
Computational Logic

Constraint Programming: Solving Finite Domain Constraints

1

Introduction

• Constraint domains in which the possible values that a variable can take are
restricted to a finite set.

• Examples: Boolean constraints, or integer constraints in which each variable is
constrained to lie in within a finite range of integers.

• Widely used in constraint programming.

• Many real problems can be easily represented using constraint domains, e.g.:
scheduling, routing and timetabling.

• They involve choosing amongst a finite number of possibilities.

• Commercial importance to many businesses: e.g. deciding how air crews should
be allocated to aircraft flights.

• Developed methods by different research communities:

� Arc and node consistency techniques (artificial intelligence).
� Bounds propagation techniques (constraint programming).
� Integer programming (operations research).

2

Constraint Satisfaction Problems

• In the artificial intelligence community, satisfaction of constraint problems over
finite domains has been studied under the name of “constraint satisfaction
problems”.

• A constraint satisfaction problem (CSP) consists on:

� a constraint C over variables x1, . . . , xn, where C be of the form c1 ∧ · · · ∧ cn
(each ci is a primitive constraint), and
� a domain D that maps each variable xi to a finite set of values, written D(xi),

which is allowed to take.

• The CSP is understood to represent the constraint
C ∧ x1 ∈ D(x1) ∧ x2 ∈ D(x2) ∧ · · · ∧ xn ∈ D(xn).

• Examples of CSPs: map coloring and N-queens problem.

• Binary CSPs: the primitive constraints have at most two variables (e.g. map
coloring).

3

A Simple Backtracking Solver

• It is always possible to determine the satisfiability of a CSP by “brute force
search”: trying all combinations of different values (finite number).

• However, this can be prohibitively expensive.

• Simplest techniques for determining satisfiability of an arbitrary CSP is
chronological backtracking:

� choosing a variable, and then, for each value in its domain, determining
satisfiability of the constraint which results by replacing the variable with that
value.
� This is done by calling the backtracking algorithm recursively.
� It uses the parametric function satisfiable(c), which takes the primitive

constraint c which involve no variables and returns true or false indicating
whether c is satisfiable or not.

4

Chronological Backtracking Solver

INPUT: a CSP with constraint C and domain D.
OUTPUT: Returns true if C is satisfiable (has one or more solutions), otherwise
false.
METHOD:

back solve(C,D)
if vars(C) ≡ ∅ then return partial satisfiable(C)
else choose x ∈ vars(C)

for each values d ∈ D(x) do
let C1 be obtained from C by replacing x by d
if partial satisfiable(C1) then

if back solve(C1, D) then return true endif
endif

endfor
return false

endif

5

Chronological Backtracking Solver (Contd.)

partial satisfiable(C)
let C be of the form c1 ∧ · · · ∧ cn (each ci is a primitive constraint)
for i := 1 to n do

if vars(ci) ≡ ∅ then
if satisfiable(ci) ≡ false then return false endif

endif
endfor
return true

Exercise: apply the algorithm to the CSP with constraint

X < Y ∧ Y < Z

and domain D, such that D(X) = D(Y) = D(Z) = {1, 2}.

6

Node and Arc Consistency

• There are solvers for CSPs which have polynomial worst case complexity, but are
incomplete.

• These solvers are based in the observation that if the domain for any variable in
the CSP is empty, then the CSP is unsatisfiable.

• Idea: transform the CSP into an “equivalent” CSP but one in which the domains of
the variables are decreased.

• “Equivalent” means that the constraints represented by the CSPs have the same
set of solutions.

• If any of the domains become empty, then this CSP, and also the original, are
unsatisfiable.

• These solvers work by considering each primitive constraint in turn, and using
information about the domain of each variable in the constraint to eliminate values
from the domains of the other variables.

7

Node and Arc Consistency (Contd.)

• The solvers are said to be “consistency” based since they propagate information
about allowable domain values from one variable to another until the domains are
“consistent” with the constraint.

• Two special domains may result after application of a consistency based solver:

� False domain: if some variable in the domain is mapped to the empty set.
� Valuation domain: if every variable is mapped to a singleton set.

• The function satisfiable(C,D) takes a constraint C and a valuation domain D and
returns true or false, indicating whether C is satisfiable or not under this valuation
(i.e. whether the constraint evaluates to true or false). Examples:

� The domain D1, in which D1(X) = D1(Y) = {1, 2} and D1(Z) = ∅ is a false
domain.
� The domain D2, in which D2(X) = {1}, D2(Y) = {2}, and D2(Z) = {1} is a

valuation domain.
� satisfiable(C,D2), where C is X < Y ∧ Y < Z, is false.

8

Node and Arc Consistency: Definitions

• A primitive constraint c is node consistent with domain D if either |vars(c)| 6= 1 or,
if vars(c) = {x}, then, for each d ∈ D(x), {x 7→ d} is a solution of c.

• A CSP with constraint c1 ∧ · · · ∧ cn and domain D is node consistent if each
primitive constraint ci is node consistent with D for 1 ≤ i ≤ n.

• A primitive constraint c is arc consistent with domain D if either |vars(c)| 6= 2 or, if
vars(c) = {x, y}, then,

� for each dx ∈ D(x), there is some dy ∈ D(y), such that {x 7→ dx, y 7→ dy} is a
solution of c, and
� for each dy ∈ D(y), there is some dx ∈ D(x), such that {x 7→ dx, y 7→ dy} is a

solution of c.

• A CSP with constraint c1 ∧ · · · ∧ cn and domain D is arc consistent if each primitive
constraint ci is arc consistent with D for 1 ≤ i ≤ n.

9

Node and Arc Consistency: Examples

• The CSP with

� constraint X 6= Y ∧X 6= Z ∧ Y 6= Z and
� domain D, such that D(X) = D(Y) = D(Z) = {1, 2, 3}

is node and arc consistent.

• It is also satisfiable (a solution is X = 1, Y = 2, Z = 3).

• The CSP with the same constraint and domain D(X) = D(Y) = D(Z) = {1, 2} is
also node and arc consistent.

• However, it is not satisfiable! (it has no solutions).

• The CSP with constraint X < Y ∧ Y < Z and domain D, such that
D(X) = D(Y) = D(Z) = {1, 2} is node consistent but is not arc consistent.

• The CSP with constraint X < Y ∧ Y < Z ∧ Z ≤ 2 and domain D, such that
D(X) = D(Y) = D(Z) = {1, 2, 3} is neither node nor arc consistent.

10

Algorithm for Node Consistency

INPUT: a CSP with constraint C and domain D1.
OUTPUT: a domain D2 such that the CSP with constraint C and domain D2 is node
consistent and is equivalent to the input CSP.
METHOD: D2 := node consistent(C,D1).
node consistent(C,D) (C is a constraint and D a domain)

let C be of the form c1 ∧ · · · ∧ cn (each ci is a primitive constraint)
for i := 1 to n do

D := node consistent primitive(ci, D)
endfor
return D

node consistent primitive(c,D)
if |vars(c)| = 1 then

let {x} = vars(c) (x is a variable)
D(x) := {d ∈ D(x) | {x 7→ d} is a solution of c } (d is a domain value).

endif
return D

11

Algorithm for Arc Consistency

INPUT: a CSP with constraint C and domain D1.
OUTPUT: a domain D2 such that the CSP with constraint C and domain D2 is arc
consistent and is equivalent to the input CSP.
METHOD: D2 := arc consistent(C,D1).

arc consistent(C,D) (C is a constraint and D a domain)
let C be of the form c1 ∧ · · · ∧ cn (each ci is a primitive constraint)
repeat W := D

for i := 1 to n do D := arc consistent primitive(ci, D) endfor
until W ≡ D

return D

arc consistent primitive(c,D)
if |vars(c)| = 2 then

let {x, y} = vars(c) (x and y are variables)
D(x) := {dx ∈ D(x) | for some dy ∈ D(y), {x 7→ dx, y 7→ dy} is a solution of c }
D(y) := {dy ∈ D(y) | for some dx ∈ D(x), {x 7→ dx, y 7→ dy} is a solution of c }

endif
return D

12

Incomplete Node and Arc Consistency Solver

INPUT: a CSP with constraint C and domain D.
OUTPUT: Returns true, false or unknown. true if the CSP is satisfiable (has one or
more solutions); false if the CSP is unsatisfiable (has no solutions); and unknown if
the algorithm is not able of determining the satisfaction of the CSP.

METHOD:

arc solv(C,D)
D := node arc consistent(C,D)
if D is a false domain then return false
elseif D is a valuation domain then return satisfiable(C,D)

else return unknown
endif

node arc consistent(C,D)
D := node consistent(C,D)
D := arc consistent(C,D)
return D

13

Incomplete Node and Arc Consistency Solver: Example

• Consider the CSP with constraint X < Y ∧ Y < Z ∧ Z ≤ 2 and domain D, such
that D(X) = D(Y) = D(Z) = {1, 2, 3}.

14

Complete Node and Arc Consistency Solver

INPUT: a CSP with constraint C and domain D.
OUTPUT: Returns true if the CSP is satisfiable (has one or more solutions),
otherwise return false.
METHOD: if back arc solv(C,D) returns false, then return false, otherwise return
true.
back arc solv(C,D)

D := node arc consistent(C,D)
if D is a false domain then return false
elseif D is a valuation domain then

if satisfiable(C,D) then return D else return false endif
endif
Choose a variable x such that |D(x)| ≥ 2

for each value d ∈ D(x) do
D1 := back arc solv(C ∧ x = d, D)
if D1 6= false then return D1 endif

endfor
return false

15

Hyper-Arc Consistency

• Node and Arc work well for pruning the domains in binary CSPs.

• However, they do not work well if the problem contains primitive constraints that
involve more than two variables, since they are ignored when performing
consistency checks.

• A primitive constraint c is hyper-arc consistent with domain D if for each variable
x ∈ vars(c) and each value d ∈ D(x), there are values d1, . . . , dk for the remaining
variables in c, say x1, . . . , xk, such that dj ∈ D(xj) for 1 ≤ j ≤ k and
{x 7→ d, x1 7→ d1, . . . , xk 7→ dk} is a solution of c.

• A CSP with constraint c1 ∧ · · · ∧ cn and domain D is hyper-arc consistent if each
primitive constraint ci is hyper-arc consistent with D for 1 ≤ i ≤ n.

• hyper-arc consistency is a true generalization of arc and node consistency.

• hyper-arc consistency is equivalent to arc (node) consistency in the case when a
primitive constraint has two (one) variables.

• Unfortunately, testing for hyper-arc consistency can be very expensive even for
fairly simple constraints that involve more than two variables.

16

Bounds Consistency

• The restriction to integer and arithmetic constraints allows us to define a new type
of consistency: bounds consistency.

• A CSP is arithmetic if each variable in the CSP ranges over a finite domain of
integers and the primitive constraints are arithmetic constraints.

• The most important class of CSPs (most problems of commercial interest).

• Two ideas behind bounds consistency.

� Approximate the domain of a variable using a lower and upper bound.
� Use real number consistency of primitive constraints rather than integer

consistency.

• A range [l..u] represents the set of values {l, l + 1, . . . , u} if l ≤ u, otherwise it
represents the empty set.

• If D is a domain over integers, minD(x) and maxD(x) are the minimum and
maximum elements in D(x) respectively.

17

Bounds Consistency (Contd.)

• An arithmetic primitive constraint c is bounds consistent with domain D if for
each variable x ∈ vars(c) there is:

� an assignment of real numbers, say d1, d2, . . . , dk, to the remaining variables in
c, say x1, x2, . . . , xk, such that:
{x 7→ minD(x), x1 7→ d1, x2 7→ d2, . . . , xk 7→ dk}
is a solution of c, and minD(xj) ≤ dj ≤ maxD(xj) for each dj.
� another assignment of real numbers, say d′1, d′2, . . . , d′k, to the remaining

variables in c, say x1, x2, . . . , xk, such that:
{x 7→ maxD(x), x1 7→ d′1, x2 7→ d′2, . . . , xk 7→ d′k}
is a solution of c, and minD(xj) ≤ d′j ≤ maxD(xj) for each d′j.

• An arithmetic CSP with constraint c1 ∧ c2 ∧ · · · ∧ cn and domain D is bounds
consistent if each primitive constraint ci is bounds consistent with D for 1 ≤ i ≤ n.

• Since bounds consistency only depends on the upper and lower bounds of the
domains of the variables, when testing bounds consistency, we need only
consider domains that assign ranges to each variable.

18

Bounds Consistency: Example

• Consider the constraint: X = 3Y + 5Z, with domain D, where:
D(X) = [2..7], D(Y) = [0..2], D(Z) = [−1..2]
the constraint is NOT bounds consistent with D.

• Reason: if we consider 5Z = X − 3Y , the left hand side can take a maximum
value of 10, however the left hand side can take a maximum value of 7.

• Hence the domain D can be changed (changing the range of Z), obtaining
another domain D1 such that the constraint is bounds consistent with D1

D1(X) = [2..7], D1(Y) = [0..2], D1(Z) = [0..1]

19

Propagation Rules

• Propagation rules methods: are efficient methods so that given a current range
for each of the variables in a primitive constraint, they calculate a new range for
each variable in the constraint, which makes the constraint to be bounds
consistent with the new domain.

• Example: consider the simple constraint: X = Y + Z.

• It can be written in three forms:
X = Y + Z, Y = X − Z and Z = X − Y

• We can see that:
X ≥ minD(Y) +minD(Z), X ≤ maxD(Y) +maxD(Z)

Y ≥ minD(X)−maxD(Z), Y ≤ maxD(X)−minD(Z)
Z ≥ minD(X)−maxD(Y), Z ≤ maxD(X)−minD(Y)

• It is easy to implement an algorithm for the propagation rules for the constraint
X = Y + Z.

20

Propagation Rules for the Constraint X = Y + Z

INPUT: a domain D.
OUTPUT: a domain which is bounds consistent with the constraint X = Y + Z.
METHOD:

bounds consistency addition(D)
Xmin := maximum(minD(X),minD(Y) +minD(Z))

Xmax := minimum(maxD(X),maxD(Y) +maxD(Z))

D(X) := {dX ∈ D(X) | Xmin ≤ dX ≤ Xmax}
Ymin := maximum(minD(Y),minD(X)−maxD(Z))
Ymax := minimum(maxD(Y),maxD(X)−minD(Z))
D(Y) := {dY ∈ D(Y) | Ymin ≤ dY ≤ Ymax}
Zmin := maximum(minD(Z),minD(X)−maxD(Y))

Zmax := minimum(maxD(Z),maxD(X)−minD(Y))

D(Z) := {dZ ∈ D(Z) | Zmin ≤ dZ ≤ Zmax}
return D

21

Example of Propagation Rules for the Constraint X = Y + Z

• Consider the domain:
D(X) = [4..8], D(Y) = [0..3], D(Z) = [2..2]

• We can determine that:
2 ≤ X ≤ 5, using minD(Y) +minD(Z) ≤ X ≤ maxD(Y) +maxD(Z),
2 ≤ Y ≤ 6, using minD(X)−maxD(Z) ≤ Y ≤ maxD(X)−minD(Z),
1 ≤ Z ≤ 8, using minD(X)−maxD(Y) ≤ Z ≤ maxD(X)−minD(Y).

• Therefore we can update the domain to:
D(X) = [4..5], D(Y) = [2..3], D(Z) = [2..2]

without removing any solutions to the constraint.

• If we apply the propagation rules to the new domain we obtain:
4 ≤ X ≤ 5 2 ≤ Y ≤ 3 1 ≤ Z ≤ 3

• Thus, X = Y + Z is bounds consistent with the new domain.

• We need only apply these propagation rules once to any domain to obtain a
domain which is bounds consistent with the constraint X = Y + Z.

22

Propagation Rules for More Complicated Linear Arithmetic Constraints

• Example: consider the constraint: 4W + 3P + 2C ≤ 9

• We can rewrite this into three forms:
W ≤ 9

4 −
3
4P −

2
4C, P ≤ 9

3 −
4
3W −

2
3C, C ≤ 9

2 − 2W − 3
2P

• and obtain the inequalities:
W ≤ 9

4 −
3
4minD(P)−

2
4minD(C),

P ≤ 9
3 −

4
3minD(W)− 2

3minD(C),
C ≤ 9

2 − 2minD(W)− 3
2minD(P)

• Given the initial domain: D(W) = [0..9], D(P) = [0..9], D(C) = [0..9]

we can determine that W ≤ 9
4, P ≤ 9

3, C ≤ 9
2

• Note that instead of W ≤ 9
4 we can use W ≤ b94c (i.e. W ≤ 2, since W takes

integer values only).

• Using the propagation rules (to be explained later), we update the domain:
D(W) = [0..2], D(P) = [0..3], D(C) = [0..4]

23

Propagation Rules for the Constraint 4W + 3P + 2C ≤ 9

INPUT: a domain D.
OUTPUT: a domain which is bounds consistent with the constraint
4W + 3P + 2C ≤ 9.
METHOD:

bounds consistency addition(D)
Wmax := minimum(maxD(W), b94 −

3
4P −

2
4Cc)

D(W) := {dW ∈ D(W) | dW ≤ Wmax}
Pmax := minimum(maxD(P), bP 9

3 −
4
3W −

2
3Cc)

D(P) := {dP ∈ D(P) | dP ≤ Pmax}
Cmax := minimum(maxD(C), b92 − 2W − 3

2P c)
D(C) := {dC ∈ D(C) | dC ≤ Cmax}
return D

24

Propagation Rules for Nonlinear Constraints

• Example: X = mimimum{Y, Z}

• Propagation rules follow directly from:
Y ≥ minD(X)

Z ≥ minD(X)

X ≥ mimimum{minD(Y),minD(Z)}
X ≤ mimimum{maxD(Y),maxD(Z)}

25

Bounds Consistency Algorithm

• INPUT: an arithmetic CSP with constraint C and domain D.

• OUTPUT: a domain D1 such that the CSP with constraint C and domain D1 is
bounds consistent and is equivalent to the input CSP.

• METHOD: D1 := bounds consistent(C,D).

26

Bounds Consistency Algorithm (Contd.)

bounds consistent(C,D) (C is a constraint and D a domain)
let C be of the form c1 ∧ · · · ∧ cn (each ci is a primitive constraint)
C0 := {c1, . . . , cn}
while C0 6≡ ∅ do

choose c ∈ C0

C0 := C0\{c}
D1 := bounds consistent primitive(c,D)
if D1 is a false domain then return D1 endif
for i := 1 to n do

if there exists x ∈ vars(ci) such that D1(x) 6= D(x) then C0 := C0 ∪ {ci}
endif

endfor
D := D1

endwhile
return D

27

Bounds Consistency Algorithm (Contd.)

bounds consistent primitive(c,D)

• Applies the propagation rules for primitive constraint c to the domain D and
returns the new domain.

• We assume that the original CSP has been transformed into a CSP containing
only legitimate primitive constraints.

28

Bounds Consistency Algorithm: Example of Execution

• Consider the execution of this solver with the constraint:
X = Y + Z ∧ Y 6= Z and the domain
D(X) = [4..8], D(Y) = [0..3], D(Z) = [2..2].

• Initially C0 is set to the set {X = Y + Z, Y 6= Z}.

• A primitive constraint c, say X = Y + Z, is removed from C0.

• The function bounds consistent primitive(c,D) is called and returns the updated
domain (evaluating the propagation rules for X = Y + Z):
D(X) = [4..5], D(Y) = [2..3], D(Z) = [2..2].

• Since the range of variable X has changed, the constraint X = Y + Z is added to
C0 (although this is unnecessary since its propagation rules ensure consistency
with respect to itself).

• Another primitive constraint, say Y 6= Z, is removed from C0.

29

Bounds Consistency Algorithm: Example of Execution (Contd.)

• The call to the function bounds consistent primitive(c,D) removes the value 2

from the range of Y giving the updated domain:
D(X) = [4..5], D(Y) = [3..3], D(Z) = [2..2].

• The constraint Y 6= Z is added to C0, since the range of variable Y has changed.

• Another primitive constraint, say X = Y + Z, is removed from C0, and its
propagation rules are applied yielding the domain:
D(X) = [5..5], D(Y) = [3..3], D(Z) = [2..2].

• Since the range of variable X has changed, the constraint X = Y + Z is added to
C0.

• Further processing of the of the constraints, X = Y +Z and Y 6= Z, in C0 does not
change the domain so the function terminates returning this domain which is
bounds consistent with the constraint.

30

Incomplete Bounds Consistency Solver

INPUT: an arithmetic CSP with constraint C and domain D.
OUTPUT: Returns true, false or unknown. true if the CSP is satisfiable (has one or
more solutions); false if the CSP is unsatisfiable (has no solutions); and unknown if
the algorithm is not able of determining the satisfaction of the CSP.

METHOD:

bounds solv(C,D)
D := bounds consistent(C,D)
if D is a false domain then return false
elseif D is a valuation domain then return satisfiable(C,D)

else return unknown
endif

31

Incomplete Bounds Consistency Solver: Example

• Consider the CSP with constraint X < Y ∧ Y < Z and domain D, such that
D(X) = D(Y) = D(Z) = [1..4].

• The call to bounds consistent(C,D) sets C0 to {X < Y, Y < Z}.

• Considering the primitive constraint X < Y we obtain:
D(X) = [1..3], D(Y) = [2..4], D(Z) = [1..4].

• The constraint X < Y is added to C0.

• Considering Y < Z we obtain:
D(X) = [1..3], D(Y) = [2..3], D(Z) = [3..4].

• The constraint Y < Z is added to C0.

32

Incomplete Bounds Consistency Solver: Example (Contd.)

• Reconsidering the constraint X < Y we obtain:
D(X) = [1..2], D(Y) = [2..3], D(Z) = [3..4].

• The constraint X < Y is added to C0.

• Further processing of the of the constraints, X < Y and Y < Z, in C0 does not
change the domain so the function bounds consistent returns:
D(X) = [1..2], D(Y) = [2..3], D(Z) = [3..4].

• Thus, bounds solv returns unknown.

33

Complete Bounds Consistency Solver

INPUT: an arithmetic CSP with constraint C and domain D.
OUTPUT: Returns true if the CSP is satisfiable (has one or more solutions),
otherwise return false.
METHOD: if back bounds solv(C,D) returns false, then return false, otherwise
return true.
back bounds solv(C,D)

D := bounds consistent(C,D)
if D is a false domain then return false
elseif D is a valuation domain then

if satisfiable(C,D) then return D else return false endif
endif
Choose a variable x such that |D(x)| ≥ 2

for each value d ∈ D(x) do
D1 := back bounds solv(C ∧ x = d, D)
if D1 6= false then return D1 endif

endfor
return false

34

Complete Bounds Consistency Solver: Example

• Consider the previous CSP (with constraint X < Y ∧ Y < Z and domain D, such
that D(X) = D(Y) = D(Z) = [1..4]).

• The call to bounds consistent(C,D) returns:
D(X) = [1..2], D(Y) = [2..3], D(Z) = [3..4].

• The (complete) solver selects a variable, say Z, and tries different values in its
domain.

• First, the (complete) solver calls itself recursively with the constraint:
X < Y ∧ Y < Z ∧ Z = 3

and the domain:
D(X) = [1..2], D(Y) = [2..3], D(Z) = [3..4].

• The function bounds consistent is evaluated with this new constraint and domain.

35

Complete Bounds Consistency Solver: Example

• Examining Z = 3 gives D(Z) = [3..3].

• Examining Y < Z gives D(Y) = [2..2].

• Examining X < Y gives D(X) = [1..1].

• No more propagation is performed, so the resulting domain is:
D(X) = [1..1], D(Y) = [2..2], D(Z) = [3..3].

• This is returned by bounds consistent and, since this is a valuation domain which
satisfies the constraint, the solver back bounds solv returns true.

36

Example Problem: The Smuggler’s Knapsack

• Knapsack of limited capacity: 9 units.

• It can smuggle bottles of whiskey of size 4 units, bottles of perfume of size 3 units,
and cartons of cigarettes of size 2 units.

• The profit for a bottle of whiskey, a bottle of perfume, and a cartons of cigarettes
are 15 dollars, 10 dollars, and 7 dollars respectively.

• The smuggler will only take a trip if he makes a profit of 30 dollars or more.

• What can he take ?

37

Example Problem: The Smuggler’s Knapsack

• Constraint: 4W + 3P + 2C ≤ 9 ∧ 15W + 10P + 7C ≥ 30

• Domain: D(W) = D(P) = D(C) = [0..9]

• Using the complete bounds propagation solver, we begin by calling the
bounds consistent function with this constraint and domain. This gives the
domain: D(W) = [0..2], D(P) = [0..3], D(C) = [0..4]

• Then, choosing a branch on W , we first try adding W = 0.

• Applying bounds consistent returns: D(W) = [0..0], D(P) = [1..3], D(C) = [0..3]

• Now, choosing to branch on P , we add the constraint P = 1. Applying
bounds consistent we get:
D(W) = [0..0], D(P) = [1..1], D(C) = [3..3]

• So, we have found a solution: W = 0, P = 1 , C = 3.

• Note: this is not the optimal solution!

38

Generalized Consistency

• We have seen three consistency based approaches to solving CSPs: arc, node
and bounds consistency.

• These can be combined with each other and also with specialized consistency
methods for “complex” primitive constraints:

� For constraints involving only two variables, we can use the stronger arc
consistency tests to remove values from the domain.
� For constraints involving more than two variables, we can use the weaker, but

more efficiently computable, bounds consistency approach.

• One of the weaknesses of the consistency based approaches is that primitive
constraints are examined in isolation from each other.

• Sometimes, knowledge about other primitive constraints can dramatically improve
domain pruning.

• For this reason, it is common to provide “complex” primitive constraints which are
understood as conjunction of simpler primitive constraints but which have
specialized propagation rules.

39

Generalized Consistency (Contd.)

• For example, the specialized “primitive” constraint:
alldifferent([V1, . . . , Vn])
holds whenever each of the variables V1, . . . , Vn takes a different value from the
others.

• Instead of this constraint, we could use a conjunction of primitive constraints.

• For example, the primitive constraint alldifferent([X, Y, Z]) can be replaced by:
X 6= Y ∧X 6= Z ∧ Y 6= Z, but this is a weaker approach.

• Example: the constraint
X 6= Y ∧X 6= Z ∧ Y 6= Z

with domain
D(X) = [1..2], D(P) = [1..2], D(C) = [1..2]

has no solutions (there are two possible values for the three variables).

• But, arc consistency techniques cannot determine this!

40

A Consistency Method for the alldifferent Primitive Constraint

alldifferent consistent primitive(c,D) (c is a single alldifferent primitive constraint)
let c be of the form alldifferent(V)
while exists v ∈ V with D(v) = {d} for some d

V := V − {v}
for each v′ ∈ V do D(v′) := D(v′)− {d} endfor

endwhile
nv := |V |
r := ∅
for each v ∈ V do r := r ∪D(v) endfor
if nv > |r| then return false endif
return D

41

Optimization for Arithmetic CSPs

• For many problems, the aim is not simply to find any solution, but rather, to find
the optimal solution.

• The simplest approach to finding an optimal solution to an arithmetic CSP is to
make use of a complete solver for these problems, and use it iteratively to find
better and better solutions to the problems:

� Use the solver to find any solution to the CSP.
� Add a constraint to the problem which excludes solutions that are not better

than this solution.
� The new constraint is solved recursively, giving rise to a better solution.

42

Integer Optimizer Based on Retrying

INPUT: an arithmetic CSP with constraint C and domain D and an arithmetic
expression f which is the objective function.
OUTPUT: an optimal solution θ or false if the CSP is unsatisfiable.
METHOD: The answer is the result of evaluating retry int opt(C,D, f, false).

retry int opt(C,D, f, θbest) (θbest is either a solution or false)
Dval := int solv(C,D) (Dval is a valuation domain or false)
if Dval ≡ false then

return θbest
else

let θ be the solution corresponding to Dval

return retry int opt(C ∧ f < θ(f), D, f, θ)
endif

43

Integer Optimizer Based on Backtracking

INPUT: an arithmetic CSP with constraint C and domain D and an arithmetic
expression f which is the objective function.
OUTPUT: an optimal solution θ or false if the CSP is unsatisfiable.
METHOD: The answer is the result of evaluating back int opt(C,D, f, false).
back int opt(C,D, f, θbest) (θbest is either a solution or false)

D := int consistent(C, D)
if D is a false domain then return θbest
elseif D is a valuation domain then return the solution corresponding to D
endif
choose a variable x ∈ varc(C) for which |D(x)| ≥ 2

W := D(x)

for each d ∈ W do
if θbest 6≡ false then c := f < θbest(f) else c := true endif
θbest := back int opt(C ∧ c ∧ x = d,D, f, θbest)

endfor
return θbest

44

