
Recalling Our Intro to the Course

1



The Program Correctness Problem

?

• Conventional models of using computers – not easy to determine correctness!

� Has become a very important issue, not just in safety-critical apps.
� Components with assured quality, being able to give a warranty, ...
� Being able to run untrusted code, certificate carrying code, ...

2



A Simple Imperative Program

• Example:

#include <stdio.h>

main() {

int Number, Square;

Number = 0;

while(Number <= 5)

{ Square = Number * Number;

printf("%d\n",Square);

Number = Number + 1; } }

• Is it correct? With respect to what?

• A suitable formalism:

� to provide specifications (describe problems), and
� to reason about the correctness of programs (their implementation).

is needed.

3



Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

� verbose
� vague
� ambiguous
� needs context (assumed information)
� ...

Philosophers and Mathematicians already pointed this out a long time ago...

4



Logic

• A means of clarifying / formalizing the human thought process

• Logic for example tells us that (classical logic)
Aristotle likes cookies, and
Plato is a friend of anyone who likes cookies
imply that
Plato is a friend of Aristotle

• Symbolic logic:
A shorthand for classical logic – plus many useful results:
a1 : likes(aristotle, cookies)

a2 : ∀X likes(X, cookies)→ friend(plato,X)

t1 : friend(plato, aristotle)

T [a1, a2] ` t1
• But, can logic be used:

� To represent the problem (specifications)?
� Even perhaps to solve the problem?

5



Using Logic

?

YES / NOProof

(Logic)

Specs

• For expressing specifications and reasoning about the correctness of programs
we need:

� Specification languages (assertions), modeling, ...
� Program semantics (models, axiomatic, fixpoint, ...).
� Proofs: program verification (and debugging, equivalence, ...).

6



Generating Squares: A Specification (I)

Numbers —we will use “Peano” representation for simplicity:
0→ 0 1→ s(0) 2→ s(s(0)) 3→ s(s(s(0))) . . .

• Defining the natural numbers:
nat(0) ∧ nat(s(0)) ∧ nat(s(s(0))) ∧ . . .

• A better solution:
nat(0) ∧ ∀X (nat(X)→ nat(s(X)))

• Order on the naturals:
∀X (le(0, X)) ∧
∀X∀Y (le(X, Y )→ le(s(X), s(Y ))

• Addition of naturals:
∀X (nat(X)→ add(0, X,X)) ∧
∀X∀Y ∀Z (add(X, Y, Z)→ add(s(X), Y, s(Z)))

7



Generating Squares: A Specification (II)

• Multiplication of naturals:
∀X (nat(X)→ mult(0, X, 0)) ∧
∀X∀Y ∀Z∀W (mult(X, Y,W ) ∧ add(W,Y, Z)→ mult(s(X), Y, Z))

• Squares of the naturals:
∀X∀Y (nat(X) ∧ nat(Y ) ∧mult(X,X, Y )→ nat square(X, Y ))

We can now write a specification of the (imperative) program, i.e., conditions that we
want the program to meet:

• Precondition:
empty.

• Postcondition:
∀X(output(X)← (∃Y nat(Y ) ∧ le(Y, s(s(s(s(s(0)))))) ∧ nat square(Y,X)))

8



Use of Logic

?

YES / NOProof

(Logic)

Specs

Semantics

• For expressing specifications and reasoning about the correctness of programs
we need:

� Specification languages (assertions), modeling, ...
� Program semantics (models, axiomatic, fixpoint, ...).

� Proofs: program verification (and debugging, equivalence, ...).

9



Semantic Tasks

?

YES / NOProof

(Logic)

Specs

Semantics

• Semantics:

� A semantics associates a meaning (a mathematical object) to a program or
program sentence.

• Semantic tasks:

� Verification: proving that a program meets its specification.
� Static debugging: finding where a program does not meet specifications.
� Program equivalence: proving that two programs have the same semantics.
� etc.

10



Styles of Semantics

• Operational:

The meaning of program sentences is defined in terms of the steps
(transformations from state to state) that computations may take during execution
(derivations). Proofs by induction on derivations.

• Axiomatic:

The meaning of program sentences is defined indirectly in terms of some axioms
and rules of a logic of program properties.

• Denotational (fixpoint):

The meaning of program sentences is given abstractly as functions on an
appropriate domain (which is often a lattice). E.g., λ-calculus for functional
programming. C.f., lattice / fixpoint theory.

• Also, model (declarative) semantics: (For (Constraint) Logic Programs:) The meaning of
programs is given as a minimal model (“logical meaning”) of the logic that the program is written in.

11



Operational Semantics

12



Traditional Operational Semantics

• Meaning of program sentences defined in terms of the steps (state transitions,
transformations from state to state) that computations may take during executions
(derivations).

• Proofs by induction on derivations.

• Examples of concrete operational semantics:

� Semantics modeling memory for imperative programs.
� Interpreters and meta-interpreters (self-interpreters).
� Resolution and CLP(X ) resolution, for (constraint) logic programs.
� ...

• Examples of generic / standard methodologies:

� Structural operational semantics.
� Vienna definition language (VDL).
� SECD machine.
� ...

13



A Simple Imperative Language

Program ::= Statement

Statement ::= Statement ; Statement

| noop

| Id := Expression

| if Expression then Statement else Statement

| while Expression do Statement

Expression ::= Numeral

| Id

| Expression + Expression

• Only integer data types.

• Variables do not need to be declared.

14



Operational Semantics

• States: memory configurations –values of variables.

• s[X ] denotes the value of the variable X in state s.

• < statement, s >⇒ s′ denotes that
if statement is executed in state s the resulting state is s′.

• < expression, s >⇒ value denotes that
if expression is executed in state s it returns value.

• Expressions:

� If n is a number < n, s >⇒ n

� If X is a variable < X, s >⇒ s[X ]

� If expression is of the form exp1+exp2 we write:
< exp1, s >⇒ v1 < exp2, s >⇒ v2

< exp1+exp2, s >⇒ v1 + v2

15



Operational Semantics

• Statements:
s[X/v] denotes a new state, identical to s but where variable X has value v.

� Noop: < noop , s >⇒ s

� Assignment:
< exp, s >⇒ v

< X := exp, s >⇒ s[X/v]

� Conditional:
< exp, s >⇒ 0 < stmt2, s >⇒ s′

< if exp then stmt1 else stmt2, s >⇒ s′

< exp, s >⇒ v, v 6= 0 < stmt1, s >⇒ s′

< if exp then stmt1 else stmt2, s >⇒ s′

16



Operational Semantics

• Statements (Contd.):

� Sequencing:
< stmt1, s >⇒ s1 < stmt2, s1 >⇒ s2

< stmt1 ; stmt2, s >⇒ s2
� Loops:

< exp, s >⇒ 0
< while exp do stmt, s >⇒ s

< exp, s >⇒ v, v 6= 0 < stmt, s >⇒ s′ < while exp do stmt, s′ >⇒ s′′

< while exp do stmt, s >⇒ s′′

17



Example

• Program:
x := 5;

y := -6;

if (x+y) then z := x else z := y

• Semantics:

< x := 5, s0 >⇒ s1

< y := − 6, s1 >⇒ s2

< x+y, s2 >⇒ −1 < z := x, s2 >⇒ s3
< S3, s2 >⇒ s3

< y := − 6 ; S3, s1 >⇒ s3
< x := 5 ; y := − 6 ; S3, s0 >⇒ s3

where S3 = if (x+y) then z := x else z := y.
And:
s1 = s0[x/5]

s2 = s1[y/− 6]

s3 = s2[z/5]

18



Axiomatic Semantics

19



Axiomatic Semantics

• Characteristics:

� Based on techniques from predicate logic.
� There is no concept of state of the machine

(as in operational or denotational semantics).
� More abstract than, e.g., denotational semantics.
� Semantic meaning of a program is based on assertions about relationships

that remain the same each time the program executes.

• Classical application:

� Proving programs to be correct w.r.t. specifications.

• (Typical, classical) limitations:

� Side-effects disallowed in expressions.
� goto command difficult to treat.
� Aliasing not allowed.
� Scope rules difficult to describe⇒ require all identifier names to be unique.

20



History and References

• Main original papers:

� 1967: Floyd. Assigning Meanings to Programs.
� 1969: Hoare. An Axiomatic Basis of Computer Programming.
� 1976: Dijkstra. A Discipline of Programming.
� 1981: Gries. The Science of Programming.

• Many textbooks available.

21



Assertions and Correctness

• Assertion: a logical formula, say

(m 6= 0 ∧ (
√
m)2 = m)

that is true when a point in the program is reached.

• Precondition: Assertion before a command (← includes a whole program).

• Postcondition: Assertion after a command.

{PRE} C {POST} ← a “Hoare triple”

• Partial Correctness:
If the initial assertion (the precondition) is true and if the program terminates, then
the final assertion (the postcondition) must be true.

Precondition + Termination⇒ Postcondition

• Total Correctness:
Given that the precondition for the program is true, the program must terminate
and the postcondition must be true.

Total Correctness = Partial Correctness + Termination

22



Hoare Calculus: The Assignment Axiom

• Examples:

� {true} m := 13 {m = 13}
� {n = 3 ∧ c = 2} n := c*n {n = 6 ∧ c = 2}
� {k ≥ 0} k := k + 1 {k > 0}

• Notation:

� {Precondition} command {Postcondition}
� P [V → E] denotes substitution: putting E in place of V in P

• Axiom for assignment command:
{P [V → E]} V := E {P}

Work backwards:

� Postcondition: P ≡ (n = 6 ∧ c = 2)

� Command: n := c*n
� Precondition: P [V → E] ≡ (c ∗ n = 6 ∧ c = 2)

≡ (n = 3 ∧ c = 2)

23



Hoare Calculus: Read and Write Commands

• Notation:

� Use “IN = [1, 2, 3]” and “OUT = [4, 5]” to represent input and output files.
� [M|L] denotes list whose head is M and tail is L.
� K, M, N, ... represent arbitrary numerals.

• Axiom for read command:

� {IN = [K|L] ∧ P [V → K]} read V {IN = L ∧ P}

• Axiom for write command:

� {OUT = L ∧ E = K ∧ P} write E {OUT = L :: [K] ∧ E = K ∧ P}

• Note: L :: [K] is the list whose last element is K (:: represents concatenation).

24



Hoare Calculus: Rules of Inference

• Format (c.f. structural operational semantics):

H1, H2, Hn, ...

H

• Axiom for Command Sequencing:

{P}C1{Q}, {Q}C2{R}
{P}C1;C2{R}

• Axioms for If Commands:

{P ∧ b}C1{Q}, {P ∧ ¬b}C2{Q}
{P} if b then C1 else C2 endif {Q}

{P ∧ b}C{Q}, (P ∧ ¬b)→ Q

{P} if b then C endif {Q}

25



Hoare Calculus: Rules of Inference (Contd.)

• Weaken Postcondition:

{P}C{Q}, Q→ R

{ P }C{ R }

• Strengthen Precondition:

P → Q, {Q}C{R}
{ P }C{ R }

• And and Or Rules:

{P}C{Q}, {P ′}C{Q′}
{P ∧ P ′}C{Q ∧Q′}

{P}C{Q}, {P ′}C{Q′}
{P ∨ P ′}C{Q ∨Q′}

• Observation:
{ false } any-command { any-postcondition }

26



Example (I)

{IN = [4, 9, 16] ∧OUT = [0, 1, 2]}
read m; read n;
if m ≥ n then

a := 2*m
else

a := 2*n
endif;
write a
{IN = [16] ∧OUT = [0, 1, 2, 18]}

{IN = [4, 9, 16] ∧OUT = [0, 1, 2]} → {IN = [4|[9, 16]] ∧OUT = [0, 1, 2] ∧ 4 = 4}
read m;
{IN = [9, 16] ∧OUT = [0, 1, 2] ∧m = 4} →
{IN = [9|[16]] ∧OUT = [0, 1, 2] ∧m = 4 ∧ 9 = 9}
read n;
{IN = [16] ∧OUT = [0, 1, 2] ∧m = 4 ∧ n = 9}

Recall:
{IN = [K|L] ∧ P [V → K]}
read V

{IN = L ∧ P}

27



Example (II)
We have P = {IN = [16] ∧OUT = [0, 1, 2] ∧m = 4 ∧ n = 9}

{P ∧ b}C1{Q}, {P ∧ ¬b}C2{Q}
{P} if b then C1 else C2 endif {Q}

read m; read n;
if m ≥ n then

a := 2*m
else

a := 2*n
endif;
write a

So, b ≡ m ≥ n = false and ¬b = true; thus {P ∧ b} = false and {P ∧ ¬b} = P .
So, for C2 we have:
{P ∧ ¬b} = {P} =
{IN = [16] ∧OUT = [0, 1, 2] ∧m = 4 ∧ n = 9} →
{IN = [16] ∧OUT = [0, 1, 2] ∧m = 4 ∧ n = 9 ∧ 2 ∗ n = 18}
a := 2*n {P [V → E]} V := E {P}
{IN = [16] ∧OUT = [0, 1, 2] ∧m = 4 ∧ n = 9 ∧ a = 18}

and for C1 we can have anything since the premise is false:
{P ∧ b} = false

a := 2*m
{IN = [16] ∧OUT = [0, 1, 2] ∧m = 4 ∧ n = 9 ∧ a = 18}

28



Example (III)

{IN = [16] ∧OUT = [0, 1, 2] ∧m = 4 ∧ n = 9}
if m ≥ n then

a := 2*m
else

a := 2*n
endif;
{IN = [16] ∧OUT = [0, 1, 2] ∧m = 4 ∧ n = 9 ∧ a = 18}

and

{IN = [16] ∧OUT = [0, 1, 2] ∧m = 4 ∧ n = 9 ∧ a = 18}
write a
{IN = [16] ∧OUT = [0, 1, 2] :: [18] ∧m = 4 ∧ n = 9 ∧ a = 18}

which implies

{IN = [16] ∧OUT = [0, 1, 2, 18]}

29



While Command

{P ∧ b}C{P}
{P} while b do C endwhile {P ∧ ¬b}

• Loop Invariant: P

� Preserved during execution of the loop.

• Loop steps:

� Initialization: show that the loop invariant {P} is initially true.
� Preservation:

show the loop invariant remains true when the loop executes ({P ∧ b}).
� Completion: show that the loop invariant and the exit condition produce the

final assertion ({P ∧ ¬b}).

• Main Problem:

� Constructing the loop invariant.

30



Loop Invariant

• A relationship among the variables that does not change as the loop is executed.

• “Inspiration” tips:

� Look for some expression that can be combined with ¬b to produce part of the
postcondition.
� Construct a table of values to see what stays constant.
� Combine what has already been computed at some stage in the loop with

what has yet to be computed to yield a constant of some sort.

Study carefully many examples!

31



Example (exponent)

{N ≥ 0 ∧ A ≥ 0}
k := N; s := 1;
while k>0 do

s := A*s;
k := k-1

endwhile
{s = AN}

We follow the “tips:”

• Trace algorithm with small numbers A = 2, N = 5.

• Build a table of values to find loop invariant.

• Notice that k is decreasing and that 2k represents the computation that still needs
to be done.

• Add a column to the table for the value of 2k.

• The value s ∗ 2k = 32 remains constant throughout the execution of the loop.

32



Example (Exponent)

{N ≥ 0 ∧ A ≥ 0}
k := N; s := 1;
while k>0 do

s := A*s;
k := k-1

endwhile
{s = AN}

k s 2k s*2k

5 1 32 32
4 2 16 32
3 4 8 32
2 8 4 32
1 16 2 32
0 32 1 32

• Observe that s and 2k change when k changes.

• Their product is constant, namely 32 = 25 = AN .

• This suggests that s ∗ Ak = AN is part of the invariant.

• The relation k ≥ 0 seems to be invariant, and when combined with ”¬b”, which is
k ≤ 0, establishes k = 0 at the end of the loop.

• When k = 0 is joined with s ∗ Ak = AN , we get the postcondition s = AN .

Loop Invariant: {k ≥ 0 ∧ s ∗ Ak = AN}.

33



Verification of the Program

Initialization:
{N ≥ 0 ∧ A ≥ 0} → {N = N ∧N ≥ 0 ∧ A ≥ 0 ∧ 1 = 1}

k := N; s := 1;
{k = N ∧N ≥ 0 ∧ A ≥ 0 ∧ s = 1} → {k ≥ 0 ∧ s ∗ Ak = AN}

Preservation:
{k ≥ 0 ∧ s ∗ Ak = AN ∧ k > 0} → {k > 0 ∧ s ∗ Ak = AN} →
{k > 0 ∧ s ∗ A ∗ Ak−1 = AN} → {k > 0 ∧ A ∗ s ∗ Ak−1 = AN}

s := A*s;
{k > 0 ∧ s ∗ Ak−1 = AN} → {k − 1 ≥ 0 ∧ s ∗ Ak−1 = AN}

k := k-1
{k ≥ 0 ∧ s ∗ Ak = AN}

Completion:
{k ≥ 0 ∧ s ∗ 2k = AN ∧ k ≤ 0} → {k = 0 ∧ s ∗ 2k = AN} → {s = AN}

34



Further Topics

• Dealing with other language features:

� Nested loops.
� Procedure calls.
� Recursive procedures.
� ...

• Proving termination / total correctness.

� Well founded orderings.

35



Acknowledgments

• Some slides and examples taken from:

� Enrico Pontelli
� Jim Lipton
� Ken Slonneger and Barry L. Kurtz.

Formal Syntax and Semantics of Programming Languages: A Laboratory-Based Approach.
Addison-Wesley, Reading, Massachusetts.

36


