
Computational Logic

Distributed/Internet Programming

1

LP/CLP, the Internet, and the WWW

• Can Logic and Constraint Logic Programming be an attractive alternative for
Internet/WWW programming?

• Shared with other net programming tools:

� dynamic memory management,
� well-behaved structure (and pointer!) manipulation,
� robustness, compilation to architecture-independent bytecode, ...

• In addition:

� powerful symbolic processing capabilities,
� dynamic databases,
� search facilities,
� grammars,
� sophisticated meta-programming / higher order,
� easy code (agent) motion,
� well understood semantics, ...

2

LP/CLP, the Internet, and the WWW

• Most public-domain and commercial LP/CLP systems:

� either already have Internet connection capabilities (e.g., socket interfaces),
� or it is relatively easy to add it to them (e.g., through the C interface)

(e.g., Quintus, LPA, PDC, Amzi!, IF-Prolog, Eclipse, SICStus, BinProlog, SWI,
PrologIV, CHIP, Ciao, etc.)

• Some additional “glue” needed to make things really convenient:

� We present several techniques for “filling in these gaps”
(many implemented as public domain libraries).

• In doing this we also work towards answering the question:

� Is there anything fundamental missing in current LP/CLP systems?

• Commercial systems add packages that provide higher-level functionality.

• Additional motivation: the WWW can be an excellent showcase for LP/CLP
applications!

3

Outline

• (PART I: WWW programming)

• PART II: Distributed/agent programming

� (Modeling and accessing information servers –active modules).
� A simple distributed LP/CLP language using “worker teams”.
� Communicating via Blackboards.
� Implementing distributed variable-based communication using attributed

variables.

• Different concurrent/distributed execution scenarios:

� Request/provide remote services in a distributed network
(including database servers, WWW servers, etc.)

� (Distributed) networks of concurrent, communicating agents
� Coarse-grained Parallelism (granularity control required)

• Most functionality can be obtained using current LP/CLP systems!
(again, concurrency in the underlying engine is very useful)

4

Distributed Teams of Workers (Ciao)

• Team: set of workers (threads) that share the same code and cooperate to run it.

• Concurrency and/or parallelism occurs between workers.

• Worker management:

� add_worker Add (possibly remote) worker to the team. Intuition:
* The system starts with one worker.
* If a worker is added at a remote site, it makes it possible to run goals at that

site (similar to opening a file).
* If more than one worker is added (locally or at a given remote site) it is often

either to achieve parallelism (in multiprocessor machines) or fairness (giving
“gas” to different goals).

� delete_worker Delete (possibly remote) worker from the team

• The workers are kept coherent from the point of view of code management, global
state, etc.

5

Some Concurrency & Parallelism Operators (Ciao)

• Objective: express concurrency, independent and-parallelism, dependent
and-parallelism, etc. (and support a notion of fairness), within a team of workers.

• Basic operators (in addition to sequential conjunction, etc.):

� A & – Schedules goal A for execution (when a worker is free).
� A && – “Fair” version of the &/1 operator: if there is no idle worker, it creates

one to execute A (new thread).
� A @ Id – Placement operator: goal A is to be executed on worker Id (which

may be remote). Can be combined with the other operators.
� A &> H – Schedules goal A, returns in H a handler.
� H <& – waits for end of execution of goal pointed to by H, back-unifies bindings.
� A & B – Schedules A and B, waits for the execution of both to finish.
� Last one can be implemented using previous two:

A & B :- B &> H, A, H <& .

� Bindings in shared variables not guaranteed to be seen until threads join.
� Full support for backtracking.

6

Using Basic Concurrency & Parallelism Operators

• move(red), move(green).

• move(red) &, move(green).

• add_worker(I), move(red) &, move(green).

• delete_workers, move(red) &&, move(green).

• delete_workers, add_worker(alba,I), move(green) @ I.

7

Using Parallelism: Examples

main :-

read_input_list(L),

collect_unloaded_hosts(Hosts),

add_workers(Hosts, _Ids),

process_list(L),

halt.

process_list([]).

process_list([H|T]) :-

process(H) &

process_list(T).

add_workers([Host|Hosts],[Id|Ids]) :-

add_worker(Host,Id),

add_workers(Hosts,Ids).

add_workers([],[]).

8

Using Parallelism: Examples

• One of the Ciao libraries is a parallelizing preprocessor

• Uses source-to-source transformation

• Includes some automatic granularity control

• Possible alternative using granularity control:

process_list([]).

process_list([H|T]) :-

(H < 5 ->

process_list(T), process(H)

; process(H) & process_list(T)).

9

Implementation Issues

• Creating workers / threads:

� In standard systems: standard process creation primitives (e.g., “fork”, “rsh”,
etc.) can be used.

� Better approach (for local threads): use engine capable of supporting multiple
workers natively in an efficient way.

� The machines developed for parallel systems provide exactly the required
functionality (e.g., RAP-WAM, ACE-WAM, DASWAM, etc., and even Aurora,
Muse, ...).
Also starting to appear in other Prolog systems (e.g., BinProlog, SICStus).

� Interesting issue: how to support several independent executions without
creating too many “stack sets”.
The “marker” models used in parallel systems address this issue.

� Scheduling: classical goal stacks and goal stealing strategies still appear most
suitable.

� Distributed scheduling: through sockets (or blackboards)

10

Communication: Using Blackboards

• Blackboards (linda stile): basic but very useful means of communication and
synchronization (higher level than using sockets directly)

• Present in many systems: SICStus, BinProlog/µ2-Prolog, &-Prolog/Ciao, ...

• Basic features:

� out/1: write tuple
� rd/1: read tuple
� in/1: remove tuple
� rd_noblock/1 and in_noblock/1
� in/2 and rd/2 (on disjunctions)

• Sometimes, several (possibly hierarchical) blackboards allowed – then, extra
argument to primitives specifies which blackboard.

11

Producer–Consumer: Linda Version

(using Ciao / SICStus BB primitives)

?- create_bb(B,local), N=10,

lproducer(N,B) @ alba &, lconsumer(B).

lproducer(N,B) :-

lproducer(N,1,B).

% second argument is message order

lproducer(0,C,B) :- !,

linda:out(message(end(C)),B).

lproducer(N,C,B) :-

N>0,

linda:out(message(C,N),B),

N1 is N-1,

C1 is C+1,

lproducer(N1,C1,B).

12

Producer–Consumer: Linda Version

lconsumer(B) :-

lconsumer(1,B).

lconsumer(C,B) :-

linda:rd([message(end(C)),

message(_,C)], T, B),

lconsumer_data(T,B).

lconsumer_data(message(end(_)),B).

lconsumer_data(message(N,C),B) :-

C1 is C+1,

lconsumer(C1,B).

13

Implementation Issues

• Implementation approaches and techniques:

� Blackboard can be a Prolog process. Tuples maintained via assert/retract.
Communication, e.g., via sockets (allows Internet-wide use of the blackboard).

� Support blackboard internally in system (possibly, in conjunction with asserted
database).

� Mixed approach: local vs. remote blackboards.
� The blackboard can also be a completely special purpose program (e.g.,

BinProlog’s “Java blackboard”).

14

Other Forms of Communication: Shared Variables

• Variable sharing/communication:

� share(X) – bindings on the variables of X (tells) will be exported to other
workers in the team

� unshare(X) – bindings on the variables of X (tells) will be local
� wait(X) – Suspends the execution until X is bound (also, d_wait(X))
� ask(C) – Suspends the execution until the constraint C is satisfied

• Example:
share(X), (move(red), X=done) &, move(green), wait(X).

15

A Simple Producer/Consumer Program (using Shared Vars)

go(L) :-

share(L),

consumer(L) &,

producer(3,L).

producer(0,T) :- !, T = [].

producer(N,T) :- N > 0,

T = [N|Ns],

N1 is N-1,

report(N,produced),

producer(N1,Ns).

consumer(L) :-

ask(L=[]), !.

consumer(L) :-

ask(L=[H|T]),

report(H,consumed),

consumer(T).

16

Implementation Issues

• Shared variables can be implemented using attributed variables [Huitouze
’90,Neumerkel ’90] + blackboard:

� variables involved in a parallel call are marked as a “communication” variable
(i.e., shared)

� done by attaching an attribute
� communication variables are given unique identifiers
� “shared” character is inherited during unification
� standard tells done in place, tells to comm. variables posted on blackboard
� asks do a blocking rd (read) on the blackboard

• All implementation done at source (Prolog) level (see our ICLP’95 paper)

• Blackboard-based systems and shared variable communication-based systems –
“different camps:” they can be easily unified using this technique!

17

Other Issues

• Code and heap structure caching and coherence maintenance in distributed
environments:

� Very interesting work being done in the context of the OZ language, using
techniques related to those used in multiprocessor cache coherence.

� BinProlog and LogicWeb also support a form of code caching.

• Security: only a few proposals (e.g., BinProlog’s)

• Alternative means of communication: Ports ([AKL], related to sockets), direct use
of sockets, ...

• Logical views of reactivity? Use of linear logic, or condition-action rules as
proposed by Kowalski?

18

Other Conclusions/Issues

• Some concurrency and parallelism operators proposed.

• Several forms of communication: blackboards, active objects, shared variables,
sockets, ports, ...

• Attributed variables can be used for implementing distributed shared variable
communication.

• All implementation can be done at source (Prolog) level.

• Native support for concurrency in underlying system very useful (e.g., in the Ciao
run-time system, the &-Prolog abstract machine is used; similarly in BinProlog).

• Security, caching...

• Ciao code provided as public domain Prolog libraries
(http://www.clip.dia.fi.upm.es)

• Put your LP/CLP-agent applications on the WWW!

19

Appendix: The Ciao System and its Libraries

• Ciao is an LP/CLP system developed at UPM, in collaboration with several other
industrial and academic centers.

• In the Ciao project:

� We try to design useful extensions of LP and CLP for distributed execution,
WWW programming, concurrency, higher-order, powerful debugging, ...

� We try to keep as much as possible compatibility with ISO-Prolog.
� We develop the extensions as much as possible in the form of libraries.
� We build public domain versions of these libraries for standard LP/CLP

systems.
� We identify aspects that are difficult or inefficient and for which native engine

support is needed .
� We develop abstract machine modifications and advanced compilation and

support technology.

• I.e., we try to answer the question of what really needs to be added to/changed in
current systems.

20

PiLLoW and Other Ciao Libraries

• For concreteness we will often refer to PiLLoW and other Ciao system libraries.

• Ciao Libraries (freely available, and in different stages of development) include:

� PiLLoW: WWW/HTML interface
� prolog shell: Prolog shell scripts
� Distribution: blackboards, concurrency, agents, ...
� PLAI: Global analysis (including type checking/inferencing)
� APC: Global optimization (source to source, including specialization and

parallelization)

21

Ciao Compiler Transformations/Optimizations (Source to Source)

• Examples of transformations/techniques used:

� Supporting CLP via attributed variables.
� Distributed execution on standard CLP/LP.
� Supporting CC on standard CLP/LP systems (with delay).
� Supporting the Andorra model in CLP/LP systems.
� Functions/higher order.

• Analyses used / characteristics:

� Top-down framework with efficient dynamic fixpoint (PLAI).
� Modes, types, sharing (aliasing), independence, etc.
� Several domains over Herbrand: SH, SH+FR, ASub, SH+ASub,

SH+FR+ASub, Path, Types, ...
� Over constraints: Def, Fr, FD, LSign, DiffLSign, ...
� Support for dynamic scheduling (concurrency).
� Support for incremental analysis.
� Support for full languages (e.g., ISO-prolog).

22

� Cost analysis (upper and lower bounds).

• Examples of optimizations performed:

� Compile-time elim. of run-time tests via (abstract) PE.
� Multiple (abstract) specialization (e.g., loop invariants).
� LP/CLP/CC parallelization.
� Optim. of synchronization / sched. anal. (for delays and CC).
� Goal and constraint reordering (optimization of search).
� Granularity control.

23

Ciao and Other CC Systems

• Input from other LP/CC systems:

� CC: entailment-based synchronization.
� NU-Prolog/Par NU-Prolog: transformation to delay declaration for support of

Ciao on conventional systems.
� AKL: encapsulation.
� OZ: modules, applications of records.
� Shared with QE-Janus: “quiche eating” implementation approach.

• Main differences:

� “Sequential by default” vs. “concurrent by default.”
� Explicit concurrency (and parallelism) operators (“threads”).
� Distributed implementation.
� Extensive global analysis and optimization (e.g., automatic static

parallelization, suspension reduction).
� Designed to be portable to conventional LP/CLP systems.

• Other issues:
24

� Active modules.
� WWW interface.
� Functions, HO, scripts, ...

25

Language Visions?

• On the future LP Language: can Ciao offer some interesting ideas?

� Backwards compatible with LP/CLP (ISO standard).
� Can use existing implementation technology.
� Incorporates some language solutions:

* Sequential operator.
* Separation of parallelism and concurrency.
* Explicit request for fairness.
* Distribution primitives.
* Active modules/objects.
* Separation of control rules (e.g., Andorra) from parallelism and

optimizations.
* Integration of several in the same framework.
* ...

� Final thoughts – minor things matter, e.g., in Ciao:
* tcl/tk interface.
* Stand-alone executables, linkables, and scripts.

26

* Small executables.
* html interface.
* ...

27

