Recalling Our Intro to the Course

The Program Correctness Problem

- Conventional models of using computers - not easy to determine correctness!
\diamond Has become a very important issue, not just in safety-critical apps.
\diamond Components with assured quality, being able to give a warranty, ...
\diamond Being able to run untrusted code, certificate carrying code, ...

A Simple Imperative Program

- Example:
\#include <stdio.h>
main() \{
int Number, Square;
Number = 0;
while(Number <= 5)
\{ Square = Number * Number; printf("\%d\n", Square);
Number = Number +1 ; \} \}
- Is it correct? With respect to what?
- A suitable formalism:
\diamond to provide specifications (describe problems), and
\diamond to reason about the correctness of programs (their implementation). is needed.

Natural Language

"Compute the squares of the natural numbers which are less or equal than 5 ."
Ideal at first sight, but:
\diamond verbose
\diamond vague
\diamond ambiguous
\diamond needs context (assumed information)

- ...

Philosophers and Mathematicians already pointed this out a long time ago...

Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)

Aristotle likes cookies, and
Plato is a friend of anyone who likes cookies
imply that
Plato is a friend of Aristotle

- Symbolic logic:

A shorthand for classical logic - plus many useful results:
a_{1} : likes(aristotle, cookies)
$a_{2}: \forall X \operatorname{likes}(X$, cookies $) \rightarrow$ friend(plato, $\left.X\right)$
$t_{1}:$ friend(plato, aristotle)
$T\left[a_{1}, a_{2}\right] \vdash t_{1}$

- But, can logic be used:
\diamond To represent the problem (specifications)?
\diamond Even perhaps to solve the problem?

Using Logic

- For expressing specifications and reasoning about the correctness of programs we need:
\diamond Specification languages (assertions), modeling, ...
\diamond Program semantics (models, axiomatic, fixpoint, ...).
\diamond Proofs: program verification (and debugging, equivalence, ...).

Generating Squares: A Specification (I)

Numbers -we will use "Peano" representation for simplicity:
$0 \rightarrow 0$
$1 \rightarrow s(0)$
$2 \rightarrow s(s(0))$
$3 \rightarrow \mathrm{~s}(\mathrm{~s}(\mathrm{~s}(0)))$

- Defining the natural numbers: $\operatorname{nat}(0) \wedge \operatorname{nat}(s(0)) \wedge \operatorname{nat}(s(s(0))) \wedge \ldots$
- A better solution:

```
nat(0)}\wedge\forallX(\operatorname{nat}(X)->\operatorname{nat}(s(X))
```

- Order on the naturals:

```
\forallX (le(0,X))^
\forallX\forallY(le(X,Y)}->le(s(X),s(Y)
```

- Addition of naturals:
$\forall X(\operatorname{nat}(X) \rightarrow \operatorname{add}(0, X, X)) \wedge$
$\forall X \forall Y \forall Z(\operatorname{add}(X, Y, Z) \rightarrow \operatorname{add}(s(X), Y, s(Z)))$

Generating Squares: A Specification (II)

- Multiplication of naturals:
$\forall X(\operatorname{nat}(X) \rightarrow \operatorname{mult}(0, X, 0)) \wedge$
$\forall X \forall Y \forall Z \forall W(\operatorname{mult}(X, Y, W) \wedge \operatorname{add}(W, Y, Z) \rightarrow \operatorname{mult}(s(X), Y, Z))$
- Squares of the naturals:

```
\forallX\forallY(\operatorname{nat}(X)\wedge\operatorname{nat}(Y)\wedge\operatorname{mult}(X,X,Y)->nat_square}(X,Y)
```

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- Precondition: empty.
- Postcondition:

$$
\forall X(o u t p u t(X) \leftarrow(\exists Y \operatorname{nat}(Y) \wedge l e(Y, s(s(s(s(s(0)))))) \wedge \text { nat_square }(Y, X)))
$$

Use of Logic

- For expressing specifications and reasoning about the correctness of programs we need:
\diamond Specification languages (assertions), modeling, ...
\diamond Program semantics (models, axiomatic, fixpoint, ...).
\diamond Proofs: program verification (and debugging, equivalence, ...).

Semantic Tasks

- Semantics:

\diamond A semantics associates a meaning (a mathematical object) to a program or program sentence.
- Semantic tasks:
\diamond Verification: proving that a program meets its specification.
\diamond Static debugging: finding where a program does not meet specifications.
\diamond Program equivalence: proving that two programs have the same semantics.
\diamond etc.

Styles of Semantics

- Operational:

The meaning of program sentences is defined in terms of the steps (transformations from state to state) that computations may take during execution (derivations). Proofs by induction on derivations.

- Axiomatic:

The meaning of program sentences is defined indirectly in terms of some axioms and rules of a logic of program properties.

- Denotational (fixpoint):

The meaning of program sentences is given abstractly as functions on an appropriate domain (which is often a lattice). E.g., λ-calculus for functional programming. C.f., lattice / fixpoint theory.

- Also, model (declarative) semantics: (For (Constraint) Logic Programs:) The meaning of programs is given as a minimal model ("logical meaning") of the logic that the program is written in.

Operational Semantics

Traditional Operational Semantics

- Meaning of program sentences defined in terms of the steps (state transitions, transformations from state to state) that computations may take during executions (derivations).
- Proofs by induction on derivations.
- Examples of concrete operational semantics:
\diamond Semantics modeling memory for imperative programs.
\diamond Interpreters and meta-interpreters (self-interpreters).
\diamond Resolution and $\operatorname{CLP}(\mathcal{X})$ resolution, for (constraint) logic programs.
- Examples of generic / standard methodologies:
\diamond Structural operational semantics.
\diamond Vienna definition language (VDL).
\diamond SECD machine.
$\diamond \ldots$

A Simple Imperative Language

Program	::= Statement
Statement	```::= Statement ; Statement \| noop```
	\| Id := Expression
	\| if Expression then Statement else Statement \| while Expression do Statement
Expression	::= Numeral
	\| Id
	\| Expression + Expression

- Only integer data types.
- Variables do not need to be declared.

Operational Semantics

- States: memory configurations -values of variables.
- $s[X]$ denotes the value of the variable \mathbf{X} in state s.
- $<$ statement, $s>\Rightarrow s^{\prime}$ denotes that
if statement is executed in state s the resulting state is s^{\prime}.
- \langle expression, $s>\Rightarrow$ value denotes that
if expression is executed in state s it returns value.
- Expressions:
\diamond If n is a number $<n, s>\Rightarrow n$
\diamond If X is a variable $<X, s>\Rightarrow s[X]$
\diamond If expression is of the form $\exp _{1}+\exp _{2}$ we write:

$$
\frac{<\exp _{1}, s>\Rightarrow v_{1} \quad<e x p_{2}, s>\Rightarrow v_{2}}{<\exp _{1}+e x p_{2}, s>v_{1}+v_{2}}
$$

Operational Semantics

- Statements:
$s[X / v]$ denotes a new state, identical to s but where variable X has value v.
\diamond Noop: $<$ noop,$s>\Rightarrow s$
\diamond Assignment:

$$
\begin{gathered}
<\exp , s>\Rightarrow v \\
<X:=\exp , s>\Rightarrow s[X / v]
\end{gathered}
$$

\diamond Conditional:

$$
\begin{aligned}
& \quad<\exp , s>\Rightarrow 0 \quad<s t m t_{2}, s>\Rightarrow s^{\prime} \\
& \hline<\text { if } \exp \text { then } s t m t_{1} \text { else } s t m t_{2}, s>\Rightarrow s^{\prime} \\
& <\exp , s>\Rightarrow v, v \neq 0 \quad<s t m t_{1}, s>\Rightarrow s^{\prime} \\
& \hline<\text { if } \exp \text { then } s t m t_{1} \text { else } s t m t_{2}, s>\Rightarrow s^{\prime}
\end{aligned}
$$

Operational Semantics

- Statements (Contd.):
\diamond Sequencing:
\diamond Loops:

$$
\begin{aligned}
&<\exp , s>\Rightarrow 0 \\
& \hline<\text { while } \exp \text { do } s t m t, s>\Rightarrow s \\
&<\exp , s>\Rightarrow v, v \neq 0 \quad<\text { stmit, } s>\Rightarrow s^{\prime} \quad<\text { while } \exp \text { do } \text { stmt, } s^{\prime}>\Rightarrow s^{\prime \prime} \\
& \hline
\end{aligned}
$$

Example

- Program:

$$
\begin{aligned}
& x:=5 ; \\
& y:=-6 ; \\
& \text { if }(x+y) \text { then } z:=x \text { else } z:=y
\end{aligned}
$$

- Semantics:

| $\left\langle x:=5, s_{0}\right\rangle \Rightarrow s_{1} \quad \begin{array}{c}\left\langle y:=-6, s_{1}\right\rangle \Rightarrow s_{2} \quad \frac{\left.\left\langle x+y, s_{2}\right\rangle \Rightarrow-1<z:=x, s_{2}\right\rangle \Rightarrow s_{3}}{\left\langle S_{3}, s_{2}\right\rangle \Rightarrow s_{3}} \\ \left.\left\langle x:=5 ; y:=-6 ;=-6 ; S_{3}, s_{0}\right\rangle \Rightarrow s_{3}\right\rangle \Rightarrow s_{3}\end{array}$ |
| ---: | :--- |
| $\langle y$ |

where $S_{3}=$ if $(\mathrm{x}+\mathrm{y})$ then $\mathrm{z}:=\mathrm{x}$ else $\mathrm{z}:=\mathrm{y}$.
And:

$$
\begin{aligned}
& s_{1}=s_{0}[x / 5] \\
& s_{2}=s_{1}[y /-6] \\
& s_{3}=s_{2}[z / 5]
\end{aligned}
$$

Axiomatic Semantics

Axiomatic Semantics

- Characteristics:
\diamond Based on techniques from predicate logic.
\diamond There is no concept of state of the machine (as in operational or denotational semantics).
\diamond More abstract than, e.g., denotational semantics.
\diamond Semantic meaning of a program is based on assertions about relationships that remain the same each time the program executes.
- Classical application:
\diamond Proving programs to be correct w.r.t. specifications.
- (Typical, classical) limitations:
\diamond Side-effects disallowed in expressions.
\diamond goto command difficult to treat.
\diamond Aliasing not allowed.
\diamond Scope rules difficult to describe \Rightarrow require all identifier names to be unique.

History and References

- Main original papers:
\diamond 1967: Floyd. Assigning Meanings to Programs.
\diamond 1969: Hoare. An Axiomatic Basis of Computer Programming.
\diamond 1976: Dijkstra. A Discipline of Programming.
\diamond 1981: Gries. The Science of Programming.
- Many textbooks available.

Assertions and Correctness

- Assertion: a logical formula, say

$$
\left(m \neq 0 \wedge(\sqrt{m})^{2}=m\right)
$$

that is true when a point in the program is reached.

- Precondition: Assertion before a command (\leftarrow includes a whole program).
- Postcondition: Assertion after a command.

$$
\{P R E\} \text { C }\{P O S T\} \quad \leftarrow \text { a "Hoare triple" }
$$

- Partial Correctness:

If the initial assertion (the precondition) is true and if the program terminates, then the final assertion (the postcondition) must be true.

$$
\text { Precondition }+ \text { Termination } \Rightarrow \text { Postcondition }
$$

- Total Correctness:

Given that the precondition for the program is true, the program must terminate and the postcondition must be true.

Total Correctness $=$ Partial Correctness + Termination

Hoare Calculus: The Assignment Axiom

- Examples:
$\diamond\{$ true $\} \mathrm{m}:=13\{m=13\}$
$\diamond\{n=3 \wedge c=2\} \mathrm{n}:=\mathrm{c} * \mathrm{n}\{n=6 \wedge c=2\}$
$\diamond\{k \geq 0\} \mathbf{k}:=\mathrm{k}+1\{k>0\}$
- Notation:
$\diamond\{$ Precondition $\}$ command \{Postcondition $\}$
$\diamond P[V \rightarrow E]$ denotes substitution: putting E in place of V in P
- Axiom for assignment command:

$$
\{P[V \rightarrow E]\} V:=E\{P\}
$$

Work backwards:
\diamond Postcondition: $P \equiv(n=6 \wedge c=2)$
\diamond Command: $\mathrm{n}:=\mathrm{c} * \mathrm{n}$
\diamond Precondition: $P[V \rightarrow E] \equiv(c * n=6 \wedge c=2)$

$$
\equiv(n=3 \wedge c=2)
$$

Hoare Calculus: Read and Write Commands

- Notation:
\diamond Use " $I N=[1,2,3]$ " and "OUT $=[4,5]$ " to represent input and output files.
$\diamond[\mathrm{M} \mid L]$ denotes list whose head is M and tail is L.
$\diamond K, M, N, \ldots$ represent arbitrary numerals.
- Axiom for read command:
$\diamond\{I N=[\mathrm{K} \mid L] \wedge P[V \rightarrow \mathrm{~K}]\}$ read $V\{I N=L \wedge P\}$
- Axiom for write command:
$\diamond\{O U T=L \wedge E=\mathrm{k} \wedge P\}$ write $E\{O U T=L::[\mathrm{K}] \wedge E=\mathrm{K} \wedge P\}$
- Note: $L::[\mathrm{K}]$ is the list whose last element is K (:: represents concatenation).

Hoare Calculus: Rules of Inference

- Format (c.f. structural operational semantics):

$$
\frac{H_{1}, H_{2}, H_{n}, \ldots}{H}
$$

- Axiom for Command Sequencing:

$$
\frac{\{P\} C_{1}\{Q\}, \quad\{Q\} C_{2}\{R\}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

- Axioms for lf Commands:

$$
\begin{gathered}
\frac{\{P \wedge b\} C_{1}\{Q\}, \quad\{P \wedge \neg b\} C_{2}\{Q\}}{\{P\} \text { if } b \text { then } C_{1} \text { else } C_{2} \text { endif }\{Q\}} \\
\frac{\{P \wedge b\} C\{Q\}, \quad(P \wedge \neg b) \rightarrow Q}{\{P\} \text { if } b \text { then } C \text { endif }\{Q\}}
\end{gathered}
$$

Hoare Calculus: Rules of Inference (Contd.)

- Weaken Postcondition:

$$
\frac{\{\mathrm{P}\} C\{\mathrm{Q}\}, Q \rightarrow R}{\{\mathrm{P}\} C\{\mathrm{R}\}}
$$

- Strengthen Precondition:

$$
\frac{P \rightarrow Q,\{\mathrm{Q}\} C\{\mathrm{R}\}}{\{\mathrm{P}\} C\{\mathrm{R}\}}
$$

- And and Or Rules:

$$
\begin{gathered}
\frac{\{P\} C\{Q\},\left\{P^{\prime}\right\} C\left\{Q^{\prime}\right\}}{\left\{P \wedge P^{\prime}\right\} C\left\{Q \wedge Q^{\prime}\right\}} \\
\frac{\{P\} C\{Q\},\left\{P^{\prime}\right\} C\left\{Q^{\prime}\right\}}{\left\{P \vee P^{\prime}\right\} C\left\{Q \vee Q^{\prime}\right\}}
\end{gathered}
$$

- Observation:
\{ false \} any-command \{ any-postcondition \}

Example (I)

$\{I N=[4,9,16] \wedge O U T=[0,1,2]\}$
read m ; read n ;
if $\mathrm{m} \geq \mathrm{n}$ then

$$
a:=2^{*} m
$$

else

$$
a:=2^{*} n
$$

endif;
write a
$\{I N=[16] \wedge O U T=[0,1,2,18]\}$
$\{I N=[4,9,16] \wedge O U T=[0,1,2]\} \rightarrow\{I N=[4 \mid[9,16]] \wedge O U T=[0,1,2] \wedge 4=4\}$
read m;
$\{I N=[9,16] \wedge O U T=[0,1,2] \wedge m=4\} \rightarrow$
$\{I N=[9 \mid[16]] \wedge O U T=[0,1,2] \wedge m=4 \wedge 9=9\}$
read n ;
$\{I N=[16] \wedge O U T=[0,1,2] \wedge m=4 \wedge n=9\}$

Recall:
$\{I N=[\mathrm{K} \mid L] \wedge P[V \rightarrow \mathrm{~K}]\}$
read V
$\{I N=L \wedge P\}$

Example (II)

We have $P=\{I N=[16] \wedge O U T=[0,1,2] \wedge m=4 \wedge n=9\}$
read m ; read n ;
if $m \geq n$ then

$$
\begin{array}{ll}
\text { else } & a:=2^{*} m \\
& a:=2^{*} n
\end{array}
$$

$$
\frac{\{P \wedge b\} C_{1}\{Q\}, \quad\{P \wedge \neg b\} C_{2}\{Q\}}{\{P\} \text { if } b \text { then } C_{1} \text { else } C_{2} \text { endif }\{Q\}}
$$

endif;
write a
So, $b \equiv m \geq n=$ false and $\neg b=$ true; thus $\{P \wedge b\}=$ false and $\{P \wedge \neg b\}=P$.
So, for C_{2} we have:

$$
\begin{aligned}
& \{P \wedge \neg b\}=\{P\}= \\
& \{I N=[16] \wedge O U T=[0,1,2] \wedge m=4 \wedge n=9\} \rightarrow \\
& \{I N=[16] \wedge O U T=[0,1,2] \wedge m=4 \wedge n=9 \wedge 2 * n=18\} \\
& \mathrm{a}:=2^{*} \mathrm{n}
\end{aligned}
$$

$$
\{P[V \rightarrow E]\} V:=E\{P\}
$$

$$
\{I N=[16] \wedge O U T=[0,1,2] \wedge m=4 \wedge n=9 \wedge a=18\}
$$

and for C_{1} we can have anything since the premise is false:
$\{P \wedge b\}=$ false
a := 2*m

$$
\{I N=[16] \wedge O U T=[0,1,2] \wedge m=4 \wedge n=9 \wedge a=18\}
$$

Example (III)

$$
\begin{aligned}
& \{I N=[16] \wedge O U T=[0,1,2] \wedge m=4 \wedge n=9\} \\
& \text { if } \mathrm{m} \geq \mathrm{n} \text { then } \\
& \quad \text { else }:=2^{*} \mathrm{~m} \\
& \quad \mathrm{a}:=2^{*} \mathrm{n}
\end{aligned}
$$

endif;

$$
\{I N=[16] \wedge O U T=[0,1,2] \wedge m=4 \wedge n=9 \wedge a=18\}
$$

and

$$
\{I N=[16] \wedge O U T=[0,1,2] \wedge m=4 \wedge n=9 \wedge a=18\}
$$

write a

$$
\{I N=[16] \wedge O U T=[0,1,2]::[18] \wedge m=4 \wedge n=9 \wedge a=18\}
$$

which implies

$$
\{I N=[16] \wedge O U T=[0,1,2,18]\}
$$

While Command

$$
\frac{\{P \wedge b\} C\{P\}}{\{P\} \text { while } b \text { do } C \text { endwhile }\{P \wedge \neg b\}}
$$

- Loop Invariant: P
\diamond Preserved during execution of the loop.
- Loop steps:
\diamond Initialization: show that the loop invariant $\{P\}$ is initially true.
\diamond Preservation: show the loop invariant remains true when the loop executes ($\{P \wedge b\}$).
\diamond Completion: show that the loop invariant and the exit condition produce the final assertion $(\{P \wedge \neg b\})$.
- Main Problem:
\diamond Constructing the loop invariant.

Loop Invariant

- A relationship among the variables that does not change as the loop is executed.
- "Inspiration" tips:
\diamond Look for some expression that can be combined with $\neg b$ to produce part of the postcondition.
\diamond Construct a table of values to see what stays constant.
\diamond Combine what has already been computed at some stage in the loop with what has yet to be computed to yield a constant of some sort.

Study carefully many examples!

Example (exponent)

$\{N \geq 0 \wedge A \geq 0\}$
$\mathrm{k}:=\mathrm{N} ; \quad \mathrm{s}:=1$;
while $k>0$ do
$\mathrm{s}:=\mathrm{A}^{*} \mathrm{~s}$;
$k:=k-1$
endwhile
$\left\{s=A^{N}\right\}$
We follow the "tips:"

- Trace algorithm with small numbers $A=2, N=5$.
- Build a table of values to find loop invariant.
- Notice that k is decreasing and that 2^{k} represents the computation that still needs to be done.
- Add a column to the table for the value of 2^{k}.
- The value $s * 2^{k}=32$ remains constant throughout the execution of the loop.

Example (Exponent)

$\{N \geq 0 \wedge A \geq 0\}$	k	s	2^{k}	$\mathbf{s}^{*} \mathbf{2}^{k}$
$\mathrm{k}:=\mathrm{N} ; \quad \mathrm{s}:=1$;	5	1	32	32
while $k>0$ do	4	2		32
s : $=A^{*}$ S;	3	4	8	32
endwhile	2	8	4	32
	1	16	2	32
$\left\{s=A^{N}\right\}$	0	32	1	32

- Observe that s and 2^{k} change when k changes.
- Their product is constant, namely $32=2^{5}=A^{N}$.
- This suggests that $s * A^{k}=A^{N}$ is part of the invariant.
- The relation $k \geq 0$ seems to be invariant, and when combined with " $\neg b$ ", which is $k \leq 0$, establishes $k=0$ at the end of the loop.
- When $k=0$ is joined with $s * A^{k}=A^{N}$, we get the postcondition $s=A^{N}$.

Loop Invariant: $\left\{k \geq 0 \wedge s * A^{k}=A^{N}\right\}$.

Verification of the Program

Initialization:

$$
\begin{aligned}
& \{N \geq 0 \wedge A \geq 0\} \rightarrow\{N=N \wedge N \geq 0 \wedge A \geq 0 \wedge 1=1\} \\
& \text { k }:=\mathrm{N} ; \mathrm{s}:=1 ; \\
& \{k=N \wedge N \geq 0 \wedge A \geq 0 \wedge s=1\} \rightarrow\left\{k \geq 0 \wedge s * A^{k}=A^{N}\right\}
\end{aligned}
$$

Preservation:

$$
\begin{aligned}
& \left\{k \geq 0 \wedge s * A^{k}=A^{N} \wedge k>0\right\} \rightarrow\left\{k>0 \wedge s * A^{k}=A^{N}\right\} \rightarrow \\
& \left\{k>0 \wedge s * A * A^{k-1}=A^{N}\right\} \rightarrow\left\{k>0 \wedge A * s * A^{k-1}=A^{N}\right\} \\
& \quad \mathrm{s}:=\mathrm{A}^{*} \mathrm{~s} ; \\
& \left\{k>0 \wedge s * A^{k-1}=A^{N}\right\} \rightarrow\left\{k-1 \geq 0 \wedge s * A^{k-1}=A^{N}\right\} \\
& \quad \mathrm{k}:=\mathrm{k}-1 \\
& \left\{k \geq 0 \wedge s * A^{k}=A^{N}\right\}
\end{aligned}
$$

Completion:
$\left\{k \geq 0 \wedge s * 2^{k}=A^{N} \wedge k \leq 0\right\} \rightarrow\left\{k=0 \wedge s * 2^{k}=A^{N}\right\} \rightarrow\left\{s=A^{N}\right\}$

Further Topics

- Dealing with other language features:
\diamond Nested loops.
\diamond Procedure calls.
\diamond Recursive procedures.
\diamond...
- Proving termination / total correctness.
\diamond Well founded orderings.

Acknowledgments

- Some slides and examples taken from:
\diamond Enrico Pontelli
\diamond Jim Lipton
\diamond Ken Slonneger and Barry L. Kurtz.
Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach. Addison-Wesley, Reading, Massachusetts.

