Computational Logic

CLP Semantics and Fundamental Results

1

Constraint Domains

- Semantics parameterized by the constraint domain: $CLP(\mathcal{X})$, where $\mathcal{X} \equiv (\Sigma, \mathcal{D}, \mathcal{L}, \mathcal{T})$
- Signature Σ : set of predicate and function symbols, together with their arity
- $\mathcal{L} \subseteq \Sigma$ -formulae: constraints
- D is the set of actual elements in the domain
- Σ -structure \mathcal{D} : gives the meaning of predicate and function symbols (and hence, constraints).
- \mathcal{T} a first–order theory (axiomatizes some properties of \mathcal{D})
- $(\mathcal{D}, \mathcal{L})$ is a constraint domain
- Assumptions:
 - $\diamond \mathcal{L}$ built upon a first–order language
 - $\diamond = \in \Sigma \text{ is identity in } \mathcal{D}$
 - \diamond There are identically false and identically true constraints in ${\cal L}$
 - $\diamond \ \mathcal{L}$ is closed w.r.t. renaming, conjunction and existential quantification

Domains (I)

- $\Sigma = \{0, 1, +, *, =, <, \leq\}$, D = R, \mathcal{D} interprets Σ as usual, $\Re = (\mathcal{D}, \mathcal{L})$
 - Arithmetic over the reals
 - $\diamond \mathsf{Eg.:} \ x^2 + 2xy < \tfrac{y}{x} \land x > 0 \ \ (\equiv xxx + xxy + xxy < y \land 0 < x)$

• Question: is 0 needed? How can it be represented?

- Let us assume $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\Re_{Lin} = (\mathcal{D}', \mathcal{L}')$
 - ◊ Linear arithmetic

◇ Eg.:
$$3x - y < 3$$
 (≡ $x + x + x < 1 + 1 + 1 + y$)

- Let us assume $\Sigma'' = \{0, 1, +, =\}$, $\Re_{LinEq} = (\mathcal{D}'', \mathcal{L}'')$
 - Linear equations

$$\diamond \mathsf{Eg.:} \ 3x + y = 5 \land y = 2x$$

Domains (II)

- $\Sigma = \{ < constant and function symbols >, = \}$
- D = { finite trees }
- \mathcal{D} interprets Σ as tree constructors
- Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
- Constraints: syntactic tree equality

• $\mathcal{FT} = (\mathcal{D}, \mathcal{L})$

- Constraints over the Herbrand domain
- $\diamond \; \mathsf{Eg.:}\; g(h(Z),Y) = g(Y,h(a))$

• $LP \equiv CLP(\mathcal{FT})$

Domains (III)

- $\Sigma = \{ < constants >, \lambda, ., ::, = \}$
- D = { finite strings of constants }
- ${\mathcal D}$ interprets . as string concatenation, :: as string length
 - Equations over strings of constants
 - \diamond Eg.: X.A.X = X.A

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{true, false\}$
- ${\mathcal D}$ interprets symbols in Σ as boolean functions
- $\mathcal{BOOL} = (\mathcal{D}, \mathcal{L})$
 - Boolean constraints
 - $\diamond \; \mathsf{Eg.:} \; \neg(x \wedge y) = 1$

$CLP(\mathcal{X})$ Programs

- Recall that:
 - \diamond Σ is a set of predicate and function symbols
 - $\diamond \ \mathcal{L} \subseteq \Sigma \text{--formulae}$ are the constraints
- Π : set of predicate symbols definable by a program
- Atom: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Pi$
- Primitive constraint: $p(t_1, t_2, ..., t_n)$, where $t_1, t_2, ..., t_n$ are terms and $p \in \Sigma$ is a predicate symbol
- Every constraint is a (first-order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form *a* ← *b*₁,..., *b_n* where *a* is an atom and the *b_i*'s are atoms or constraints
- A fact is a rule $a \leftarrow c$ where c is a constraint
- A goal (or query) G is a conjunction of constraints and atoms

Basic Operations on Constraints

- Constraint domains are expected to support some basic operations on constraints
 - 1. Consistency (or satisfiability) test: $\mathcal{D} \models \tilde{\exists} c$,
 - **2**. Implication or entailment: $\mathcal{D} \models c_0 \rightarrow c_1$,
 - **3**. Projection of a constraint c_0 onto variables \tilde{x} to obtain a constraint c_1 such that $\mathcal{D} \models c_1 \leftrightarrow \exists_{-\tilde{x}} c_0$,
 - 4. Detection of uniqueness of variable value: $\mathcal{D} \models c(x, \tilde{z}) \land c(y, \tilde{w}) \rightarrow x = y$
- Actually, only the first one is really required
- In actual implementations, some of these operations—in particular the test of consistency—may be incomplete
- Examples:
 - x * x < 0 is inconsistent in \Re (because $\neg \exists x \in \Re : x * x < 0$)
 - $\diamond \ \mathcal{D} \models (x \land y = 1) \rightarrow (x \lor y = 1) \text{ in } \mathcal{BOOL}$
 - \diamond In \mathcal{FT} , the projection of $x = f(y) \land y = f(z)$ on $\{x, z\}$ is x = f(f(z))
 - $\diamond \ \mathsf{In} \ \mathcal{WE}, \ \mathcal{D} \models x.a.x = x.a \land y.b.y = y.b \rightarrow x = y$
- Prove the last assertion!

Properties of CLP Languages

- \mathcal{T} axiomatizes some of the properties of \mathcal{D}
- For a given Σ , let $(\mathcal{D}, \mathcal{L})$ be a constraint domain with signature Σ , and \mathcal{T} a Σ -theory.
- ${\mathcal D}$ and ${\mathcal T}$ correspond on ${\mathcal L}$ if:
 - $\diamond \mathcal{D}$ is a model of \mathcal{T} , and
 - \diamond for every constraint $c \in \mathcal{L}$, $\mathcal{D} \models \tilde{\exists} c$ iff $\mathcal{T} \models \tilde{\exists} c$.
- \mathcal{T} is satisfaction complete with respect to \mathcal{L} if for every constraint $c \in \mathcal{L}$, either $\mathcal{T} \models \tilde{\exists} c$ or $\mathcal{T} \models \neg \tilde{\exists} c$.
- $(\mathcal{D}, \mathcal{L})$ is solution compact if

$$\forall c \exists \{c_i\}_{i \in I} : \mathcal{D} \models \forall \tilde{x} \neg c(\tilde{x}) \longleftrightarrow \bigvee_{i \in I} c_i(\tilde{x})$$

i.e., any negated constraint in $\ensuremath{\mathcal{L}}$ can be expressed as a (in)finite disjunction of constraints

Solution Compactness

- Important to lift SLDNF results to $CLP(\mathcal{X})$
- We have to deal only with user predicates

• E.g.

 $\diamond x \not\geq y \text{ in CLP}(\Re) \text{ is } x < y$

 $\diamond x \neq y$ in CLP(\Re) is $x < y \lor y < x$

 $\diamond \Re_{Lin}$ with constraint $x \neq \pi$ is not s.c.

• How can we express $x \neq y$ in $CLP(\mathcal{FT})$?

Logical Semantics (I)

- Two common logical semantics exist.
- The first one interprets a rule

 $p(\tilde{x}) \leftarrow b_1, \ldots, b_n$

as the logic formula

 $\forall \tilde{x}, \tilde{y} \ p(\tilde{x}) \lor \neg b_1 \lor \ldots \lor \neg b_n$

Logical Semantics (II)

The second one associates a logic formula to each predicate in Π
 ◊ If the set of rules of P with p in the head is:

$$p(\tilde{x}) \leftarrow B_1$$

$$p(\tilde{x}) \leftarrow B_2$$

$$\vdots$$

$$p(\tilde{x}) \leftarrow B_n$$

then the formula associated with p is:

```
 \forall \tilde{x} \ p(\tilde{x}) \iff \exists \tilde{y}_1 B_1 \\ \lor \exists \tilde{y}_2 B_2 \\ \vdots \\ \lor \exists \tilde{y}_n B_n
```

 \diamond If *p* does not occur in the head of a rule of *P*, the formula is: $\forall \tilde{x} \neg p(\tilde{x})$

- \diamond The collection of all such formulas is the *Clark completion* of *P* (denoted by *P*^{*})
- These two semantics differ on the treatment of the negation

Logical Semantics (III)

- A *valuation* is a mapping from variables to D, and the natural extension which maps terms to D and formulas to closed \mathcal{L}^* -formulas.
- A D-interpretation of a formula is an interpretation of the formula with the same domain as D and the same interpretation for the symbols in Σ as D.
- It can be represented as a subset of $B_{\mathcal{D}}$ where

 $B_{\mathcal{D}} = \{ p(\tilde{d}) \mid p \in \Pi, \tilde{d} \in D^k \}$

- A D-model of a closed formula is a D-interpretation which is a model of the formula.
- The usual logical semantics is based on the \mathcal{D} -models of P and the models of P^*, \mathcal{T} .
- The least \mathcal{D} -model of a formula Q is denoted by $lm(Q, \mathcal{D})$.
- A *solution* to a query *G* is a valuation v such that $v(G) \subseteq lm(P, \mathcal{D})$.

Fixpoint Semantics

- Based on one-step consequence operator $T_P^{\mathcal{D}}$ (also called "immediate consequence operator").
- Take as semantics $lfp(T_P^{\mathcal{D}})$, where:

$$T_P^{\mathcal{D}}(I) = \{ p(\tilde{d}) \mid p(\tilde{x}) \leftarrow c, b_1, \dots, b_n \in P, a_i \in I, \\ \mathcal{D} \models v(c), v(\tilde{x}) = \tilde{d}, v(b_i) = a_i \}$$

• Theorems:

1. $T_P^{\mathcal{D}} \uparrow \omega = lfp(T_P^{\mathcal{D}})$ 2. $lm(P, \mathcal{D}) = lfp(T_P^{\mathcal{D}})$

Top–Down Operational Semantics (I)

- General framework for operational semantics
- Formalized as a transition system on *states*
- State: a 3–tuple $\langle A, C, S \rangle$, or *fail*, where
 - $\diamond~A$ is a multiset of atoms and constraints,
 - $\diamond C \cup S$ multiset of constraints,
 - \diamond C, active constraints (awake)
 - \diamond S, passive constraints (asleep)
- Computation and Selection rules depend on A
- Transition system: parameterized by a predicate *consistent* and a function *infer*:
 consistent(C) checks the consistency of a constraint store
 - ♦ Usually "consistent(C) iff $\mathcal{D} \models \tilde{\exists} c$ ", but sometimes "if $\mathcal{D} \models \tilde{\exists} c$ then consistent(C)"
 - \diamond infer(C,S) computes a new set of active and passive constraints

Top–Down Operational Semantics (II)

- Transition *r*: computation step; rewriting using user predicates ⟨A ∪ a, C, S⟩ →_r ⟨A ∪ B, C, S ∪(a = h)⟩ if h ← B ∈ P, and a and h have the same predicate symbol, or ⟨A ∪ a, C, S⟩ →_r fail if there is no rule h ← B of P such that a and h have the same predicate symbol (a = h is a set of argument–wise equations) if a is a predicate symbol selected by the computation rule
- Transition c: selects constraints

 $\langle A \cup c, C, S \rangle \to_c \langle A, C, S \cup c \rangle$

if c is a constraint selected by the computation rule

• Transition *i*: infers new constraints

 $\langle A,C,S\rangle \rightarrow_i \langle A,C',S'\rangle \text{ if } (C',S')=infer(C,S)$

In particular, may turn passive constraints into active ones

Transition s: checks satisfiability

 $\langle A, C, S \rangle \rightarrow_s \begin{cases} \langle A, C, S \rangle & \text{if } consistent(C) \\ fail & \text{if } \neg consistent(C) \end{cases}$

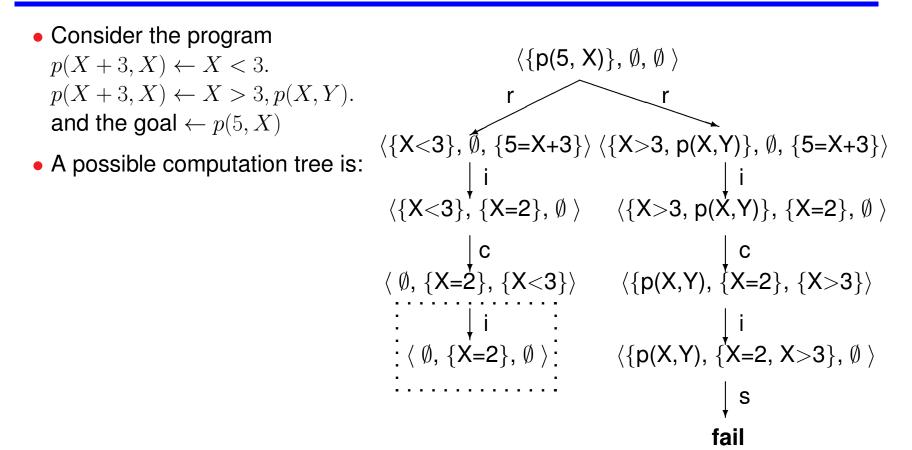
Top–Down Operational Semantics (III)

- Initial state: $\langle G, \emptyset, \emptyset \rangle$
- Derivation: $\langle A_1, C_1, S_1 \rangle \rightarrow \ldots \rightarrow \langle A_i, C_i, S_i \rangle \rightarrow \ldots$
- Final state: $E \to E$
- Successful derivation: final state $\langle \emptyset, C, S \rangle$
- A derivation *flounders* if finite and the final state is $\langle A, C, S \rangle$ with $A \neq \emptyset$
- A derivation is *failed* if it is finite and the final state is fail
- Answer: $\exists_{-\tilde{x}}C \wedge S$, where \tilde{x} are the variables in the initial goal
- A derivation is *fair* if it is failed or, for every *i* and every $a \in A_i$, *a* is rewritten in a later transition
- A computation rule is fair if it gives rise only to fair derivations

Top–Down Operational Semantics (IV)

- Computation tree for goal G and program P:
 - Nodes labeled with states
 - \diamond Edges labeled with \rightarrow_r , \rightarrow_c , \rightarrow_i or \rightarrow_s
 - \diamond Root labeled by $\langle G, \emptyset, \emptyset \rangle$
 - All sons of a given node have the same label
 - \diamond Only one son with transitions \rightarrow_c , \rightarrow_i or \rightarrow_s
 - \diamond A son per program clause with transition \rightarrow_r

Computation Tree: Example



Dotted rectangle: previous state was final as well

Types of $CLP(\mathcal{X})$ Systems

- *Quick–checking* CLP(\mathcal{X}) system: its operational semantics can be described by $\rightarrow_{ris} \equiv \rightarrow_r \rightarrow_i \rightarrow_s$ and $\rightarrow_{cis} \equiv \rightarrow_c \rightarrow_i \rightarrow_s$
- I.e., always selects either an atom or a constraint, infers and checks consistency
- Progressive CLP system: for all ⟨A, C, S⟩ with A ≠ Ø, every derivation from that state either fails or contains a →_r or →_c transition
- Ideal CLP system:
 - ◊ Quick-checking
 - Progressive
 - $\diamond \; infer(C,S) = (C \cup S, \emptyset)$
 - $\diamond \ consistent(C) \ {\rm holds} \ {\rm iff} \ {\mathcal D} \models \tilde \exists c$

Soundness and Completeness Results

- Success set: the set of queries plus constraints which have a successful derivation in the program:
 SS(P) = {p(x) ← c | ⟨p(x), Ø, Ø⟩ →* ⟨Ø, c', c''⟩, D ⊨ c ↔ ∃_{-x̃}c' ∧ c''}
- Consider a program P in the CLP language determined by a 4-tuple (Σ, D, L, T) and executing on an ideal CLP system. Then:
 - 1. $[SS(P)]_{\mathcal{D}} = lm(P, D)$, where

$$[SS(P)]_{\mathcal{D}} = \{v(a) \mid (a \leftarrow c) \in SS(P), \mathcal{D} \models v(c)\}$$

- **2.** $SS(P) = lfp(S_P^{\mathcal{D}})$
- **3**. (Soundness) if the goal *G* has a successful derivation with answer constraint *c*, then $P, \mathcal{T} \models c \rightarrow G$
- 4. (Completeness) if $P, \mathcal{T} \models c \rightarrow G$ then there are derivations for the goal G with answer constraints c_1, \ldots, c_n such that $\mathcal{T} \models c \rightarrow \bigvee_{i=1}^n c_i$
- 5. Assume \mathcal{T} is satisfaction complete w.r.t. \mathcal{L} . Then the goal G is finitely failed for P iff $P^*, \mathcal{T} \models \neg G$.

Negation in $CLP(\mathcal{X})$

- Most LP results can be lifted to $CLP(\mathcal{X})$
- In particular, negation as failure (à la SLDNF) is still valid using:
 - Satisfiability instead of unification
 - Variable elimination instead of groundness
- Added bonus: if the system is *solution compact*, then negated constraints can be expressed in terms of primitive constraints
- Less chances of a floundered / incorrect computation