
Parallel Execution of Logic Programs
A Tutorial

(Or: Multicores are here! Now, what do we do with them?)

Manuel Hermenegildo

IMDEA Software
Tech. University of Madrid

U. of New Mexico

Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

The UPM work presented is a joint effort with members of the CLIP group at the UPM School of Computer Science and

IMDEA Software including: Francisco Bueno, Daniel Cabeza, Manuel Carro, Amadeo Casas, Pablo Chico, Jesús Correas,

Marı́a José Garcı́a de la Banda, Manuel Hermenegildo, Pedro López, Mario Méndez, Edison Mera, José Morales, Jorge

Navas, and Germán Puebla.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 1

Introduction / Motivation

• Multicore chips have moved parallelism from niche (HPC) to mainstream
–even on laptops!

• According to vendors (and Intel in particular [e.g., DAMP workshops]):

� Feature size reductions will continue for foreseeable future (12 generations!).
� But power consumption does not allow increasing clock speeds much.
� Multicore is the way to use this space without raising power consumption.
� Number of cores expected to double with each generation!

• But writing parallel programs hard/error-prone –how to exploit all those cores?

� Ideal situation: Conventional Program + Multiprocessor = Higher Perf.
→ automatic parallelization.
� More realistically: compiler-aided parallelization.
� Languages (dialects, constructs) for parallelization+parallel programming.
� Scheduling techniques [BW93, Cie92], memory management, abstract machines,

etc.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 2

LP and CLP – quite interesting from the parallelism point of view

• Many parallelism-friendly aspects:

� program close to problem description→ less hiding of intrinsic parallelism
� well understood mathematical foundation→ simplifies formal treatment
� relative purity (well behaved variable scoping, fewer side-effects, generally

single assignment)→ more amenable to automatic parallelization.

• At the same time, requires dealing with the most complex problems [Her97, Her00]:

� irregular computations; complex data structures; (well behaved) pointers;
dynamic memory management; recursion; ...

but in a much more elegant context;
and brings up some upcoming issues (e.g., speculation, search, constraints).

→ Very good platform for developing universally useful techniques:
Examples to date: conditional dep. graphs, abstract interpretation w/interesting
domains, cost analysis / gran. control, dynamic sched. and load balancing, ...

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 3

Complex Data Structures / Pointers

• Example:

main :- X = f(Y,Z),
X Yf Z

Y = a,
X f Za

W = Z,
X f Za W

W = g(K),
X f Za W g K

X = f(a,g(b)).
X f Za W g b

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 4

Parallelism in Logic Programs and CLP

• Or-parallelism [Con83]: execute simultaneously different search space branches.

� Present in general search problems, enumeration part of constr. problems, etc.

money(S,E,N,D,M,O,R,Y) :- digit(0).

digit(S), digit(1).

digit(E), ...

..., digit(9).

carry(I),

..., carry(0).

N is E+O-10*I, carry(1).

• And-parallelism [Con83]: execute simultaneously different clause body goals.

� Comprises traditional parallelism (parallel loops, divide and conquer, etc.).
� Concurrent languages also generally based on and-parallelism.

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2),

qsort(L1,R1),

append(R1,[X|R2],R).

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 5

Objective and Issues

• Temptation: make use of all this potential.

• Problem: this can yield a slowdown or even erroneous results.

• Objective [HR89]: and/or-parallel execution of (some of the goals in) logic programs
(and full Prolog, CLP, CC, ...), while:

� obtaining the same solutions as the sequential execution (i.e., correctness)
� taking a shorter or equal execution time (speedup or, at least, no-slowdown

over state-of-the-art sequential systems) (i.e., efficiency).

• Above conditions may not always be met:

� Independence: conditions that the run-time behavior of the goals must satisfy
to guarantee correctness and efficiency (under ideal conditions – no
overhead).

• The presence of overheads complicates things further:

� Granularity Control: techniques for ensuring efficiency in the presence of
overheads.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 6

Sequential and Parallel Execution Framework: OR

• Model [HR95]: consider a state G = 〈g1 : g2 : . . . : gn, θ〉 where we select g1.

• If there are two clauses:
g
′
1 ← g

′
11, . . . , g

′
1m. s.t. mgu(g1θ, g

′
1) = θ′

g
′′
1 ← g

′′
11, . . . , g

′′
1k. s.t. mgu(g1θ, g

′′
1) = θ′′

• We construct two states:
G′ = 〈g′11 : . . . : g

′
1m : g2 : . . . : gn, θθ

′〉
G′′ = 〈g′′11 : . . . : g

′′
1k : g2 : . . . : gn, θθ

′′〉

• Sequential execution: execute G′ first and then G′′.

• Parallel execution: execute G′ and G′′ in parallel.

• Since G′ and G′′ are completely independent [HR95]:

� Same results are obtained in parallel or sequentially.
� All branches can be explored in parallel.
� Same number of branches explored (only if “all sols”!).

• Thus, or-parallelism: mostly implementation issues.
(but side-effects, cuts, and aggregation predicates complicate things)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 7

Issues in OR Parallelism

• System organization:

� System comprises a collection of workers (processes/processors).
� Each worker is an LP/CLP engine with a full set of stacks.
� A scheduler assigns unexplored branches to idle workers.

• Main implementation problem: alternative bindings – efficiently maintaining
different environments per branch (e.g., p1 and p2 in example):

� Sharing (e.g. Aurora [LBD+88], PEPSys/ECLIPSE [CSW88, ECR93], etc.)
� Recomputation (e.g. Delphi model) [Clo87].
� Copying (e.g. Muse system) [AK90] ECLIPSE [ECR93], SICStus, OZ).
� Theoretical limitations [GJ93]. Desirable:

* Constant–time access to variables
* Constant–time task creation
* Constant–time task switching

Impossible to meet all three with a finite number of processors.
(Hence, they are not met in sequential execution!)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 8

Issues in Or-parallelism: Illustration
. . ., p(X), . . .

p1(X) :- . . ., X=a, . . ., !, . . .

p2(X) :- . . ., X=b, . . .

!

p1 p2

x=a x=b

x

main :- l, s.

:- parallel l/0.

l :- large_work_a.

l :- large_work_b.

:- parallel s/0.

s :- small_work_a.

s :- small_work_b.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 9

Issues in OR Parallelism

• Speculation (e.g., p2 in example).

� To guarantee speedup: avoid speculative work – too strong/difficult?
� To guarantee no-slowdown:

* Left-biased scheduling.
* Instantaneous killing on cut.

• Granularity: avoid parallelizing work that is too small.

• Parallelization can be done:

� Adding parallel/1 annotations to selected predicates (ANL,ECLIPSE)
� Others (Aurora, MUSE) automatically via the scheduler.

• Useful supporting techniques identified:

� Visualization/trace analysis: ANL, VisAndOr/IDRA [CGH93, FCH96], ViMust,
Parsee [PK96], VisAll [FIVC98], ...
� Program transformation to increase granularity [Pre93].
� Compile-time/run-time granularity control; automatically introduce parallel

annotations [LGHD96].
M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 10

Some Results in OR Parallelism

• Quite successful systems built (ECLIPSE, SICSTUS/MUSE, Aurora,
OrpYap[RSS99], etc.)

• MUSE is quite easy to add to an existing Prolog system (done with Prolog by BIM,
also added to SICStus Prolog V3.0)

• Significant speedups w.r.t. state-of-the-art Prolog systems can be obtained with
Aurora and Muse for search-based applications.

Program 1 2 4 8 10 Sicstus 0.6
parse1 1 1.8 2.8 2.93 2.76 1.25
parse5 1 1.97 3.74 6.92 7.72 1.27
db5 1 1.93 3.74 6.92 7.34 1.37
8queens 1 1.99 3.95 7.88 9.6 1.25
tina 1 2.07 4.06 7.81 9.59 1.43

• Much work done on schedulers (left bias, cut, side effects,)

• Easy to extend to CLP (e.g., VanHentenryck [Van89], ECLIPSE system).

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 11

Simple Goal-level And-Parallel Exec. Framework

• Model [HR90, HR95]:
consider a state G = 〈g1 : g2 : . . . : gn, θ〉, to execute g1 and g2 in parallel:
� execute 〈g1, θ〉 and 〈g2, θ〉 in parallel (fork) obtaining θ1 and θ2,
� continue with 〈g3 : . . . : gn, θ1θ2〉 (join).

• Regarding multiple solutions – two possibilities:
� Gather all solutions for both goals separately.
� Perform “parallel backtracking”.

• Multiple problems, related to variable binding conflicts: during parallel execution
of 〈g1, θ〉 and 〈g2, θ〉 the same variable may be bound to inconsistent values.

• Correctness problems (due to the definition of composition of substitutions – e.g.
x/a composed with x/b succeeds!) [HR89]

Solutions (proved correct in case of “pure” goals):
� Modify definition of composition: θ ◦ η(t) = mgu(E(θ) ∪ E(η))(t)

� Change parallel model.
� Not an issue in CLP: conjunction instead of composition [GHM93, GHM00].

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 12

Issues in And-Parallelism – Independence

• Correctness: “same” solutions as sequential execution.
• Efficiency: execution time < than seq. program (or, at least, no-slowdown: ≤).

(We assume parallel execution has no overhead in this first stage.)

• Running at s2 “seeing s1”:

Imperative Functions Constraints

s1 Y := W+2; (+ W 2) Y = W+2,

s2 X := Y+Z; (+ Z) X = Y+Z,

read-write deps strictness cost!

For Predicates (multiple procedure definitions):

main :-

s1 p(X),

s2 q(X),

write(X).

p(X) :- X=a.

q(X) :- X=b, large computation.

q(X) :- X=a.

Again, cost issue: if p affects q (prunes its choices) then q ahead of p is speculative.

• Independence: condition that guarantees correctness and efficiency.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 13

Independence and its Detection

• Informal notion: a computation “does not affect” another
(also referred to as “stability” in, e.g., EAM/AKL).

• Greatly clarified when put in terms of Search Space Preservation (SSP) – shown
SSP sufficient and necessary condition for efficiency [GHM93, Gar94].

• Detection of independence:

� Run-time (a-priori conditions) [Con83, LK88, JH91].
� Compile-time [CDD85].
� Mixed: conditional execution graph expressions [DeG84, Her86b]. (1)
� User control: explicit parallelism (concurrent languages). (2)

• (1)+(2) = &-Prolog [DeG84, Her86b]: view parallelization as a source to source
transformation of original program into a parallelized (“annotated”) one in a
concurrent/parallel language. Allows:

� Automatic parallelization — and understanding the result).
� User parallelization — and the compiler checking it).

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 14

Concrete System Used in Examples: Ciao

• For concreteness, hereafter we use &-Prolog (now Ciao) as a target.
The relevant minimal subset of &-Prolog/Ciao:
� Prolog (with if-then-else, etc.).
� Parallel conjunction “&/2”

(with correct and complete forwards and backwards semantics).
� A number of primitives for run-time testing of instantiation state.

• Ciao [HC94, HBC+99, HBC+08, BCC+09] is one of the popular Prolog/CLP systems
(supports ISO-Prolog fully).
Many other features: new-generation multi-paradigm language/prog.env. with:
� Predicates, constraints, functions (including lazyness), higher-order, ...
� Assertion language for expressing rich program properties

(types, shapes, pointer aliasing, non-failure, determinacy, data sizes, cost, ...).
Static debugging, verification, program certification, PCC, ...
� Parallel, concurrent, and distributed execution primitives.

* Automatic parallelization.
* Automatic granularity and resource control.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 15

A Priori Independence: Strict Independence-I

• Approach (goal level). Consider parallelizing p(X,Y) and q(X,Z):

main :-

t(X,Y,Z),

s1 p(X,Y),

s2 q(X,Z).

We compare the behaviour of s2q(X,Z) and s1q(X,Z).

• A-priori Independence: when reasoning only about s1.
Can be checked at run-time before execution of the goals.

• A priori independence in the Herbrand domain:
Strict Independence [DeG84, HR89]: goals do not share variables at run-time.

• Example 1: Above, if t(X,Y,Z) :- X=a.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 16

A Priori Independence: Strict Independence-II

• The “pointers” view:

correctness and efficiency (search space preservation) guaranteed for p & q if
there are no “pointers” between p and q.

main :- X=f(K,g(K)), Y=a,

Z=g(L), W=h(b,L),

--------------------->

p(X,Y),

q(Y,Z),

r(W).

aY

gZ L

g

W h b

X f K

p and q are strictly independent, but q and r are not.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 17

A Priori Independence: Strict Independence-III

• Example 2:

qs([X|L],R) :- part(L,X,L1,L2),

qs(L2,R2), qs(L1,R1),

app(R1,[X|R2],R).

Might be annotated in &-Prolog (or Ciao) as:

qs([X|L],R) :-

part(L,X,L1,L2),

(indep(L1,L2) -> qs(L2,R2) & qs(L1,R1)

; qs(L2,R2) , qs(L1,R1)),

app(R1,[X|R2],R).

• Not always possible to determine locally/statically:

main :- t(X,Y), p(X), q(Y).

main :- read([X,Y]), p(X), q(Y).

• Alternatives: run-time independence tests, global analysis, ...

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 18

Fundamental issues:

� Can we build a system which obtains speedups w.r.t. a state of the art
sequential LP system using such annotations?

� Can those annotations be generated automatically?

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 19

And-Parallelism Implementation

• By translation to or-parallelism [ECR93, CDO88]:

� Simplicity
� Relatively high overhead→ higher need for granularity control
� Used, e.g., in ECLIPSE system.

• Direct implementation [Her86b]:

� Abstract machine needs to be modified: e.g., PWAM / Marker
model [Her87, Her86a, SH96, PG98], EAM/AKL box machine [War90, JH90].
* System comprises a collection of agents (processes/processors).
* Each agent is an LP/CLP engine with a full set of stacks.
* Scheduling is normally done lazily through goal stacks.

� Low overhead (but granularity control still useful)
� Direct support for concurrent/parallel language
� Used in &-Prolog/Ciao and most other systems: ACE, IDIOM, DDAS, ...

• Also, higher-level implementations (see later).

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 20

And-Parallelism Implementation

• Issues in direct implementation:

� Scheduling / fast task startup.
� Memory management.
� Use of analysis information to improve indexing.
� Local environment support.
� Recomputation vs. copying.
� Efficient implementation of parallel backtracking

(and opportunities for intelligent backtracking).
� Efficient implementation of “ask” (for communication among threads).
� etc.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 21

&-Prolog Run-time System: PWAM architecture

• Evolution
of the RAP-WAM
(the first
Multisequential
Model?) and
Sicstus WAM.

• Defined as
a storage model +
an instruction set

Heap

PDL (C)

PDL

H

HB

S

Structures
and perma-
nent vars.

CFA

P

CP

Code

PWAM
instructions

GS

GS’

Goal stack

Goal frames

(Common to all agents)

 X1
 X2

 Xn

Arg. / temp. registers

Other registers

P, H, B,
etc.

Stack

Trail

E

B

TR

(A)

Environments

Choice points

P-call frames

M
Markers

CP stack

PWAM Storage Model: A Stack Set

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 22

&-Prolog Run-time System: Agents and Stack Sets

• Agents separate from Stack Sets; Dynamic creation/deletion of S.Sets/Agents
• Lazy, on demand scheduling

...

GSa GSz

GSb ...

Agent 2Agent 1

Agent 3 Agent 4
Agent n

(Common)

Code

• Extensions / optimizations:
� DASWAM / DDAS System (dependent and-//) [She92, She96]

� &ACE, ACE Systems (or-, and-, dep-//) [PG95a, GHPSC94a, PGPF97]

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 23

&-Prolog Run-time System: Performance

SICStus0.5 on Sequent Symmetry

Quintus2.2 on Sun3/60

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

SICStus0.5 on Sequent Symmetry

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

Benchmark: fib.pl (22)

SICStus0.5 on Sequent Symmetry

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

Benchmark: fib.pl (22) gran 12

SICStus0.5 on Sequent Symmetry

Quintus2.2 on Sun3/60

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

SICStus0.5 on Sequent Symmetry

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

Benchmark: phanoi.pl (14)

SICStus0.5 on Sequent Symmetry

Quintus2.2 on Sun3/60

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

SICStus0.5 on Sequent Symmetry

Quintus2.2 on Sun3/60

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

SICStus0.5 on Sequent Symmetry

Quintus2.2 on Sun3/60

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

SICStus0.5 on Sequent Symmetry

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

Benchmark: orsim.pl (sp2)

SICStus0.5 on Sequent Symmetry

Quintus2.2 on Sun3/60

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

SICStus0.5 on Sequent Symmetry

Quintus2.2 on Sun3/60

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

SICStus0.5 on Sequent Symmetry

&-Prolog0.0 on Sequent Symmetry

0 1 2 3 4 5 6 7 8 9
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Agents

S
p

ee
d

u
p

Benchmark: remdisj.pl

Sequent Symmetry, hand parallelized programs.
(Speedup over state of the art sequential systems.)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 24

Visualization of And-parallelism – (small) qsort, 1 processor

(VisAndOr [CGH93] output.)
M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 25

Visualization of And-parallelism – (small) qsort, 4 processors

(VisAndOr [CGH93] output.)
M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 26

Independence – Strict Independence (Contd.)

• Not always possible to determine locally/statically:

main :- t(X,Y), p(X), q(Y).

main :- read([X,Y]), p(X), q(Y).

• Alternatives: run-time independence tests, global analysis, ...

main :- read([X,Y]), (indep(X,Y) -> p(X) & q(Y)

; p(X) , q(Y)).

main :- t(X,Y), p(X) & q(Y). %% (After analysis)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 27

Parallelization Process: CDG-based Automatic Parallelization

• Conditional Dependency Graph (of some code segment) [HW87, BGH99, GPA+01]:
� Vertices: possible tasks (statements, calls, bidings, etc.).
� Edges: possible dependencies (labels: conditions needed for independence).

• Local or global analysis used to reduce/remove checks in the edges.
• Annotation process converts graph back to parallel expressions in source.

foo(...) :-

g1(...),

g2(...),

g3(...).

g1 g3

g2

g1 g3

g2

icond(1−3)

icond(1−2) icond(2−3)

g1 g3

g2

test(1−3)

(test(1−3) −> (g1, g2) & g3
 ; g1, (g2 & g3))

g1, (g2 & g3)Alternative:

"Annotation"

Local/Global analysis
and simplification

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 28

Simplifying Independence Conditions (Strict Ind.)
[BGH99]

• Recall that b1 and b2 are strictly independent for θ iff

vars(b1θ) ∩ vars(b2θ) = ∅

• indep(b1, b2) iff b1 and b2 do not share variables at run–time.

• p(x, y) and q(y, z) are strictly independent at run–time iff indep({x, y}, {y, z}).

• Equivalent to {indep(x, y), indep(x, z), indep(y, y), indep(y, z)}.

• Domain of interpretation DI: subset of propositional logic.

• For clause C, it contains predicates of the form ground(x) and indep(y, z),
{x, y, z} ⊆ vars(C), with axioms:

{ground(x)→ indep(x, y)|{x, y} ⊆ vars(C)}
{indep(x, x)→ ground(x)|x ∈ vars(C)}

• The set {indep(x, y), indep(x, z), indep(y, y), indep(y, z)} can be simplified to
{ground(y), indep(x, z)}.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 29

Simplifying Independence Conditions (Strict Ind.)
[BGH99]

p(x,y)

q(x,z)

s(z,w)
ind(y,w)

falsetrue

 Simplify DependenciesAnalysis

Info

h(x,y,z):- p(x,y), q(x,z), s(z,w).

p(x,y)

q(x,z)

s(z,w)

h(x,y,z):- ind(y,w) -> p(x,y) & (q(x,z),s(z,w)) ; p(x,y), q(x,z), s(z,w).

h(x,y,z):- (p(x,y) & q(x,z)), s(z,w).

Automatic And-Parallelization Process-SI

Identify Dependencies

 gnd(x)

 ind(x,w) ind(y,z)

ind(x,z),ind(x,w)
ind(y,z),ind(y,w)

 gnd(x)
gnd(z)

gnd(z)

 ind(y,z)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 30

&-Prolog/Ciao Parallelizer Overview

USER

Annotators (local
dependency analysis)

MEL/CDG/UDG/URLP/...

Abstract Interpretation
(Sharing, Sharing+Freeness,
Aeqs, Def, Lsign, ...)

Dependency Info

granularity analysis

side−effect analysis

Parallelized Code (&)

(C)LP, FP, (Java) ...

Ciao:

Ciao/&−Prolog

Parallel RT system

PARALLELIZING COMPILER (CiaoPP)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 31

&-Prolog/CIAO compiler overview (Contd.)
Parallelizing compiler [HW87] (now integrated in CiaoPP [HBPLG99, HPBLG03]):
• Global Analysis: infers independence information.
• Annotator(s): Prolog→ &-Prolog

parallelization [DeG87, MH90, BGH94a, CH94, PGPF97, MBdlBH99].
� MEL: Maximum Expression Length —simple heuristic.
� CDG: Conditional Graph Expressions —graph partitioning of clauses.
� UDG: Unconditional Graph Expressions.
� URLP: Uncond. Recursive Linear Parallelizer —recursive application of simple rules.
� Variants of CDG/UDG.
� Enhanced to better use global analysis info and granularity information (still on–going).

• Low-level PWAM compiler: extension of Sicstus V0.5
• Granularity Analysis: determines task size or size

functions [DLH90, DL91, DL93, DLGHL94, DLGHL97, DLGH97, SCK98, MLGCH08].
• Granularity Control: restricts parallelism based on task

sizes [DLH90, LGHD96, SCK98].
• Other modules: side effect analyzer (sequencing of side-effects, coded in

&-Prolog), multiple specializer / partial evaluator, invariant eliminator, etc.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 32

&-Prolog compilation: examples - I

multiply([],_,[]).

multiply([V0|V0s],V1,[Vr|Vrs]) :-

vmul(V0,V1,Vr),

multiply(V0s,V1,Vrs).

vmul([],[],0).

vmul([H1|T1],[H2|T2],Vr) :-

scalar_mult(H1,H2,H1xH2),

vmul(T1,T2,T1xT2),

Vr is H1xH2+T1xT2.

scalar_mult(H1,H2,H1xH2) :- H1xH2 is H1*H2.

Source (Prolog)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 33

&-Prolog compilation: examples - II

multiply([],_,[]).

multiply([V0|V0s],V1,[Vr|Vrs]) :-

(ground([V1]), indep([[V0,V0s],[V0,Vrs],[V0s,Vr],[Vr,Vrs]])

-> vmul(V0,V1,Vr) & multiply(V0s,V1,Vrs)

; vmul(V0,V1,Vr), multiply(V0s,V1,Vrs)).

vmul([],[],0).

vmul([H1|T1],[H2|T2],Vr) :-

(indep([[H1,T1],[H1,T2],[T1,H2],[H2,T2]])

-> scalar_mult(H1,H2,H1xH2) & vmul(T1,T2,T1xT2)

; scalar_mult(H1,H2,H1xH2), vmul(T1,T2,T1xT2)),

Vr is H1xH2+T1xT2.

scalar_mult(H1,H2,H1xH2) :- H1xH2 is H1*H2.

Parallelized program (&-Prolog/Ciao)—no global analysis

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 34

Dependency Analysis: Global Analysis Subsystem

• “PLAI” analyzer – top-down driven bottom up analysis [MH89, MH92] (enhanced
version of Bruynooghe’s scheme [Bru91]).

• Optimized fixpoint algorithm (keeps track of dependencies and approximation
state of information, avoids recomputation) [MH89, HPMS00, PH96].

• Some useful abstract domains:
� Sharing Domain Abstraction (“S”) [JL89, MH89, JL92, MH92].
� Sharing+Freeness Domain Abstraction (“SF”) [MH91].
� Sondergaard’s ASub (linearity) domain (“P”) [Søn86, MS93]

� Type domains, depth-K, etc.
� (Constraints:) Definiteness [dlBH93, AMSS94], Freeness [dlBHB+96],

LSign [KMM+96] domains.

• Domains combined using [CMB+95] framework: e.g. ASub+SH, ASub+ShF
• Automatic elimination of repetitive checks [GH91, PH99].
• Current analyzer quite robust, with support for a relatively complete set of builtins.
• Support for full Prolog [BCHP96], CLP(R) [dlBH93, dlBHB+96], etc.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 35

“Sharing” Abstraction (Groundness + Set Sharing)

• Definitions:

� Uvar: universe of all variables,
� Pvar: set of program variables in a clause,
� Subst: set of all possible mappings from variables in Pvar to terms.

• Abstract Domain: Dα = ℘(℘(Pvar))

• Abstraction of a substitution:
α(A) : Subst→ Dα

α(θ) = {Occ(θ, U)|U ∈ Uvar} where Occ(θ, U) = {X|X ∈ dom(θ) ∧ U ∈ var(Xθ)},

• Example: Let θ = {W = a,X = f (A1, A2), Y = g(A2), Z = A3}.
α(θ) = {∅, {X}, {X, Y }, {Z}}.

• Note that

� independent(xθ, yθ) ⇐⇒ 6∃v ∈ Uvar, x ∈ Occ(θ, v) ∧ y ∈ Occ(θ, v)

Other additional axioms are encoded in the sharing patterns.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 36

&-Prolog compilation: examples - III

:- entry multiply(g,g,f).

multiply([],_,[]).

multiply([V0|V0s],V1,[Vr|Vrs]) :- % [[Vr],[Vr,Vrs],[Vrs]]

multiply(V0s,V1,Vrs), % [[Vr]]

vmul(V0,V1,Vr). % []

vmul([],[],0).

vmul([H1|T1],[H2|T2],Vr) :- % [[Vr],[H1xH2],[T1xT2]]

scalar_mult(H1,H2,H1xH2), % [[Vr],[T1xT2]]

vmul(T1,T2,T1xT2), % [[Vr]]

Vr is H1xH2+T1xT2. % []

scalar_mult(H1,H2,H1xH2) :- % [[H1xH2]]

H1xH2 is H1*H2. % []

Sharing information inferred by the analyzer

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 37

&-Prolog compilation: examples - III

multiply([],_,[]).

multiply([V0|V0s],V1,[Vr|Vrs]) :-

(indep([[Vr,Vrs]]) ->

multiply(V0s,V1,Vrs) &

vmul(V0,V1,Vr)

;

multiply(V0s,V1,Vrs),

vmul(V0,V1,Vr)).

vmul([],[],0).

vmul([H1|T1],[H2|T2],Vr) :-

scalar_mult(H1,H2,H1xH2) &

vmul(T1,T2,T1xT2),

Vr is H1xH2+T1xT2.

scalar_mult(H1,H2,H1xH2) :- H1xH2 is H1*H2.

. . . and the parallelized program with this information.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 38

Sharing + Freeness Domain

• Allows detecting failure of groundness checks.

• Increases accuracy of sharing information.

• Abstract Domain: Dα = Dα−sharing ×Dα−freeness

� Dα−sharing = ℘(℘(Pvar))

� Dα−freeness = ℘(Pvar)

• Abstraction (freeness) of a substitution:
αfreeness(θ) = { X | X ∈ dom(θ),∃Y ∈ Uvar (Xθ = Y)}

• Example:
θ = {W/P,X/f (P,Q), Y/g(Q,R), Z/f (a)}.
α({θ}) = (λsharing, λfreeness), where

� λsharing = {∅, {Y }, {W,X}, {X, Y }}
� λfreeness = {W}

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 39

The ShFr Abstract Domain – A Pictorial Representation

[CH94]

• Two components: sharing & freeness (θ̂SH, θ̂FR)

• The freeness information restricts the possible combinations of sharing patterns.

• Pictorial representation:

p(X,Y,Z)

θ̂SH = [[XY]]

θ̂FR = [Y]

'

&

$

%

pgX tY
gZ

X = f(Y)
Z = b

p(X,L)

θ̂SH = [[X][XL]]

θ̂FR = [L]

'

&

$

%
pgX tL

X = [Y|L]

p(X,Y,Z)

θ̂SH = [[XY][Z]]

θ̂FR = [Z]

'

&

$

%

pgX gY
tZ

X = f(A)
Y = f(A)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 40

&-Prolog compilation: examples - IV

:- entry multiply(g,g,f).

multiply([],_,[]).

multiply([V0|V0s],V1,[Vr|Vrs]) :- % [[Vr],[Vrs]],[Vr,Vrs]

multiply(V0s,V1,Vrs), % [[Vr]],[Vr]

vmul(V0,V1,Vr). % [],[]

vmul([],[],0).

vmul([H1|T1],[H2|T2],Vr) :- % [[Vr],[H1xH2],[T1xT2]],

% [Vr,H1xH2,T1xT2]

scalar_mult(H1,H2,H1xH2), % [[Vr],[T1xT2]],[Vr,T1xT2]

vmul(T1,T2,T1xT2), % [[Vr]],[Vr]

Vr is H1xH2+T1xT2. % [],[]

scalar_mult(H1,H2,H1xH2) :- % [[H1xH2]],[H1xH2]

H1xH2 is H1*H2. % [],[]

Sharing+Freeness information inferred by the analyzer

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 41

&-Prolog compilation: examples - IV

multiply([],_,[]).

multiply([V0|V0s],V1,[Vr|Vrs]) :-

multiply(V0s,V1,Vrs) &

vmul(V0,V1,Vr).

vmul([],[],0).

vmul([H1|T1],[H2|T2],Vr) :-

scalar_mult(H1,H2,H1xH2) &

vmul(T1,T2,T1xT2),

Vr is H1xH2+T1xT2.

scalar_mult(H1,H2,H1xH2) :- H1xH2 is H1*H2.

. . . and the parallelized program with this information.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 42

Efficiency of the analyzers — Seconds (’94 numbers!)

Average time in seconds
Program Prol. S P SF P*S P*SF
aiakl 0.17 0.20 0.43 0.22 0.32 0.37
ann 1.76 19.40 5.54 10.50 16.37 17.68
bid 0.46 0.32 0.27 0.36 0.46 0.56
boyer 1.12 3.56 1.38 4.17 2.91 3.65
browse 0.38 0.13 0.17 0.15 0.21 0.24
deriv 0.21 0.06 0.05 0.07 0.09 0.11
fib 0.03 0.01 0.01 0.02 0.02 0.02
hanoiapp 0.11 0.03 0.03 0.04 0.06 0.07
mmatrix 0.07 0.03 0.03 0.03 0.04 0.05
occur 0.34 0.04 0.03 0.05 0.06 0.07
peephole 1.36 5.45 2.54 3.94 7.00 7.45
qplan 1.68 1.54 11.52 1.84 2.60 3.36
qsortapp 0.08 0.04 0.05 0.05 0.08 0.09
read 1.07 2.09 1.89 2.35 2.99 3.51
serialize 0.20 2.26 0.23 0.62 0.52 0.67
tak 0.04 0.02 0.02 0.02 0.02 0.04
warplan 0.80 15.71 5.02 8.71 15.74 17.68
witt 1.86 1.98 16.24 2.26 2.87 3.42

Prol. Standard Prolog compiler time
S (Set) Sharing
P Pair sharing (Sondergaard)
SF Sharing + Freeness
X*Y Combinations

[BGH94b, MBdlBH99, BGH99]

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 43

Dynamic tests (’96 numbers!)

L/N

S

P*SF/P*S/SF/P

1 4 7 10 13 16 19 22 25 28 31 34
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Processors

S
p
ee

d
u
p

Benchmark: deriv

local

asub/share/none

shfr

1 6 11 16 21
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

Number of Processors
S

p
ee

d
u
p

Benchmark: qsortapp

L/N

S

P*SF/P*S/SF/P

1 4 7 10 13 16 19 22 25 28 31 34
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Number of Processors

S
p

ee
d

u
p

Benchmark: mmatrix

N

L

S

P*SF/P*S/SF/P

1 4 7 10 13 16 19 22 25 28 31 34
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Number of Processors

S
p

ee
d

u
p

Benchmark: occur

L

P*S/P/S/N

P*SF/SF

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Number of Processors

S
p
ee

d
u
p

Benchmark: aiakl

N

L

S

P*S/P

P*SF/SF

1 2 3 4 5 6 7
0.0

0.2

0.3

0.5

0.6

0.8

0.9

1.0

1.2

1.3

1.5

Number of Processors

S
p
ee

d
u
p

P*S/S/P/N

P*SF/SF/L

1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.5

0.6

0.7

0.8

Number of Processors

S
p
ee

d
u
p

Benchmark: boyer

N

L

S

P

P*SF/SF

P*S

1 2 3 4 5 6 7 8 9 10 11
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Number of Processors

S
p
ee

d
u
p

(1-10 processors actual speedups on Sequent Symmetry; 10+ projections using
IDRA simulator on execution traces) [BGH94b, MBdlBH99, BGH99]

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 44

A Closer Look at Some Speedups

L/N

S

P*SF/P*S/SF/P

1 4 7 10 13 16 19 22 25 28 31 34
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Number of Processors

S
p
ee

d
u
p

Benchmark: mmatrix

N

L

S

P

P*SF/SF

P*S

1 2 3 4 5 6 7 8 9 10 11
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Number of Processors

S
p
ee

d
u
p

Simple matrix mul. (> 12 simulated) The parallelizer, self-parallelized

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 45

Independence – Non-Strict Independence
[HR90, HR95, Gar94]

• Pure goals: only one thread “touches” each shared variable. Example:

main :- t(X,Y), p(X), q(Y).

t(X,Y) :- Y = f(X).

p is independent of t (but p and q are dependent).

• Impure goals: only rightmost “touches” each shared variable. Example:

main :- t(X,Y), p(X), q(Y).

t(X,Y) :- Y = a. p(X) :- var(X), ..., X=b, ...

• More parallelism.

• But cannot be detected “a-priori:” requires global analysis.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 46

Independence – Non-Strict Independence

• Very important in programs using “incomplete structures.”

flatten(Xs,Ys) :- flatten(Xs,Ys,[]).

flatten([], Xs, Xs).

flatten([X|Xs],Ys,Zs) :- flatten(X,Ys,Ys1), flatten(Xs,Ys1,Zs).

flatten(X, [X|Xs], Xs) :- atomic(X), X \== [].

[]b c

[]d
a b c []d

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��a

• Another example:

qsort([],S,S).

qsort([X|Xs],S,S2) :-

partition(Xs,X,L,R),

qsort(L,S,[X|S1]),

qsort(R,S1,S2).

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 47

Conditions for Non-Strict Independence Based on ShFr Info
[CH94]

• We consider the parallelization of pairs of goals.

• Let the situation be: {β̂} p {ψ̂} . . . q.
We define:
S(p) = {L ∈ β̂SH | L ∩ var(p) 6= ∅}
SH = S(p)∩S(q) = {L∈ β̂SH | L ∩ var(p) 6=∅

∧L ∩ var(q) 6=∅}

• Conditions for non-strict independence for p and q:
C1 ∀L ∈ SH L ∩ ψ̂FR 6= ∅
C2 ¬ (∃N1...Nk ∈ S(p) ∃L ∈ ψ̂SH

L =
⋃k
i=1Ni ∧ N1,N2 ∈ SH

∧∀i, j 1≤ i<j≤k Ni ∩Nj ∩ β̂FR = ∅)

• C1: preserves freeness of shared variables.

• C2: preserves independence of shared variables.

• More relaxed conditions if information re. partial answers and purity of goals.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 48

Run-Time Checks for NSI Based on ShFr Info

• Run-time checks can be automatically included to ensure NSI when the previous
conditions do not hold.

• The method uses analysis information.

• Possible checks are:

� ground(X): X is ground.
� allvars(X,F): every free variable in X is in the list F .
� indep(X,Y): X and Y do not share variables.
� sharedvars(X,Y,F): every free variable shared by X and Y is in the list F .

• The method generalizes the techniques previously proposed for detection of SI.

• Even when only SI is present, the tests generated may be better than the
traditional tests.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 49

Experimental Results

Speedups of five programs that have NSI but no SI:

1. array2list translates an extendible array into a list of index–element pairs.

2. flatten flattens a list of lists of any complexity into a plain list.

3. hanoi dl solves the towers of Hanoi problem using difference lists.

4. qsort is the sorting algorithm quicksort using difference lists.

5. sparse transforms a binary matrix into an optimized notation for sparse matrices.

of processors
P 1 2 3 4 5 6 7 8 9 10
1 0.78 1.54 2.34 3.09 3.82 4.64 5.41 5.90 6.50 7.22
2 0.54 1.07 1.61 2.07 2.52 3.05 3.62 4.14 4.46 4.83
3 0.56 1.13 1.68 2.25 2.73 3.23 3.70 4.34 4.84 5.25
4 0.91 1.65 2.20 2.53 2.75 2.86 3.00 3.14 3.30 3.33
5 0.99 1.92 2.79 3.68 4.50 5.06 5.78 6.75 8.10 8.26

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 50

Independence – Constraint Independence
[GHM93, GHM00]

• Standard Herbrand notions do not carry over to general constraint systems.

main :- Y > X, Z > X, p(Y) & q(Z), ...

main :- Y > X, X > Z, p(Y) & q(Z), ...

• General notion [91-94]: “all constraints posed by second thread are consistent
with the output constraints of the first thread.” (Better also for Herbrand!)

• Sufficient a-priori condition: given g1(x̄) and g2(ȳ):
(x̄ ∩ ȳ ⊆ def (c)) and (∃−x̄c ∧ ∃−ȳc→ ∃−ȳ∪x̄c)

(def (c) is the set of variables constrained to a unique value in c)

• For c = {y > x, z > x} ∃̄−{y}c = ∃̄−{z}c = ∃̄−{y,z}c = true

For c = {y > x, x > z} ∃̄−{y}c = ∃̄−{z}c = true, ∃̄{y,z}c = y > z

• Approximation: presence of “links” through the store.

• Run-time checks: def (X), indep(X, Y), unlinked(X, Y)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 51

Some Preliminary CLP &-Parallelization Results (Compiler)
[GBH96]

• Parallel expressions:

Bench. Total CGEs Uncond. CGEs
Program Def Free FD Def Free FD
amp 5 – 5 0 – 0
bridge 0 – 0 0 – 0
circuit 3 2 2 0 0 0
dnf 14 14 14 12 0 12
laplace 1 – 1 1 – 1
mining 5 4 4 1 0 2
mmatrix 2 2 2 0 0 0
mg extend 0 0 0 0 0 0
num 16 16 16 5 10 10
pic 4 3 3 0 0 0
power 5 5 5 1 1 1
runge kutta 2 1 1 0 0 0
trapezoid 1 1 1 0 0 0

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 52

Some Preliminary CLP &-Parallelization Results (Compiler)

• Conditional checks:

Bench. Conditions: def/unlinked
Program Def Free FD
amp 1/10 – 1/10
bridge 0/0 – 0/0
circuit 1/5 0/10 0/3
dnf 0/2 0/30 0/2
laplace 0/0 – 0/0
mining 3/5 5/5 2/4
mmatrix 0/2 2/8 0/2
mg extend 0/0 0/0 0/0
num 0/24 0/20 0/19
pic 2/9 6/8 1/3
power 3/40 3/29 3/29
runge kutta 5/0 6/0 3/0
trapezoid 0/9 0/9 0/9

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 53

Some Preliminary CLP &-Speedup Results (Run-time System)

1

processors

2 3 4

speedup

1

2

3

4

Speedups for mmatrix

1

processors

2 3 4

speedup

1

2

3

4

Speedups for critical

with go2 input

1

processors

2 3 4

speedup

1

2

3

4

Speedups for critical with go3 input

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 54

Some Preliminary CLP &-Parallelization Results (Summary)

1. Tests on LP programs:
•Analysis: compares well to LP-specific domains, but worse relative precision

(except Def x Free).
•Annotation:
�Efficiency shows the relative precision of the information.
�Effectiveness comparable for Def x Free. Def and Free alone less precise.

2. Tests on CLP programs:

•Analysis: acceptable, but comparatively more expensive than for LP.
•Annotation:
�Efficiency in the same ratio to analysis as for LP.
�Effectiveness: Def x Free comparably more effective that Def and Free

alone. But still less satisfactory than for LP.
�Key: none are specific purpose domains.

•Still, useful speedups.

3. Generalization for LP/CLP with dynamic scheduling and CC [G.Banda Ph.D.].

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 55

Other Forms of Independence

• Seen so far:

� Strict independence / Non-strict independence / Constraint independence

• Independence in CLP + delay [GHM96], and non-deter. CC [BHMR94, BHMR98].

• Determinacy also a form of independence (e.g., Andorra, AKL, EAM –see later).

� If/when goals are deterministic they are independent (no-slowdown).
� If also non-failing then also no speculation (extra work).

Determinacy actually subsumed by non-strict/search space preserv. definitions!

• Inconsistency-based independence (“local independence”): finest granularity
level, subsumes previous ones [BHMR94, BHMR98].

• Independence can be applied dynamically and at finer grain levels (e.g., “Local
Independence”, DDAS model, AKL stability, etc.) [HC94]

Some levels of granularity at which independence is applied:

� Goal level / Binding level / Unification level / Across procedures / Etc.

−→ “No such thing as dependent and-parallelism.”

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 56

Dealing with Speculation

• Computations can be speculative (or even non-terminating!):

foo(X) :- X=b, . . ., p(X) & q(X), . . .

foo(X) :- X=a, . . .

p(X) :- ..., X=a, ...

q(X) :- large computation.

x=b

x=a

q(X)p(X)

but “no slow-down” guaranteed if

� left-biased scheduling,
� instantaneous killing of siblings (failure propagation).

• Left biased schedulers, dynamic throttling of speculative tasks,non-failure,
etc. [HR89, HR95, Gar94].

• Static detection of non-failure [BCMH94, DLGH97]:
avoids speculativeness / guarantees theoretical speedup.
→ importance of non-failure analysis.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 57

Dealing with Overheads, Irregularity

• Independence not enough:
overheads (task creation and scheduling, communication, etc.)

• In CLP compounded by the fact that the number and size of tasks is highly
irregular and dependent on run-time parameters.

• Dynamic solutions:

� Minimize task management and data communication overheads
(micro tasks, shared heaps, compile-time elimination of locks, ...)
� Efficient dynamic task allocation

(e.g., non-centralized task stealing)

• Quite good results for shared-memory multiprocessors early on
(e.g., Sequent Balance 1986-89).

• Not sufficient for clusters or over a network.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 58

Dealing with Overheads, Irregularity: Granularity Control
[DLH90, DL91, DL93, LGHD94, DLGHL94, LGHD96, DLGHL97, DLGH97, SCK98, MLGCH08]

• Replace parallel execution with sequential execution (or vice-versa) based on
bounds (or estimations) on task size and overheads.

• Cannot be done completely at compile-time: cost often depends on input (hard to
approximate at compile time, even w/abstract interpretation).
main :- read(X), read(Z), inc_all(X,Y) & r(Z,M), ...

inc_all([]) := [].

inc_all([I|Is]) := [I+1 | ˜inc_all(Is)].

• Our approach:

� Derive at compile-time cost functions (to be evaluated at run-time) that
efficiently bound task size (lower, upper bounds).
� Transform programs to carry out run-time granularity control.

g1 g3

g2

test(1−3)

"Annotation"

g1, (g2 & g3)

Gran. Control
g1, (gran_cond −> g2 & g3 ; g2, g3)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 59

Granularity Control Example

• For the previous example:

main :- read(X), read(Z), inc_all(X,Y) & r(Z,M), ...

inc_all([]) := [].

inc_all([I|Is]) := [I+1 | ˜inc_all(Is)].

• Assume X determined to be input, Y output, cost function inferred
2 ∗ length(X) + 1, threshold 100 units:

main :- read(X), read(Z), (2*length(X)+1 > 100 -> inc_all(X,Y) & r(Z,M)

; inc_all(X,Y) , r(Z,M)), ...

• Provably correct techniques (thanks to abstract interpretation):
can ensure speedup if assumptions hold.

• Issues: derivation of data measures, data size functions, task cost functions,
program transformations, optimizations...

n

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 60

Inference of Bounds on Argument Sizes and Procedure Cost in CiaoPP

1. Perform type/mode inference:
:- true inc_all(X,Y) : list(X,int), var(Y) => list(Y,int).

2. Infer size measures: list length.

3. Use data dependency graphs to determine the relative sizes of structures that
variables point to at different program points – infer argument size relations:

Size2inc all(0) = 0 (boundary condition from base case),
Size2inc all(n) = 1 + Size2inc all(n− 1).

Sol = Size2inc all(n) = n.

4. Use this, set up recurrence equations for the computational cost of procedures:

CostLinc all(0) = 1 (boundary condition from base case),
CostLinc all(n) = 2 + CostLinc all(n− 1).

Sol = CostLinc all(n) = 2 n + 1.

• We obtain lower/upper bounds on task granularities.

• Non-failure (absence of exceptions) analysis needed for lower bounds.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 61

Granularity Control: Some Refinements/Optimizations (1)

• Simplification of cost functions:
..., (length(X) > 50 -> inc_all(X,Y) & r(Z,M)

; inc_all(X,Y) , r(Z,M)), ...

..., (length_gt(LX,50) -> inc_all(X,Y) & r(Z,M)

; inc_all(X,Y) , r(Z,M)), ...

• Complex thresholds: use also communication cost functions, load, ...
Example: Assume CommCost(inc all(X)) = 0.1 (length(X) + length(Y)).
We know ub length(Y) (actually, exact size) = length(X); thus:

2 length(X) + 1 > 0.1 (length(X) + length(X)) ∼=
2 length(X) > 0.2 length(X) ≡

2 > 0.2Guaranteed speedup for any data size! ⇐

⇒ Sometimes static decisions can be made despite dynamic sizes and costs
(e.g., when ratios are independent of input).

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 62

Granularity Control: Some Refinements/Optimizations (1)

• Static task clustering (loop unrolling / data parallelism):

..., (has_more_elements_than(X,5) -> inc_all_2(X,Y) & r(X)

; inc_all_2(X,Y), r(X)), ...

inc_all([X1,X2,X3,X4,X5|R) := [X1+1,X2+1,X3+1,X4+1,X5+1 | ˜inc_all(R)].

inc_all([]) := [].

(actually, cases for 4, 3, 2, and 1 elements also have to be included); this is also
useful to achieve fast task startup [BB93, DJ94, HC95, HC96, GHPSC94b, PG95b].

• Sometimes static decisions can be made despite dynamic sizes and costs (e.g.,
when the ratios are independent of input).

• Data size computations can often be done on-the-fly.

• Static placement.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 63

Granularity Control System Output Example

g_qsort([], []).

g_qsort([First|L1], L2) :-

partition3o4o(First, L1, Ls, Lg, Size_Ls, Size_Lg),

Size_Ls > 20 -> (Size_Lg > 20 -> g_qsort(Ls, Ls2) & g_qsort(Lg, Lg2)

; g_qsort(Ls, Ls2), s_qsort(Lg, Lg2))

; (Size_Lg > 20 -> s_qsort(Ls, Ls2), g_qsort(Lg, Lg2)

; s_qsort(Ls, Ls2), s_qsort(Lg, Lg2))),

append(Ls2, [First|Lg2], L2).

partition3o4o(F, [], [], [], 0, 0).

partition3o4o(F, [X|Y], [X|Y1], Y2, SL, SG) :-

X =< F, partition3o4o(F, Y, Y1, Y2, SL1, SG), SL is SL1 + 1.

partition3o4o(F, [X|Y], Y1, [X|Y2], SL, SG) :-

X > F, partition3o4o(F, Y, Y1, Y2, SL, SG1), SG is SG1 + 1.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 64

Granularity Control: Experimental Results
• Shared memory:

.

programs seq. prog. no gran.ctl gran.ctl gc.stopping gc.argsize

fib(19) 1.839 0.729 1.169 0.819 0.549
1 -60% -12% +24%

hanoi(13) 6.309 2.509 2.829 2.399 2.399
1 -12.8% +4.4% +4.4%

unbmatrix 2.099 1.009 1.339 0.870 0.870
1 -32.71% +13.78% +13.78%

qsort(1000) 3.670 1.399 1.790 1.659 1.409
1 -28% -19% -0.0%

• Cluster:

.

programs seq. prog. no gran.ctl gran.ctl gc.stopping gc.argsize

fib(19) 1.839 0.970 1.389 1.009 0.639
1 -43% -4.0% +34%

hanoi(13) 6.309 2.690 2.839 2.419 2.419
1 -5.5% +10.1% +10.1%

unbmatrix 2.099 1.039 1.349 0.870 0.870
1 -29.84% +16.27% +16.27%

qsort(1000) 3.670 1.819 2.009 1.649 1.429
1 -11% +9.3% +21%

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 65

Refinements (2): Granularity-Aware Annotation
[Cas08]

• With classic annotators (MEL, UDG, CDG, . . .) we applied granularity control
after parallelization:

g1 g3

g2

test(1−3)

"Annotation"

g1, (g2 & g3)

Gran. Control
g1, (gran_cond −> g2 & g3 ; g2, g3)

• Developed new annotation algorithm that takes task granularity into account:
� Annotation is a heuristic process (several alternatives possible).
� Taking task granularity into account during annotation can help make better

choices and speed up annotation process.
� Tasks with larger cost bounds given priority, small ones not parallelized.

g1 g3

g2

test(1−3)

(gran_cond, test13 −> (g1, g2) & g3
 ; g1, g2, g3)Granularity−driven annotation

(assuming g2 "small" and g1 large if gran_cond)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 66

Granularity-Aware Annotation: Concrete Example

• Consider the clause: p :- a, b, c, d, e.

• Assume that the dependencies detected between the subgoals of p are given by:

b

d e

a

c

• Assume also that:

T (a) < T (c) < T (e) < T (b) < T (d),

where T (i) < T (j) means: cost of subgoal i is smaller than the cost of j.

MEL annotator: (a, b & c, d & e)

UDG annotator: (c & (a, b, e), d)

Granularity-aware: (a, c, (b & d), e)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 67

Refinements (3): Using Execution Time Bounds/Estimates
[MLGCH08]

• Use estimations/bounds on execution time for controlling granularity (instead of
steps/reductions).

• Execution time generally dependent on platform characteristics (≈ constants) and
input data sizes (unknowns).

• Platform-dependent, one-time calibration using fixed set of programs:

� Obtains value of the platform-dependent constants (costs of basic operations).

• Platform-independent, compile-time analysis:

� Infers cost functions (using modification of previous method),
which return count of basic operations given input data sizes.
� Incorporate the constants from the calibration.

→ we obtain functions yielding execution times depending on size of input.

• Predicts execution times with reasonable accuracy (challenging!).

• Improving by taking into account lower level factors (current work).

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 68

Execution Time Estimation: Concrete Example

• Consider nrev with mode:
:- pred nrev/2 : list(int) * var.

• Estimation of execution time for a concrete input —consider:

A = [1,2,3,4,5], n = length(A) = 5

Once Static Analysis Application
component Kωi Costp(I(ωi), n) = Ci(n) Ci(5) Kωi × Ci(5)

step 21.27 0.5× n2 + 1.5× n + 1 21 446.7
nargs 9.96 1.5× n2 + 3.5× n + 2 57 567.7
giunif 10.30 0.5× n2 + 3.5× n + 1 31 319.3
gounif 8.23 0.5× n2 + 0.5× n + 1 16 131.7
viunif 6.46 1.5× n2 + 1.5× n + 1 45 290.7
vounif 5.69 n2 + n 30 170.7

Execution time KΩ • Costp(I(Ω), n): 1926.8

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 69

Fib 15, 1 processor

(VisAndOr [CGH93] output.)
M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 70

Fib 15, 8 processors (same scale)

(VisAndOr [CGH93] output.)
M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 71

Fib 15, 8 processors (full scale)

(VisAndOr [CGH93] output.)
M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 72

Fib 15, 8 processors, with granularity control (same scale)

(VisAndOr [CGH93] output.)
M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 73

Dependent And–parallelism: DDAS (I)
[She92, She96]

• Exploits Independent + “Dependent” And–parallelism.

• Goals communicate through shared variables.

• Shared variables are marked (dep/1 annotation).

• Example: example(X):- (dep(X) => a(X) & b(X)).

a(X). b(1).

• To retain sequential search space: dependent variables are bound by only one
producer and received by some consumers.

� The producer can bind the variable.
� A consumer suspends if it tries to bind the variable.
� A suspended consumer is resumed if the variable on which it is suspended is

bound or if it becomes leftmost.
� Producer for a given variable changes dynamically as goals finish execution:

“The producer for a dependent variable is the (lexicographically) leftmost
active task which has access to that variable.”

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 74

Dependent And–parallelism: DDAS (II)

• Performance:

� IAP speedups + new dependent-and speedups
� IAP programs with one agent run at about 50% speed w.r.t. sequential

execution (due to locking and other overheads).
� DAP programs run at 30%–40% lower speed.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 75

Andorra

• Basic Andorra model [D.H.D.Warren]: goals for which at most one clause
matches should be executed first (inspired by Naish’s PNU-Prolog).

• If a solution exists, computation rule is complete and correct for pure programs
(switching lemma). (But otherwise finite failures can become infinite failures.)

• Determinate reductions can proceed in parallel without the need of choice points
−→ no dependent backtracking needed.

• An implementation: Andorra–I [D.H.D. Warren, V.S. Costa, R. Yang, I. Dutra. . .]

� Prolog support: preprocessor + engine (interpreter).
� Exploits both and- and or-parallelism. (Good speedups in practice)
� Problem: no nondeterministic steps can proceed in parallel.

• “Extended” Andorra Model [Warren] – add independent and-parallelism.

� With implicit control (unspecified) [Warren, Gupta]
� With explicit/implicit control: AKL [Janson, Haridi ILPS91]

(implicit rule – “stability”: non-deterministic steps can proceed if “they cannot
affected” by other steps)

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 76

Non-restricted And-Parallelism
[CH96, Cab04]

• Classical parallelism operator &/2: nested fork-join.

• However, more flexible constructions can be used to denote (non-restricted)
and-parallelism:

� G &> HG — schedules goal G for parallel execution and continues executing the
code after G &> HG.
* HG is a handler which contains / points to the state of goal G.

� HG <&— waits for the goal associated with HG to finish.
* The goal HG was associated to has produced a solution; bindings for the

output variables are available.

• Optimized deterministic versions: &!>/2, <&!/1.

• Operator &/2 can be written as:
A & B :- A &> H, call(B), H <&.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 77

Non-restricted And-Parallelism

• More parallelism can be exploited with
these primitives.

• Take the sequential code below (dep.
graph to the right) and three possible
parallelizations:

b(X)

c(Y) d(Y,Z)

a(X,Z)

p(X,Y,Z) :- p(X,Y,Z) :- p(X,Y,Z) :-

a(X,Z), a(X,Z) & c(Y), c(Y) &> Hc,

b(X), b(X) & d(Y,Z). a(X,Z),

c(Y), b(X) &> Hb,

d(Y,Z). p(X,Y,Z) :- Hc <&,

c(Y) & (a(X,Z),b(X)), d(Y,Z),

d(Y,Z). Hb <&.

Sequential Restricted IAP Unrestricted IAP

• In this case: unrestricted parallelization at least as good (time-wise) as any
restricted one, assuming no overhead.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 78

Annotation algorithms for non-restricted &-par.: general idea
[CCH07]

• Main idea:

� Publish goals (e.g., G &> H) as soon as possible.
� Wait for results (e.g., H <&) as late as possible.
� One clause at a time.

• Limits to how soon a goal is published + how late results are gathered are given
by the dependencies with the rest of the goals in the clause.

• As with &/2, annotation may respect or not relative order of goals in clause body.

� Order determined by &>/2.
� Order not respected⇒ more flexibility in annotation.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 79

Performance Results – Speedups

Benchm. Ann. Number of processors
1 2 3 4 5 6 7 8

AIAKL

UMEL 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
UOUDG 0.97 1.55 1.48 1.49 1.49 1.49 1.49 1.49
UDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67
UUDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67

Hanoi

UMEL 0.89 0.98 0.98 0.97 0.97 0.98 0.98 0.99
UOUDG 0.89 1.70 2.39 2.81 3.20 3.69 4.00 4.19
UDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67
UUDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67

FibFun

UMEL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UOUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57
UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Takeuchi

UMEL 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UOUDG 0.88 1.62 2.17 2.64 2.67 2.67 2.67 2.67
UDG 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UUDG 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 80

Performance results - Restricted vs. Unrestricted And-Parallelism

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 1 2 3 4 5 6 7 8

MEL

UDG

UOUDG

UUDG

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 1 2 3 4 5 6 7 8

MEL

UDG

UOUDG

UUDG

AIAKL Hanoi

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

 1 2 3 4 5 6 7 8

MEL

UDG

UOUDG

UUDG

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 1 2 3 4 5 6 7 8

MEL

UDG

UOUDG

UUDG

FibFun Sun Fire T2000 - 8 cores Takeuchi

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 81

Towards a higher-level implementation
[CCH08b, CCH08a]

• Versions of and-parallelism previously implemented:
&-Prolog, &-ACE, AKL, Andorra-I,...
rely on complex low-level machinery. Each agent:

• Our objective: alternative, easier to maintain implementation approach.

• Fundamental idea: raise non-critical components to the source language level:

� Prolog-level: goal publishing, goal searching, goal scheduling, “marker”
creation (through choice-points),...
� C-level: low-level threading, locking, untrailing,...

→ Simpler machinery and more flexibility.
→ Easily exploits unrestricted IAP.

• Current implementation (for shared-memory multiprocessors):

� Each agent: sequential Prolog machine + goal list + (mostly) Prolog code.

• Recently added full parallel backtracking!

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 82

(Preliminary) performance results Sun Fire T2000 - 8 cores

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Boyer-Moore
Boyer-Moore with granularity control

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Fibonacci
Fibonacci with granularity control

Boyer-Moore Fibonacci

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

QuickSort
QuickSort with difference lists

QuickSort with granularity control

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Takeuchi, Restricted version
Takeuchi, Unrestricted version

Quicksort Takeuchi

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 83

And–parallel Execution Models: Summary (I)

• Different types of parallelism, with different costs associated:

� Complexity considerations (search space, speculation).
� Coordination cost for agreeing on unifiable bindings.

• Overheads / granularity control.

• Approaches:

� IAP: goals do not restrict each other’s search space.
* Ensures no slow-down w.r.t. sequential execution.
* Retains as much as possible WAM optimizations.
* Some parallelism lost.

• NSIAP: IAP +. . .

� At most one goal can bind to non-variable a shared variable (or they make
compatible bindings) and no goal aliases shared variables.
� Generalization: search space preservation.
� Reduced to IAP via program analysis and transformation.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 84

And–parallel Execution Models: Summary (II)

� DDAS: goals communicate bindings.
* Incorporate a suspension mechanism to ensure no more work than in a

sequential system – “fine grained independence”.
* Handle dependent backtracking.
* Some locking and variable-management overhead.

� Andorra I: determinate depend. and– + or–parallelism
* Dependent determinate goals run in parallel.
* Allows incorporating also or–parallelism easily.
* Some locking and goal-management overhead.

� Extended Andorra Model – adding independent and parallelism to Andorra-I.
* With implicit control.
* With explicit control: AKL.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 85

Other developments
• ACE: combining MUSE and &-Prolog (And/or Copy-based Execution model)

[Being developed by New Mexico S.U. and UPM]
ngc-recomputation dep-compiler
• Interesting work on memory management [Pontelli ICLP’95].
• Visualization Tools (VisiPAL, ViMust, VisAndOr, Vista, etc.)

[HN90, CGH93, VPG97, FIVC98, Tic92]

• Fine-grained compile-time parallelization (“local indep” [Bueno et al 1994])
• Distributed systems:

� Significant progress made (e.g. UCM work [Araujo et. al] and Ciao).
� Vital component: granularity control.

• Ciao: Concurrent Constraint Independent And/Or-Parallel System [’92-present]

� Non-deterministic concurrent constraint language.
� Subsumes Prolog, CLP, CC (+Andorra via transformation), ...
� Distributed / net execution.

• Most Prolog systems have a notion of threads nowadays (SICStus, Ciao, SWI,
Yap, XSB, B-Prolog,), adequate for hand-coding coarse-grain parallelism.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 86

Some comparison with work in other paradigms

• Much progress (e.g., in FORTRAN) for regular computations. But comparatively
less on:

� parallelization across procedure calls,
� irregular computations,
� complex data structures / pointers,
� speculation, etc.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 87

Wrap-up: (C)LP strong points

• Several generations of parallelizing compilers for LP and CLP [85-...]:

� Good compilation speed, proved correct and efficient.
� Speedups over state-of-the-art sequential systems on applications.
� Good demonstrators of abstract interpretation as data-flow analysis technique.
� Now including granularity control.

Improved on hand parallelizations on several large applications.

• Areas of particularly good progress:

� Concepts of independence (pointers, search/speculation, constraints...).
� Inter-procedural analysis (dynamic data, recursion, pointers/aliasing, etc.).
� Parallelization algorithms for conditional dependency graphs.
� Dealing with irregularity:

* efficient task representation and fast dynamic scheduling,
* static inference of task cost functions – granularity control.

� Mixed static/dynamic parallelization techniques.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 88

Wrap-up: areas for improvement

• Weaker areas / shortcomings:

� In general, weak in detecting independence in structure traversals based on
integer arithmetic (modeled as recursions over recursive data structures to fit
parallelizer).
� Weaker partitioning / placement for regular computations and static data

structures.
� Little work on mutating data structures (e.g., single assignment

transformations).

• The objective is to perform all these tasks well also!

• Opportunities for synergy.

• A final plug for constraint programming:

� Merges elegantly the symbolic and the numerical worlds.
� We believe many of the features of CLP will make it slowly into mainstream

languages (e.g., ILOG, ALMA, and other recent proposals).

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 89

Some general-purpose contributions from (C)LP

• Some examples so far:

� Stealing-based scheduling strategies and microthreading.
� Cactus-like stack memory management techniques.
� Abstract interpretation-based static dependency analysis.
� Sharing (aliasing) analyses, Shape analyses, ...
� Parallelization (“annotation”) algorithms.
� Cost analysis-based granularity control.
� Logic variable-based synchronization.
� Determinacy-based parallelization.
� ...

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 90

Some challenges?

• Parallelism not yet exploited on an everyday basis (real system, real applications).

• Some challenges:

� Scalability of techniques (from analysis to scheduling).
� Maintainability of the systems: simplification?

* Move as much as possible to source level?
(And explore this same route with many other things –e.g., tabling)

� Better automatic parallelization:
* Better granularity control (e.g., time-based).
* Better granularity-aware annotators.
* Full scalability of analysis (modular analysis, etc.).
* Automate program transformations (e.g., loop unrollings).

� Supporting multiple types of parallism easily is still a challenge.
� A really elegant (and implementable) concurrent language which includes

non-determinism.
� Combination w/low-level optimization and other features (r.g., or-// YapTab).

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 91Some Bibliography (for a general tutorial see [GPA+01])
[AK90] K. A. M. Ali and R. Karlsson. Full Prolog and Scheduling Or-parallelism in Muse. International Journal of Parallel

Programming, 19(6):445–475, 1990.

[AMSS94] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Boolean functions for dependency analysis: Algebraic
properties and efficient representation. In Springer-Verlag, editor, Static Analysis Symposium, SAS’94, number 864 in
LNCS, pages 266–280, Namur, Belgium, September 1994.

[BB93] Jonas Barklund and Johan Bevemyr. Executing bounded quantifications on shared memory multiprocessors. In Jaan
Penjam, editor, Proc. Intl. Conf. on Programming Language Implementation and Logic Programming 1993, LNCS 714,
pages 302–317, Berlin, 1993. Springer-Verlag.

[BCC+09] F. Bueno, D. Cabeza, M. Carro, M. V. Hermenegildo, P. Lopez-Garcia, and G. Puebla-(Eds.). The Ciao System. Ref.
Manual (v1.13). Technical report, School of Computer Science, T.U. of Madrid (UPM), 2009. Available at
http://ciao-lang.org.

[BCHP96] F. Bueno, D. Cabeza, M. V. Hermenegildo, and G. Puebla. Global Analysis of Standard Prolog Programs. In European
Symposium on Programming, number 1058 in LNCS, pages 108–124, Sweden, April 1996. Springer-Verlag.

[BCMH94] C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis of prolog. In Proc. International
Symposium on Logic Programming, pages 457–471, Ithaca, NY, November 1994. MIT Press.

[BGH94a] F. Bueno, M. Garcı́a de la Banda, and M. Hermenegildo. A Comparative Study of Methods for Automatic Compile-time
Parallelization of Logic Programs. In First International Symposium on Parallel Symbolic Computation, PASCO’94,
pages 63–73. World Scientific Publishing Company, September 1994.

[BGH94b] F. Bueno, M. Garcı́a de la Banda, and M. V. Hermenegildo. Effectiveness of Global Analysis in Strict
Independence-Based Automatic Program Parallelization. In International Symposium on Logic Programming, pages
320–336. MIT Press, November 1994.

[BGH99] F. Bueno, M. Garcı́a de la Banda, and M. V. Hermenegildo. Effectiveness of Abstract Interpretation in Automatic
Parallelization: A Case Study in Logic Programming. ACM Transactions on Programming Languages and Systems,
21(2):189–238, March 1999.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 92

[BHMR94] F. Bueno, M. V. Hermenegildo, U. Montanari, and F. Rossi. From Eventual to Atomic and Locally Atomic CC Programs: A
Concurrent Semantics. In Fourth International Conference on Algebraic and Logic Programming, number 850 in LNCS,
pages 114–132. Springer-Verlag, September 1994.

[BHMR98] F. Bueno, M. V. Hermenegildo, U. Montanari, and F. Rossi. Partial Order and Contextual Net Semantics for Atomic and
Locally Atomic CC Programs. Science of Computer Programming, 30:51–82, January 1998. Special CCP95 Workshop
issue.

[Bru91] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs. Journal of Logic Programming,
10:91–124, 1991.

[BW93] T. Beaumont and D.H.D. Warren. Scheduling Speculative Work in Or-Parallel Prolog Systems. In Proceedings of the
10th International Conference on Logic Programming, pages 135–149. MIT Press, June 1993.

[Cab04] D. Cabeza. An Extensible, Global Analysis Friendly Logic Programming System. PhD thesis, Universidad Politécnica de
Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del Monte, Madrid-Spain, August 2004.

[Cas08] A. Casas. Automatic Unrestricted Independent And-Parallelism in Declarative Multiparadigm Languages. PhD thesis,
University of New Mexico (UNM), Electrical and Computer Engineering Department, University of New Mexico,
Albuquerque, NM 87131-0001 (USA), September 2008.

[CCH07] A. Casas, M. Carro, and M. V. Hermenegildo. Annotation Algorithms for Unrestricted Independent And-Parallelism in
Logic Programs. In 17th International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’07),
number 4915 in LNCS, pages 138–153, The Technical University of Denmark, August 2007. Springer-Verlag.

[CCH08a] A. Casas, M. Carro, and M. V. Hermenegildo. A High-Level Implementation of Non-Deterministic, Unrestricted,
Independent And-Parallelism. In M. Garcı́a de la Banda and E. Pontelli, editors, 24th International Conference on Logic
Programming (ICLP’08), volume 5366 of LNCS, pages 651–666. Springer-Verlag, December 2008.

[CCH08b] A. Casas, M. Carro, and M. V. Hermenegildo. Towards a High-Level Implementation of Execution Primitives for
Non-restricted, Independent And-parallelism. In D.S. Warren and P. Hudak, editors, 10th International Symposium on
Practical Aspects of Declarative Languages (PADL’08), volume 4902 of LNCS, pages 230–247. Springer-Verlag, January
2008.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 93

[CDD85] J.-H. Chang, A. M. Despain, and D. Degroot. And-Parallelism of Logic Programs Based on Static Data Dependency
Analysis. In Compcon Spring ’85, pages 218–225. IEEE Computer Society, February 1985.

[CDO88] M. Carlsson, K. Danhof, and R. Overbeek. A Simplified Approach to the Implementation of And-Parallelism in an
Or-Parallel Environment. In Fifth International Conference and Symposium on Logic Programming, pages 1565–1577.
MIT Press, August 1988.

[CGH93] M. Carro, L. Gómez, and M. Hermenegildo. Some Paradigms for Visualizing Parallel Execution of Logic Programs. In
1993 International Conference on Logic Programming, pages 184–201. MIT Press, June 1993.

[CH94] D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent And-parallelism Using Sharing and Freeness
Information. In 1994 International Static Analysis Symposium, number 864 in LNCS, pages 297–313, Namur, Belgium,
September 1994. Springer-Verlag.

[CH96] D. Cabeza and M. V. Hermenegildo. Implementing Distributed Concurrent Constraint Execution in the CIAO System. In
Proc. of the AGP’96 Joint conference on Declarative Programming, pages 67–78, San Sebastian, Spain, July 1996. U. of
the Basque Country. Available from http://www.cliplab.org/.

[Cie92] A. Ciepielewski. Scheduling in or-parallel prolog systems: Survey and open problems. International Journal of Parallel
Programming, 20(6):421–451, 1992.

[Clo87] William Clocksin. Principles of the delphi parallel inference machine. Computer Journal, 30(5), 1987.

[CMB+95] M. Codish, A. Mulkers, M. Bruynooghe, M. Garcı́a de la Banda, and M. Hermenegildo. Improving Abstract Interpretations
by Combining Domains. ACM Transactions on Programming Languages and Systems, 17(1):28–44, January 1995.

[Con83] J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Programs. PhD thesis, The University of
California At Irvine, 1983. Technical Report 204.

[CSW88] J. Chassin, J. Syre, and H. Westphal. Implementation of a Parallel Prolog System on a Commercial Multiprocessor. In
Proceedings of Ecai, pages 278–283, August 1988.

[DeG84] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation Computer Systems, pages
471–478. Tokyo, November 1984.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

http://www.cliplab.org/

Slide 94

[DeG87] D. DeGroot. A Technique for Compiling Execution Graph Expressions for Restricted AND-parallelism in Logic Programs.
In Int’l Supercomputing Conference, pages 80–89, Athens, 1987. Springer Verlag.

[DJ94] S. Debray and M. Jain. A Simple Program Transformation for Parallelism. In 1994 International Symposium on Logic
Programming, pages 305–319. MIT Press, November 1994.

[DL91] S. K. Debray and N.-W. Lin. Automatic complexity analysis for logic programs. In Eighth International Conference on
Logic Programming, pages 599–613, Paris, France, June (1991). MIT Press.

[DL93] S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions on Programming Languages and
Systems, 15(5):826–875, November 1993.

[dlBH93] M. Garcı́a de la Banda and M. V. Hermenegildo. A Practical Approach to the Global Analysis of Constraint Logic
Programs. In 1993 International Logic Programming Symposium, pages 437–455. MIT Press, October 1993.

[dlBHB+96] M. Garcı́a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, G. Janssens, and W. Simoens. Global Analysis
of Constraint Logic Programs. ACM Transactions on Programming Languages and Systems, 18(5):564–615, September
1996.

[DLGH97] S.K. Debray, P. Lopez-Garcia, and M. V. Hermenegildo. Non-Failure Analysis for Logic Programs. In 1997 International
Conference on Logic Programming, pages 48–62, Cambridge, MA, June 1997. MIT Press, Cambridge, MA.

[DLGHL94] S.K. Debray, P. Lopez-Garcia, M. V. Hermenegildo, and N.-W. Lin. Estimating the Computational Cost of Logic Programs.
In Static Analysis Symposium, SAS’94, number 864 in LNCS, pages 255–265, Namur, Belgium, September 1994.
Springer-Verlag.

[DLGHL97] S. K. Debray, P. Lopez-Garcia, M. V. Hermenegildo, and N.-W. Lin. Lower Bound Cost Estimation for Logic Programs. In
1997 International Logic Programming Symposium, pages 291–305. MIT Press, Cambridge, MA, October 1997.

[DLH90] S. K. Debray, N.-W. Lin, and M. V. Hermenegildo. Task Granularity Analysis in Logic Programs. In Proc. 1990 ACM Conf.
on Programming Language Design and Implementation (PLDI), pages 174–188. ACM Press, June 1990.

[ECR93] ECRC. Eclipse User’s Guide. European Computer Research Center, 1993.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 95

[FCH96] M. Fernández, M. Carro, and M. Hermenegildo. IDRA (IDeal Resource Allocation): Computing Ideal Speedups in
Parallel Logic Programming. In Proceedings of EuroPar’96, number 1124 in LNCS, pages 724–734. Springer-Verlag,
August 1996.

[FIVC98] N. Fonseca, I.C.Dutra, and V.Santos Costa. VisAll: A Universal Tool to Visualise Parallel Execution of Logic Programs.
In J. Jaffar, editor, Joint International Conference and Symposium on Logic Programming, pages 100–114. MIT Press,
1998.

[Gar94] M. Garcı́a de la Banda. Independence, Global Analysis, and Parallelism in Dynamically Scheduled Constraint Logic
Programming. PhD thesis, Universidad Politécnica de Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del
Monte, Madrid-Spain, September 1994.

[GBH96] M. Garcı́a de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent And-Parallelism in CLP. In Programming
Languages: Implementation, Logics, and Programs, number 1140 in LNCS, pages 77–91, Aachen, Germany,
September 1996. Springer-Verlag.

[GH91] F. Giannotti and M. Hermenegildo. A Technique for Recursive Invariance Detection and Selective Program
Specialization. In Proc. 3rd. Int’l Symposium on Programming Language Implementation and Logic Programming,
number 528 in LNCS, pages 323–335. Springer-Verlag, August 1991.

[GHM93] M. Garcı́a de la Banda, M. V. Hermenegildo, and K. Marriott. Independence in Constraint Logic Programs. In 1993
International Logic Programming Symposium, pages 130–146. MIT Press, Cambridge, MA, October 1993.

[GHM96] M. Garcı́a de la Banda, M. V. Hermenegildo, and K. Marriott. Independence in dynamically scheduled logic languages.
In 1996 International Conference on Algebraic and Logic Programming, number 1139 in LNCS, pages 47–61.
Springer-Verlag, September 1996.

[GHM00] M. Garcı́a de la Banda, M. V. Hermenegildo, and K. Marriott. Independence in CLP Languages. ACM Transactions on
Programming Languages and Systems, 22(2):269–339, March 2000.

[GHPSC94a] G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos-Costa. ACE: And/Or-parallel Copying-based Execution of Logic
Programs. In International Conference on Logic Programming, pages 93–110. MIT Press, June 1994.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 96

[GHPSC94b] G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos-Costa. ACE: And/Or-parallel Copying-based Execution of Logic
Programs. In International Conference on Logic Programming, pages 93–110. MIT Press, June 1994.

[GJ93] G. Gupta and B. Jayaraman. Analysis of or-parallel execution models. ACM Transactions on Programming Languages
and Systems, 15(4):659–680, 1993.

[GPA+01] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. V. Hermenegildo. Parallel Execution of Prolog Programs: a Survey.
ACM Transactions on Programming Languages and Systems, 23(4):472–602, July 2001.

[HBC+99] M. V. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garcı́a de la Banda, P. Lopez-Garcia, and G. Puebla. The CIAO
Multi-Dialect Compiler and System: An Experimentation Workbench for Future (C)LP Systems. In Parallelism and
Implementation of Logic and Constraint Logic Programming, pages 65–85. Nova Science, Commack, NY, USA, April
1999.

[HBC+08] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, J.F. Morales, and G. Puebla. An Overview of The Ciao
Multiparadigm Language and Program Development Environment and its Design Philosophy. In Pierpaolo Degano,
Rocco De Nicola, and Jose Meseguer, editors, Festschrift for Ugo Montanari, volume 5065 of LNCS, pages 209–237.
Springer-Verlag, June 2008.

[HBPLG99] M. V. Hermenegildo, F. Bueno, G. Puebla, and P. Lopez-Garcia. Program Analysis, Debugging and Optimization Using
the Ciao System Preprocessor. In 1999 Int’l. Conference on Logic Programming, pages 52–66, Cambridge, MA,
November 1999. MIT Press.

[HC94] M. Hermenegildo and The CLIP Group. Some Methodological Issues in the Design of CIAO - A Generic, Parallel,
Concurrent Constraint System. In Principles and Practice of Constraint Programming, number 874 in LNCS, pages
123–133. Springer-Verlag, May 1994.

[HC95] M. Hermenegildo and M. Carro. Relating Data–Parallelism and And–Parallelism in Logic Programs. In Proceedings of
EURO–PAR’95, number 966 in LNCS, pages 27–42. Springer-Verlag, August 1995.

[HC96] M. Hermenegildo and M. Carro. Relating Data–Parallelism and (And–) Parallelism in Logic Programs. The Computer
Languages Journal, 22(2/3):143–163, July 1996.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 97

[Her86a] M. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architecture Design and Efficient
Implementation of Logic Programs in Parallel. PhD thesis, Dept. of Electrical and Computer Engineering (Dept. of
Computer Science TR-86-20), University of Texas at Austin, Austin, Texas 78712, August 1986.

[Her86b] M. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution of Logic Programs. In Third International
Conference on Logic Programming, number 225 in Lecture Notes in Computer Science, pages 25–40. Imperial College,
Springer-Verlag, July 1986.

[Her87] M. Hermenegildo. Relating Goal Scheduling, Precedence, and Memory Management in AND-Parallel Execution of Logic
Programs. In Fourth International Conference on Logic Programming, pages 556–575. University of Melbourne, MIT
Press, May 1987.

[Her97] M. Hermenegildo. Automatic Parallelization of Irregular and Pointer-Based Computations: Perspectives from Logic and
Constraint Programming. In Proceedings of EUROPAR’97, volume 1300 of LNCS, pages 31–46. Springer-Verlag,
August 1997.

[Her00] M. Hermenegildo. Parallelizing Irregular and Pointer-Based Computations Automatically: Perspectives from Logic and
Constraint Programming. Parallel Computing, 26(13–14):1685–1708, December 2000.

[HN90] M. Hermenegildo and R. I. Nasr. A Tool for Visualizing Independent And-parallelism in Logic Programs. Technical
Report CLIP1/90.0, T.U. of Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del Monte, Madrid-Spain, 1990.
Presented at the NACLP-90 Workshop on Parallel Logic Programming, Austin, TX.

[HPBLG03] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Program Development Using Abstract Interpretation
(and The Ciao System Preprocessor). In 10th International Static Analysis Symposium (SAS’03), number 2694 in LNCS,
pages 127–152. Springer-Verlag, June 2003.

[HPMS00] M. V. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of Constraint Logic Programs. ACM
Transactions on Programming Languages and Systems, 22(2):187–223, March 2000.

[HR89] M. Hermenegildo and F. Rossi. On the Correctness and Efficiency of Independent And-Parallelism in Logic Programs. In
1989 North American Conference on Logic Programming, pages 369–390. MIT Press, October 1989.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 98

[HR90] M. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism. In 1990 International Conference on Logic
Programming, pages 237–252. MIT Press, June 1990.

[HR95] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism in Logic Programs: Correctness,
Efficiency, and Compile-Time Conditions. Journal of Logic Programming, 22(1):1–45, 1995.

[HW87] M. Hermenegildo and R. Warren. Designing a High-Performance Parallel Logic Programming System. Computer
Architecture News, Special Issue on Parallel Symbolic Programming, 15(1):43–53, March 1987.

[JH90] S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language. Technical Report PEPMA Project,
SICS, Box 1263, S-164 28 KISTA, Sweden, November 1990. Forthcoming.

[JH91] S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language. In 1991 International Logic
Programming Symposium, pages 167–183. MIT Press, 1991.

[JL89] D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable Aliasing in Logic Programs. In 1989 North
American Conference on Logic Programming. MIT Press, October 1989.

[JL92] D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent And-Parallelism. Journal of Logic
Programming, 13(2 and 3):291–314, July 1992.

[KMM+96] A. Kelly, A. Macdonald, K. Marriott, P.J. Stuckey, and R.H.C. Yap. Effectiveness of optimizing compilation of CLP(R). In
M.J. Maher, editor, Logic Programming: Proceedings of the 1992 Joint International Conference and Symposium, pages
37–51, Bonn, Germany, September 1996. MIT Press.

[LBD+88] E. Lusk, R. Butler, T. Disz, R. Olson, R. Stevens, D. H. D. Warren, A. Calderwood, P. Szeredi, P. Brand, M. Carlsson,
A. Ciepielewski, B. Hausman, and S. Haridi. The Aurora Or-parallel Prolog System. New Generation Computing,
7(2/3):243–271, 1988.

[LGHD94] P. Lopez-Garcia, M. V. Hermenegildo, and S.K. Debray. Towards Granularity Based Control of Parallelism in Logic
Programs. In Hoon Hong, editor, Proc. of First International Symposium on Parallel Symbolic Computation, PASCO’94,
pages 133–144. World Scientific, September 1994.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 99

[LGHD96] P. Lopez-Garcia, M. V. Hermenegildo, and S. K. Debray. A Methodology for Granularity Based Control of Parallelism in
Logic Programs. Journal of Symbolic Computation, Special Issue on Parallel Symbolic Computation, 21(4–6):715–734,
1996.

[LK88] Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on a Shared Memory Multiprocessor: A Summary of
Results. In Fifth International Conference and Symposium on Logic Programming, pages 1123–1141. MIT Press,
August 1988.

[MBdlBH99] K. Muthukumar, F. Bueno, M. Garcı́a de la Banda, and M. Hermenegildo. Automatic Compile-time Parallelization of
Logic Programs for Restricted, Goal-level, Independent And-parallelism. Journal of Logic Programming, 38(2):165–218,
February 1999.

[MH89] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence Information at Compile-Time Through
Abstract Interpretation. In 1989 North American Conference on Logic Programming, pages 166–189. MIT Press,
October 1989.

[MH90] K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods for Automatic Compile-time Parallelization of
Logic Programs for Independent And-parallelism. In Int’l. Conference on Logic Programming, pages 221–237. MIT
Press, June 1990.

[MH91] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and Freeness of Program Variables Through
Abstract Interpretation. In International Conference on Logic Programming (ICLP 1991), pages 49–63. MIT Press, June
1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency Using Abstract Interpretation.
Journal of Logic Programming, 13(2/3):315–347, July 1992.

[MLGCH08] E. Mera, P. Lopez-Garcia, M. Carro, and M. V. Hermenegildo. Towards Execution Time Estimation in Abstract
Machine-Based Languages. In 10th Int’l. ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP’08), pages 174–184. ACM Press, July 2008.

[MS93] K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for logic programs. Technical report 93/7,
Univ. of Melbourne, 1993.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 100

[PG95a] E. Pontelli and G. Gupta. An Overview of the ACE Project. In Proc. of Compulog ParImp Workshop, 1995.

[PG95b] E. Pontelli and G. Gupta. Data And–Parallel Execution of Prolog Programs in ACE. In IEEE Symposium on Parallel and
Distributed Processing, pages 424–431. IEEE Computer Society, 1995.

[PG98] E. Pontelli and G. Gupta. Efficient Backtracking in And-Parallel Implementations of Non-Deterministic Languages. In
T. Lai, editor, Proc. of the International Conference on Parallel Processing, pages 338–345. IEEE Computer Society, Los
Alamitos, CA, 1998.

[PGPF97] E. Pontelli, G. Gupta, F. Pulvirenti, and A. Ferro. Automatic Compile-time Parallelization of Prolog Programs for
Dependent And-Parallelism. In L. Naish, editor, Proc. of the Fourteenth International Conference on Logic Programming,
pages 108–122. MIT Press, July 1997.

[PH96] G. Puebla and M. V. Hermenegildo. Optimized Algorithms for the Incremental Analysis of Logic Programs. In
International Static Analysis Symposium (SAS 1996), number 1145 in Lecture Notes in Computer Science, pages
270–284. Springer-Verlag, September 1996.

[PH99] G. Puebla and M. V. Hermenegildo. Abstract Multiple Specialization and its Application to Program Parallelization. J. of
Logic Programming. Special Issue on Synthesis, Transformation and Analysis of Logic Programs, 41(2&3):279–316,
November 1999.

[PK96] S. Prestwich and A. Kusalik. Programmer–Oriented Parallel Performance Visualizatoin. Technical Report TR–96–01,
CS Dept., University of Saskatchewan, 1996.

[Pre93] Steven Prestwich. Improving granularity by program transformation. ParForce esprit project report d.wp.1.4.1.m1.2, CEC,
July 1993.

[RSS99] Ricardo Rocha, Fernando Silva, and Vitor Santos Costa. YapOr: an Or-Parallel Prolog System based on Environment
Copying. In Proceedings of EPPIA’99: The 9th Portuguese Conference on Artificial Intelligence, 1999.

[SCK98] K. Shen, V. S. Costa, and A. King. Distance: a New Metric for Controlling Granularity for Parallel Execution. In Joxan
Jaffar, editor, Joint International Conference and Symposium on Logic Programming, pages 85–99, Cambridge, MA,
June 1998. MIT Press, Cambridge, MA.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

Slide 101

[SH96] K. Shen and M. Hermenegildo. Flexible Scheduling for Non-Deterministic, And-parallel Execution of Logic Programs. In
Proceedings of EuroPar’96, number 1124 in LNCS, pages 635–640. Springer-Verlag, August 1996.

[She92] K. Shen. Exploiting Dependent And-Parallelism in Prolog: The Dynamic, Dependent And-Parallel Scheme. In Proc.
Joint Int’l. Conf. and Symp. on Logic Prog., pages 717–731. MIT Press, 1992.

[She96] K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism. Journal of Logic Programming,
29(1–3):245–293, November 1996.

[Søn86] H. Søndergaard. An Application of Abstract Interpretation of Logic Programs: Occur Check Reduction. In European
Symposium on Programming, LNCS 123, pages 327–338. Springer-Verlag, 1986.

[Tic92] Evan Tick. Visualizing Parallel Logic Programming with VISTA. In International Conference on Fifth Generation
Computer Systems, pages 934–942. Tokio, ICOT, June 1992.

[Van89] P. Van Hentenryck. Parallel Constraint Satisfaction in Logic Programming. In G. Levi and M. Martelli, editors, Sixth
International Conference on Logic Programming, pages 165–180, Lisbon, Portugal, June 1989. MIT Press.

[VPG97] R. Vaupel, E. Pontelli, and G. Gupta. Visualization of And/Or-Parallel Execution of Logic Programs. In International
Conference on Logic Programming, Logic Programming, pages 271–285. MIT Press, July 1997.

[War90] D. H. D. Warren. The Extended Andorra Model with Implicit Control. In Sverker Jansson, editor, Parallel Logic
Programming Workshop, Box 1263, S-163 13 Spanga, SWEDEN, June 1990. SICS.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

