow \text{list}(Y).\]
\[\text{member}(X,[_|T]) \leftarrow \text{member}(X,T).\]

• Uses of member(X,Y):

 ○ checking whether an element is in a list (member(b,[a,b,c]))
 ○ finding an element in a list (member(X,[a,b,c]))
 ○ finding a list containing an element (member(a,Y))

• Define: prefix(X,Y) (the list X is a prefix of the list Y), e.g.
 prefix([a, b], [a, b, c, d])

• Define: suffix(X,Y), sublist(X,Y), ...

• Define length(Xs,N) (N is the length of the list Xs)
Recursive Programming: Lists (Contd.)

- Concatenation of lists:
 - Base case:
 \[\text{append}([], [a], [a]) \leftarrow. \text{append}([], [a, b], [a, b]) \leftarrow. \text{etc.} \quad \Rightarrow \quad \text{append}([], Ys, Ys) \leftarrow \text{list}(Ys). \]
 - Rest of cases (first step):
 \[\text{append}([a], [b], [a, b]) \leftarrow. \quad \text{append}([a], [b, c], [a, b, c]) \leftarrow. \text{etc.} \]
 \[\Rightarrow \quad \text{append}([X], Ys, [X|Ys]) \leftarrow \text{list}(Ys). \]
 \[\text{append}([a, b], [c], [a, b, c]) \leftarrow. \quad \text{append}([a, b], [c, d], [a, b, c, d]) \leftarrow. \text{etc.} \]
 \[\Rightarrow \quad \text{append}([X, Z], Ys, [X, Z|Ys]) \leftarrow \text{list}(Ys). \]

This is still infinite \(\rightarrow\) we need to generalize more.

Recursive Programming: Lists (Contd.)

- Second generalization:
 \[\text{append}([X], Ys, [X|Ys]) \leftarrow \text{list}(Ys). \]
 \[\text{append}([X, Z], Ys, [X, Z|Ys]) \leftarrow \text{list}(Ys). \]
 \[\text{append}([X, Z, W], Ys, [X, Z, W|Ys]) \leftarrow \text{list}(Ys). \]
 \[\Rightarrow \quad \text{append}([X|Xs], Ys, [X|Zs]) \leftarrow \text{append}(Xs, Ys, Zs). \]
- So, we have:
 \[\text{append}([], Ys, Ys) \leftarrow \text{list}(Ys). \]
 \[\text{append}([X|Xs], Ys, [X|Zs]) \leftarrow \text{append}(Xs, Ys, Zs). \]
- Uses of append:
 - concatenate two given lists: \(\leftarrow \text{append}([a, b], [c], Z)\)
 - find differences between lists: \(\leftarrow \text{append}(X, [c], [a, b, c])\)
 - split a list: \(\leftarrow \text{append}(X, Y, [a, b, c])\)
Recursive Programming: Lists (Contd.)

- \texttt{reverse(Xs,Ys):} \ Ys \ is \ the \ list \ obtained \ by \ reversing \ the \ elements \ in \ the \ list \ Xs

 It \ is \ clear \ that \ we \ will \ need \ to \ traverse \ the \ list \ Xs

 For \ each \ element \ X \ of \ Xs, \ we \ must \ put \ X \ at \ the \ end \ of \ the \ rest \ of \ the \ Xs \ list

 already \ reversed:

 \begin{verbatim}
 reverse([X|Xs],Ys) <-
 reverse(Xs,Zs),
 append(Zs,[X],Ys).
 \end{verbatim}

 How \ can \ we \ stop?

 \begin{verbatim}
 reverse([],[]) <-.
 \end{verbatim}

- As \ defined, \ \texttt{reverse(Xs,Ys)} \ is \ very \ inefficient. \ Another \ possible \ definition:

 \begin{verbatim}
 reverse(Xs,Ys) <- reverse(Xs,[],Ys).
 reverse([],Ys,Ys) <-.
 reverse([X|Xs],Acc,Ys) <- reverse(Xs,[X|Acc],Ys).
 \end{verbatim}

- Find \ the \ differences \ in \ terms \ of \ efficiency \ between \ the \ two \ definitions.

Recursive Programming: Binary Trees

- Represented \ by \ a \ ternary \ functor \ \texttt{tree(Element,Left,Right)}.

- Empty \ tree \ represented \ by \ \texttt{void}.

- Definition:

 \begin{verbatim}
 binary_tree(void) <- .
 binary_tree(tree(Element,Left,Right)) <-
 binary_tree(Left),
 binary_tree(Right).
 \end{verbatim}

- Defining \ \texttt{tree_member(Element,Tree)}:

 \begin{verbatim}
 tree_member(X,tree(X,Left,Right)) <-
 binary_tree(Left),
 binary_tree(Right).
 tree_member(X,tree(Y,Left,Right)) <- tree_member(X,Left).
 tree_member(X,tree(Y,Left,Right)) <- tree_member(X,Right).
 \end{verbatim}
Recursive Programming: Binary Trees

- Defining `pre_order(Tree,Order)`:
  ```prolog
  pre_order(void,[],) <-.
  pre_order(tree(X,Left,Right),Order) <-
    pre_order(Left,OrderLeft),
    pre_order(Right,OrderRight),
    append([X|OrderLeft],OrderRight,Order).
  ```

- Define `in_order(Tree,Order)`, `post_order(Tree,Order)`.

Creating a Binary Tree in Pascal and LP

- In Prolog:
  ```prolog
  T = tree(3, tree(2,void,void), tree(5,void,void))
  ```

- In Pascal:
  ```pascal
  type tree = ^treerec;
  treerec = record
    data : integer;
    left : tree;
    right: tree;
  end;
  var t : tree;
  ```
  ```pascal
  ...  
  new(t);
  new(t^left);
  new(t^right);
  t^left^left := nil;
  t^left^right := nil;
  t^right^left := nil;
  t^right^right := nil;
  t^data := 3;
  t^left^data := 2;
  t^right^data := 5;
  ...  
  ```
Polymorphism

- Note that the two definitions of member/2 can be used simultaneously:

 \[\text{lt_member}(X, [X|Y]) \leftarrow \text{list}(Y). \]
 \[\text{lt_member}(X, [_|T]) \leftarrow \text{lt_member}(X, T). \]

 \[\text{lt_member}(X, \text{tree}(X,L,R)) \leftarrow \text{binary_tree}(L), \text{binary_tree}(R). \]
 \[\text{lt_member}(X, \text{tree}(Y,L,R)) \leftarrow \text{lt_member}(X, L). \]
 \[\text{lt_member}(X, \text{tree}(Y,L,R)) \leftarrow \text{lt_member}(X, R). \]

 Lists only unify with the first two clauses, trees with clauses 3–5!

 - \(\leftarrow \text{lt_member}(X, [b,a,c]). \)
 \[X = b \text{;} X = a \text{;} X = c \]
 - \(\leftarrow \text{lt_member}(X, \text{tree}(b, \text{tree}(a, \text{void}, \text{void}), \text{tree}(c, \text{void}, \text{void}))). \)
 \[X = b \text{;} X = a \text{;} X = c \]

 - Also, try (somewhat surprising): \(\leftarrow \text{lt_member}(M, T). \)

Recursive Programming: Manipulating Symbolic Expressions

- Recognizing polynomials in some term X:
 - X is a polynomial in X
 - a constant is a polynomial in X
 - sums, differences and products of polynomials in X are polynomials
 - also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

 \[\text{polynomial}(X,X) \leftarrow. \]
 \[\text{polynomial}(\text{Term},X) \leftarrow \text{pconstant}(\text{Term}). \]
 \[\text{polynomial}(\text{Term1}+\text{Term2},X) \leftarrow \text{polynomial}(\text{Term1},X), \text{polynomial}(\text{Term2},X). \]
 \[\text{polynomial}(\text{Term1} \text{-} \text{Term2},X) \leftarrow \text{polynomial}(\text{Term1},X), \text{polynomial}(\text{Term2},X). \]
 \[\text{polynomial}(\text{Term1} \times \text{Term2},X) \leftarrow \text{polynomial}(\text{Term1},X), \text{polynomial}(\text{Term2},X). \]
 \[\text{polynomial}(\text{Term1} \div \text{Term2},X) \leftarrow \text{polynomial}(\text{Term1},X), \text{pconstant}(\text{Term2}). \]
 \[\text{polynomial}(\text{Term1}^N,X) \leftarrow \text{polynomial}(\text{Term1},X), \text{nat}(N). \]
Recursive Programming: Manipulating Symb. Expressions (Contd.)

- Symbolic differentiation: \(\text{deriv}(\text{Expression}, \ X, \ \text{DifferentiatedExpression}) \)

\[
\text{deriv}(X, X, s(0)) \leftarrow.
\]
\[
\text{deriv}(C, X, 0) \leftarrow \text{pconstant}(C).
\]
\[
\text{deriv}(U+V, X, DU+DV) \leftarrow \text{deriv}(U, X, DU), \ \text{deriv}(V, X, DV).
\]
\[
\text{deriv}(U-V, X, DU-DV) \leftarrow \text{deriv}(U, X, DU), \ \text{deriv}(V, X, DV).
\]
\[
\text{deriv}(U*V, X, DU*V+U*DV) \leftarrow \text{deriv}(U, X, DU), \ \text{deriv}(V, X, DV).
\]
\[
\text{deriv}(U/V, X, (DU*V-U*DV)/V^s(s(0))) \leftarrow \text{deriv}(U, X, DU), \ \text{deriv}(V, X, DV).
\]
\[
\text{deriv}(U^s(N), X, s(N)*U^N*DU) \leftarrow \text{deriv}(U, X, DU), \ \text{nat}(N).
\]
\[
\text{deriv}(\log(U), X, DU/U) \leftarrow \text{deriv}(U, X, DU).
\]
...

\[
\leftarrow \text{deriv}(s(s(s(0)))*x+s(s(0)), x, Y).
\]

- A simplification step can be added.

Recursive Programming: Automata (Graphs)

- Recognizing the sequence of characters accepted by the following non-deterministic, finite automaton (NDFA):

\[
\begin{array}{ccc}
q_0 & a & q_1 \\
& b & \end{array}
\]

where \(q_0 \) is both the initial and the final state.

- Strings are represented as lists of constants (e.g., [a, b, b]).

- Program:

\[
\begin{align*}
\text{initial}(q_0) & \leftarrow. \\
\text{delta}(q_0, a, q_1) & \leftarrow. \\
\text{delta}(q_1, b, q_0) & \leftarrow. \\
\text{final}(q_0) & \leftarrow. \\
\text{delta}(q_1, b, q_1) & \leftarrow.
\end{align*}
\]

\[
\text{accept}(S) \leftarrow \text{initial}(Q), \ \text{accept_from}(S, Q).
\]
\[
\text{accept_from}([], Q) \leftarrow \text{final}(Q).
\]
\[
\text{accept_from}([X]|Xs, Q) \leftarrow \text{delta}(Q, X, \text{NewQ}), \ \text{accept_from}(Xs, \text{NewQ}).
\]
Recursive Programming: Automata (Graphs) (Contd.)

• A nondeterministic, stack, finite automaton (NDSFA):

\[
\text{accept}(S) \leftarrow \text{initial}(Q), \text{accept_from}(S,Q,[]).
\]

\[
\text{accept_from}([],Q,[]) \leftarrow \text{final}(Q).
\]

\[
\text{accept_from}([X|Xs],Q,S) \leftarrow \text{delta}(Q,X,S,NewQ,NewS),
\quad \text{accept_from}(Xs,NewQ,NewS).
\]

initial(q0) \leftarrow.
final(q1) \leftarrow.

delta(q0,X,Xs,q0,[X|Xs]) \leftarrow.
delta(q0,X,Xs,q1,[X|Xs]) \leftarrow.
delta(q0,X,Xs,q1,Xs) \leftarrow.
delta(q1,X,[X|Xs],q1,Xs) \leftarrow.

• What sequence does it recognize?

Recursive Programming: Towers of Hanoi

• **Objective:**
 - Move tower of N disks from peg a to peg b, with the help of peg c.

• **Rules:**
 - Only one disk can be moved at a time.
 - A larger disk can never be placed on top of a smaller disk.

\(N = 1 \)

\(N = 2 \)

\(N = 3 \)
Recursive Programming: Towers of Hanoi (Contd.)

- We will call the main predicate `hanoi_moves(N,Moves)`
- `N` is the number of disks and `Moves` the corresponding list of “moves”.
- Each move `move(A, B)` represents that the top disk in A should be moved to B.
- **Example:**

 ![Diagram of Towers of Hanoi](image)

 is represented by:

  ```prolog
  hanoi_moves( s(s(s(0))),
                [ move(a,b), move(a,c), move(b,c), move(a,b),
                  move(c,a), move(c,b), move(a,b) ])
  ```

Recursive Programming: Towers of Hanoi (Contd.)

- A general rule:

 ![Diagram of Towers of Hanoi](image)

 - We capture this in a predicate `hanoi(N,Orig,Dest,Help,Moves)` where
 “Moves contains the moves needed to move a tower of `N` disks from peg `Orig` to
 peg `Dest`, with the help of peg `Help`.”

  ```prolog
  hanoi(s(0),Orig,Dest,_Help,[move(Orig, Dest)]) <- .
  hanoi(s(N),Orig,Dest,Help,Moves) <-
      hanoi(N,Orig,Help,Dest,Moves1),
      hanoi(N,Help,Dest,Orig,Moves2),
      append(Moves1,[move(Orig, Dest)|Moves2],Moves).
  ```

 - And we simply call this predicate:

    ```prolog
    hanoi_moves(N,Moves) <-
        hanoi(N,a,b,c,Moves).
    ```
Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By induction (as in the previous examples): elegant, but generally difficult – not the way most people do it.
- State first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., “forwards execution”), making sure it is declaratively correct. Consider also if alternative uses make declarative sense.
- Sometimes it helps to look at well-written examples and use the same “schemas”.
- Global top-down design approach:
 - state the general problem
 - break it down into subproblems
 - solve the pieces
- Again, best approach: practice.