Programming and Computational Logic
A Motivational Introduction

The following people have contributed to this course material:
Manuel Hermenegildo (editor), Technical University of Madrid, Spain and University of New Mexico, USA; Francisco Buena, Manuel Carro, Pedro López, and Daniel Cabeza, Technical University of Madrid, Spain; Marí±a José García de la Banda, Monash University, Australia; David H. D. Warren, University of Bristol, U.K.; Ulrich Neumerkel, Technical University of Vienna, Austria; Michael Codish, Ben Gurion University, Israel

Course General Topic
Computational Logic

- logic
- verification
- logic programming
- functional programming
- constraints
- lambda calculus
- logic and AI
- knowledge representation
- logic of programming
- declarative programming

Logic of Computation
- program verification
- proving properties

Declarative Programming
- direct use of logic as a programming tool
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...

A Simple Imperative Program

- Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; }
}
```

- Is it correct? With respect to what?

- A suitable formalism:
 - to provide specifications (describe problems), and
 - to reason about the correctness of programs (their implementation).

is needed.
Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...

Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)
 Aristotle likes cookies, and
 Plato is a friend of anyone who likes cookies
 imply that
 Plato is a friend of Aristotle

- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes}(\text{aristotle}, \text{cookies}) \]
 \[a_2 : \forall X \text{likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato}, X) \]
 \[t_1 : \text{friend}(\text{plato}, \text{aristotle}) \]
 \[T[a_1, a_2] \vdash t_1 \]

- But, can logic be used:
 - To represent the problem (specifications)?
 - Even perhaps to solve the problem?
Using Logic

For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program verification (and debugging, equivalence, ...).

Generating Squares: A Specification (I)

Numbers—we will use “Peano” representation for simplicity:

\[0 \rightarrow 0 \quad 1 \rightarrow s(0) \quad 2 \rightarrow s(s(0)) \quad 3 \rightarrow s(s(s(0))) \quad \ldots \]

- Defining the natural numbers:
 \[\text{nat}(0) \land \text{nat}(s(0)) \land \text{nat}(s(s(0))) \land \ldots \]

- A better solution:
 \[\text{nat}(0) \land \forall X \ (\text{nat}(X) \rightarrow \text{nat}(s(X))) \]

- Order on the naturals:
 \[\forall X \ (\text{le}(0, X)) \land \forall X \forall Y \ (\text{le}(X, Y) \rightarrow \text{le}(s(X), s(Y))) \]

- Addition of naturals:
 \[\forall X \ (\text{nat}(X) \rightarrow \text{add}(0, X, X)) \land \forall X \forall Y \forall Z \ (\text{add}(X, Y, Z) \rightarrow \text{add}(s(X), Y, s(Z))) \]
Generating Squares: A Specification (II)

- Multiplication of naturals:
 \[\forall X \ (nat(X) \rightarrow mult(0, X, 0)) \land \]
 \[\forall X \forall Y \forall Z \forall W \ (mult(X, Y, W) \land add(W, Y, Z) \rightarrow mult(s(X), Y, Z)) \]

- Squares of the naturals:
 \[\forall X \forall Y \ (nat(X) \land nat(Y) \land mult(X, X, Y) \rightarrow nat_square(X, Y)) \]

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X (output(X) \leftarrow (\exists Y \ nat(Y) \land le(Y, s(s(s(s(0))))) \land nat_square(Y, X))) \]

Use of Logic

- For expressing specifications and reasoning about the correctness of programs we need:
 - Specification languages (assertions), modeling, ...
 - Program semantics (models, axiomatic, fixpoint, ...).
 - Proofs: program verification (and debugging, equivalence, ...).
Semantic Tasks

- **Semantics:**
 - A *semantics* associates a meaning (a mathematical object) to a program or program sentence.
- **Semantic tasks:**
 - Verification: proving that a program meets its specification.
 - Static debugging: finding where a program does not meet specifications.
 - Program equivalence: proving that two programs have the same semantics.
 - etc.

Styles of Semantics

- **Operational:**
 The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.
- **Axiomatic:**
 The meaning of program sentences is defined indirectly in terms some axioms and rules of some logic of program properties.
- **Denotational (fixpoint):**
 The meaning of program sentences is given abstractly as elements of some suitable mathematical structure (domain).
- **Model (declarative) semantics:**
 The meaning of programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.
Alternative Use of Logic?

- So, logic allows us to represent problems (program specifications).
- But, it would be interesting to also improve:
 - i.e., the process of implementing solutions to problems.
 - The importance of Programming Languages (and tools).
 - Interesting question: can logic help here too?

From Representation/Specification to Computation

- Assuming the existence of a mechanical proof method (deduction procedure) a new view of problem solving and computing is possible [Greene]:
 - program once and for all the deduction procedure in the computer,
 - find a suitable representation for the problem (i.e., the specification),
 - then, to obtain solutions, ask questions and let deduction procedure do rest:

- No correctness proofs needed!
Computing With Our Previous Description / Specification

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>nat(s(0)) , ?</td>
<td>(yes)</td>
</tr>
<tr>
<td>(\exists X , \text{add}(s(0), s(s(0)), X) , ?)</td>
<td>(X = s(s(s(0))))</td>
</tr>
<tr>
<td>(\exists X , \text{add}(s(0), X, s(s(0)))) , ?)</td>
<td>(X = s(s(0)))</td>
</tr>
<tr>
<td>(\exists X , \text{nat}(X) , ?)</td>
<td>(X = 0 \lor X = s(0) \lor X = s(s(0)) \lor \ldots)</td>
</tr>
<tr>
<td>(\exists X \exists Y , \text{add}(X, Y, s(0)) , ?)</td>
<td>((X = 0 \land Y = s(0)) \lor (X = s(0) \land Y = 0))</td>
</tr>
<tr>
<td>(\exists X , \text{nat_square}(s(s(0)), X) , ?)</td>
<td>(X = s(s(s(0))))</td>
</tr>
<tr>
<td>(\exists X , \text{nat_square}(X, s(s(s(0)))) , ?)</td>
<td>(X = s(s(0)))</td>
</tr>
<tr>
<td>(\exists X \exists Y , \text{nat_square}(X, Y) , ?)</td>
<td>((X = 0 \land Y = 0) \lor (X = s(0) \land Y = s(0)) \lor (X = s(s(0)) \land Y = s(s(s(0)))) \lor \ldots)</td>
</tr>
<tr>
<td>(\exists X , \text{output}(X) , ?)</td>
<td>(X = 0 \lor X = s(0) \lor X = s(s(s(0))) \lor X = s^3(0) \lor X = s^{16}(0) \lor X = s^{25}(0))</td>
</tr>
</tbody>
</table>

Which Logic?

- We have already argued the convenience of representing the problem in logic, but
 - which logic?
 - propositional
 - predicate calculus (first order)
 - higher-order logics
 - modal logics
 - \(\lambda\)-calculus, ...
 - which reasoning procedure?
 - natural deduction, classical methods
 - resolution
 - Prawitz/Bibel, tableaux
 - bottom-up fixpoint
 - rewriting
 - narrowing, ...
Issues

- We try to maximize expressive power.
- But one of the main issues is whether we have an effective reasoning procedure.
- It is important to understand the underlying properties and the theoretical limits!
- Example: propositions vs. first-order formulas.
 - Propositional logic:

 - "spot is a dog" \(p \)
 - "dogs have tail" \(q \)

 but how can we conclude that Spot has a tail?
 - Predicate logic extends the expressive power of propositional logic:

 \[
dog(spot)\\
\forall X \, dog(X) \rightarrow has_tail(X)
\]

 now, using deduction we can conclude:

 \[
has_tail(spot)
\]

Comparison of Logics (I)

- Propositional logic:

 - "spot is a dog" \(p \)
 - + decidability/completeness
 - - limited expressive power
 - + practical deduction mechanism

 \(\rightarrow\) circuit design, “answer set” programming, ...

- Predicate logic: (first order)

 - “spot is a dog” \(dog(spot) \)
 - +/- decidability/completeness
 - +/- good expressive power
 - + practical deduction mechanism (e.g., SLD-resolution)

 \(\rightarrow\) classical logic programming!
Comparison of Logics (II)

- Higher-order predicate logic:
 - “There is a relationship for spot” \(X(spot) \)
 - decidability/completeness
 - good expressive power
 - practical deduction mechanism

 But interesting subsets → HO logic programming, functional-logic programming, ...

- Other logics: decidability? Expressive power? Practical deduction mechanism?
 Often (very useful) variants of previous ones:
 - Predicate logic + constraints (in place of unification)
 → constraint programming!
 - Propositional temporal logic, etc.

- Interesting case: \(\lambda \)-calculus
 - similar to predicate logic in results, allows higher order
 - does not support predicates (relations), only functions

→ functional programming!
Generating squares by SLD-Resolution – Logic Programming (I)

- We code the problem as definite (Horn) clauses:

 \[
 \begin{align*}
 \text{nat}(0) \\
 \neg \text{nat}(X) \lor \text{nat}(s(X)) \\
 \neg \text{nat}(X) \lor \text{add}(0, X, X) \\
 \neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \\
 \neg \text{nat}(X) \lor \text{mult}(0, X, 0) \\
 \neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z) \\
 \neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{nat_square}(X, Y)
 \end{align*}
 \]

- **Query:** \(\text{nat}(s(0))\) ?
- In order to refute: \(\neg \text{nat}(s(0))\)
- Resolution:

 \[
 \begin{align*}
 \neg \text{nat}(s(0)) \text{ with } \neg \text{nat}(X) \lor \text{nat}(s(X)) \text{ gives } \neg \text{nat}(0) \\
 \neg \text{nat}(0) \text{ with } \text{nat}(0) \text{ gives } \square
 \end{align*}
 \]
- Answer: (yes)

Generating squares by SLD-Resolution – Logic Programming (II)

\[
\begin{align*}
\text{nat}(0) \\
\neg \text{nat}(X) \lor \text{nat}(s(X)) \\
\neg \text{nat}(X) \lor \text{add}(0, X, X) \\
\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \\
\neg \text{nat}(X) \lor \text{mult}(0, X, 0) \\
\neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z) \\
\neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{nat_square}(X, Y)
\end{align*}
\]

- **Query:** \(\exists X \exists Y \text{ add}(X, Y, s(0))\) ?
- In order to refute: \(\neg \text{add}(X, Y, s(0))\)
- Resolution:

 \[
 \begin{align*}
 \neg \text{add}(X, Y, s(0)) \text{ with } \neg \text{nat}(X) \lor \text{add}(0, X, X) \text{ gives } \neg \text{nat}(s(0)) \\
 \neg \text{nat}(s(0)) \text{ solved as before}
 \end{align*}
 \]
- Answer: \(X = 0, Y = s(0)\)
- Alternative:

 \[
 \begin{align*}
 \neg \text{add}(X, Y, s(0)) \text{ with } \neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \text{ gives } \neg \text{add}(X, Y, 0)
 \end{align*}
 \]
Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,['bf/af']).

nat(0) <- .
nat(s(X)) <- nat(X).

le(0, _X) <- .
le(s(X), s(Y)) <- le(X, Y).

add(0, Y, Y) <- nat(Y).
add(s(X), Y, Z) <- add(X, Y, Z).

mult(0, Y, 0) <- nat(Y).
mult(s(X), Y, Z) <- add(W, Y, Z), mult(X, Y, W).

nat_square(X, Y) <- nat(X), nat(Y), mult(X, X, Y).

output(X) <- nat(Y), le(Y, s(s(s(s(s(0)))))), nat_square(Y, X).

Generating Squares in a Practical Logic Programming System (II)

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>?- nat(s(0)).</td>
<td>yes</td>
</tr>
<tr>
<td>?- add(s(0), s(s(0)), X).</td>
<td>X = s(s(s(0)))</td>
</tr>
<tr>
<td>?- add(s(0), X, s(s(s(0)))).</td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td>?- nat(X).</td>
<td>X = 0 ; X = s(0) ; X = s(s(0)) ; ...</td>
</tr>
<tr>
<td>?- add(X, Y, s(0)).</td>
<td>(X = 0 , Y=s(0)) ; (X = s(0) , Y = 0)</td>
</tr>
<tr>
<td>?- nat_square(s(s(0)), X).</td>
<td>X = s(s(s(s(0))))</td>
</tr>
<tr>
<td>?- nat_square(X, s(s(s(s(0))))).</td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td>?- nat_square(X, Y).</td>
<td>(X = 0 , Y=0) ; (X = s(0) , Y=s(0)) ; (X = s(s(0)) , Y=s(s(s(s(0)))))) ; ...</td>
</tr>
<tr>
<td>?- output(X).</td>
<td>X = 0 ; X = s(0) ; X = s(s(s(s(0)))) ; ...</td>
</tr>
</tbody>
</table>