
Computational Logic

CLP Semantics and Fundamental Results

1

Constraint Domains

• Semantics parameterized by the constraint domain:
CLP(X), where X ≡ (Σ,D,L, T)

• Signature Σ: set of predicate and function symbols, together with their arity

• L ⊆ Σ–formulae: constraints

• D is the set of actual elements in the domain

• Σ–structure D: gives the meaning of predicate and function symbols (and hence,
constraints).

• T a first–order theory (axiomatizes some properties of D)

• (D,L) is a constraint domain

• Assumptions:

� L built upon a first–order language
� =∈ Σ is identity in D
� There are identically false and identically true constraints in L
� L is closed w.r.t. renaming, conjunction and existential quantification

2

Domains (I)

• Σ = {0, 1,+, ∗,=, <,≤}, D = R, D interprets Σ as usual, < = (D,L)

� Arithmetic over the reals
� Eg.: x2 + 2xy < y

x ∧ x > 0 (≡ xxx + xxy + xxy < y ∧ 0 < x)

• Question: is 0 needed? How can it be represented?

• Let us assume Σ′ = {0, 1,+,=, <,≤}, <Lin = (D′,L′)

� Linear arithmetic
� Eg.: 3x− y < 3 (≡ x + x + x < 1 + 1 + 1 + y)

• Let us assume Σ′′ = {0, 1,+,=}, <LinEq = (D′′,L′′)

� Linear equations
� Eg.: 3x + y = 5 ∧ y = 2x

3

Domains (II)

• Σ = {<constant and function symbols>,=}

• D = { finite trees }

• D interprets Σ as tree constructors

• Each f ∈ Σ with arity n maps n trees to a tree with root labeled f and whose
subtrees are the arguments of the mapping

• Constraints: syntactic tree equality

• FT = (D,L)

� Constraints over the Herbrand domain
� Eg.: g(h(Z), Y) = g(Y, h(a))

• LP ≡ CLP(FT)

4

Domains (III)

• Σ = {<constants>, λ, ., ::,=}

• D = { finite strings of constants }

• D interprets . as string concatenation, :: as string length

� Equations over strings of constants
� Eg.: X.A.X = X.A

• Σ = {0, 1,¬,∧,=}

• D = {true, false}

• D interprets symbols in Σ as boolean functions

• BOOL = (D,L)

� Boolean constraints
� Eg.: ¬(x ∧ y) = 1

5

CLP(X) Programs

• Recall that:

� Σ is a set of predicate and function symbols
� L ⊆ Σ–formulae are the constraints

• Π: set of predicate symbols definable by a program

• Atom: p(t1, t2, . . . , tn), where t1, t2, . . . , tn are terms and p ∈ Π

• Primitive constraint: p(t1, t2, . . . , tn), where
t1, t2, . . . , tn are terms and p ∈ Σ is a predicate symbol

• Every constraint is a (first–order) formula built from primitive constraints

• The class of constraints will vary (generally only a subset of formulas are
considered constraints)

• A CLP program is a collection of rules of the form a← b1, . . . , bn where a is an
atom and the bi’s are atoms or constraints

• A fact is a rule a← c where c is a constraint

• A goal (or query) G is a conjunction of constraints and atoms

6

Basic Operations on Constraints

• Constraint domains are expected to support some basic operations on constraints

1. Consistency (or satisfiability) test: D |= ∃̃c,
2. Implication or entailment: D |= c0 → c1,
3. Projection of a constraint c0 onto variables x̃ to obtain a constraint c1 such that
D |= c1 ↔ ∃−x̃c0,

4. Detection of uniqueness of variable value: D |= c(x, z̃) ∧ c(y, w̃)→ x = y

• Actually, only the first one is really required

• In actual implementations, some of these operations—in particular the test of
consistency—may be incomplete

• Examples:
� x ∗ x < 0 is inconsistent in < (because ¬∃x ∈ < : x ∗ x < 0)
� D |= (x ∧ y = 1)→ (x ∨ y = 1) in BOOL
� In FT , the projection of x = f (y) ∧ y = f (z) on {x, z} is x = f (f (z))

� InWE , D |= x.a.x = x.a ∧ y.b.y = y.b→ x = y

• Prove the last assertion!

7

Properties of CLP Languages

• T axiomatizes some of the properties of D

• For a given Σ, let (D,L) be a constraint domain with signature Σ, and T a
Σ–theory.

• D and T correspond on L if:

� D is a model of T , and
� for every constraint c ∈ L, D |= ∃̃c iff T |= ∃̃c.

• T is satisfaction complete with respect to L if for every constraint c ∈ L, either
T |= ∃̃c or T |= ¬∃̃c.

• (D,L) is solution compact if

∀c∃{ci}i∈I : D |= ∀x̃¬c(x̃)←→ ∨
i∈I
ci(x̃)

i.e., any negated constraint in L can be expressed as a (in)finite disjunction of
constraints

8

Solution Compactness

• Important to lift SLDNF results to CLP(X)

• We have to deal only with user predicates

• E.g.

� x 6≥ y in CLP(<) is x < y

� x 6= y in CLP(<) is x < y ∨ y < x

� <Lin with constraint x 6= π is not s.c.

• How can we express x 6= y in CLP(FT)?

9

Logical Semantics (I)

• Two common logical semantics exist.

• The first one interprets a rule

p(x̃)← b1, . . . , bn

as the logic formula

∀x̃, ỹ p(x̃) ∨ ¬b1 ∨ . . . ∨ ¬bn

10

Logical Semantics (II)

• The second one associates a logic formula to each predicate in Π

� If the set of rules of P with p in the head is:

p(x̃) ← B1

p(x̃) ← B2
...

p(x̃) ← Bn

then the formula associated with p is:

∀x̃ p(x̃) ↔ ∃ỹ1B1

∨ ∃ỹ2B2
...
∨ ∃ỹnBn

� If p does not occur in the head of a rule of P , the formula is: ∀x̃¬p(x̃)

� The collection of all such formulas is the Clark completion of P (denoted by P ∗)

• These two semantics differ on the treatment of the negation

11

Logical Semantics (III)

• A valuation is a mapping from variables to D, and the natural extension which
maps terms to D and formulas to closed L∗–formulas.

• A D–interpretation of a formula is an interpretation of the formula with the same
domain as D and the same interpretation for the symbols in Σ as D.

• It can be represented as a subset of BD where

BD = {p(d̃) | p ∈ Π, d̃ ∈ Dk}

• A D–model of a closed formula is a D–interpretation which is a model of the
formula.

• The usual logical semantics is based on the D–models of P and the models of
P ∗, T .

• The least D–model of a formula Q is denoted by lm(Q,D).

• A solution to a query G is a valuation v such that v(G) ⊆ lm(P,D).

12

Fixpoint Semantics

• Based on one-step consequence operator TDP (also called “immediate
consequence operator”).

• Take as semantics lfp(TDP), where:

TDP (I) = {p(d̃) | p(x̃)← c, b1, . . . , bn ∈ P, ai ∈ I,
D |= v(c), v(x̃) = d̃, v(bi) = ai}

• Theorems:

1. TDP ↑ ω = lfp(TDP)

2. lm(P,D) = lfp(TDP)

13

Top–Down Operational Semantics (I)

• General framework for operational semantics

• Formalized as a transition system on states

• State: a 3–tuple 〈A,C, S〉, or fail, where
� A is a multiset of atoms and constraints,
� C ⋃

S multiset of constraints,
� C, active constraints (awake)
� S, passive constraints (asleep)

• Computation and Selection rules depend on A

• Transition system: parameterized by a predicate consistent and a function infer:
� consistent(C) checks the consistency of a constraint store
� Usually “consistent(C) iff D |= ∃̃c”, but sometimes “if D |= ∃̃c then
consistent(C)”
� infer(C, S) computes a new set of active and passive constraints

14

Top–Down Operational Semantics (II)

• Transition r: computation step; rewriting using user predicates
〈A ⋃

a, C, S〉 →r 〈A
⋃
B,C, S

⋃
(a = h)〉

if h← B ∈ P , and a and h have the same predicate symbol, or
〈A ⋃

a, C, S〉 →r fail

if there is no rule h← B of P such that a and h have the same predicate symbol
(a = h is a set of argument–wise equations) if a is a predicate symbol selected by
the computation rule

• Transition c: selects constraints
〈A ⋃

c, C, S〉 →c 〈A,C, S
⋃
c〉

if c is a constraint selected by the computation rule

• Transition i: infers new constraints
〈A,C, S〉 →i 〈A,C ′, S ′〉 if (C ′, S ′) = infer(C, S)

� In particular, may turn passive constraints into active ones

• Transition s: checks satisfiability

〈A,C, S〉 →s

 〈A,C, S〉 if consistent(C)

fail if ¬consistent(C)

15

Top–Down Operational Semantics (III)

• Initial state: 〈G, ∅, ∅〉

• Derivation: 〈A1, C1, S1〉 → . . .→ 〈Ai, Ci, Si〉 → . . .

• Final state: E → E

• Successful derivation: final state 〈∅, C, S〉

• A derivation flounders if finite and the final state is 〈A,C, S〉 with A 6= ∅

• A derivation is failed if it is finite and the final state is fail

• Answer: ∃−x̃C ∧ S, where x̃ are the variables in the initial goal

• A derivation is fair if it is failed or, for every i and every a ∈ Ai, a is rewritten in a
later transition

• A computation rule is fair if it gives rise only to fair derivations

16

Top–Down Operational Semantics (IV)

• Computation tree for goal G and program P :

� Nodes labeled with states
� Edges labeled with→r,→c,→i or→s

� Root labeled by 〈G, ∅, ∅〉
� All sons of a given node have the same label
� Only one son with transitions→c,→i or→s

� A son per program clause with transition→r

17

Computation Tree: Example

• Consider the program
p(X + 3, X)← X < 3.

p(X + 3, X)← X > 3, p(X, Y).

and the goal← p(5, X)

• A possible computation tree is:

��
���

�����

PPPPPPPPPPPq

? ?

?

?

?

?

?

.

.

..

..

..

..

..

..

..

..

〈{p(5, X)}, ∅, ∅ 〉

i i

c

i

s

i

c

〈{X<3}, ∅, {5=X+3}〉

〈{X<3}, {X=2}, ∅ 〉

〈 ∅, {X=2}, {X<3}〉

〈 ∅, {X=2}, ∅ 〉

〈{X>3, p(X,Y)}, ∅, {5=X+3}〉

〈{X>3, p(X,Y)}, {X=2}, ∅ 〉

〈{p(X,Y), {X=2}, {X>3}〉

〈{p(X,Y), {X=2, X>3}, ∅ 〉

fail

rr

• Dotted rectangle: previous state was final as well

18

Types of CLP(X) Systems

• Quick–checking CLP(X) system: its operational semantics can be described by
→ris≡→r→i→s and→cis≡→c→i→s

• I.e., always selects either an atom or a constraint, infers and checks consistency

• Progressive CLP system: for all 〈A,C, S〉 with A 6= ∅, every derivation from that
state either fails or contains a→r or→c transition

• Ideal CLP system:

� Quick-checking
� Progressive
� infer(C, S) = (C ∪ S, ∅)
� consistent(C) holds iff D |= ∃̃c

19

Soundness and Completeness Results

• Success set: the set of queries plus constraints which have a successful
derivation in the program:
SS(P) = {p(x̃)← c | 〈p(x̃), ∅, ∅〉 →∗ 〈∅, c′, c′′〉,D |= c↔ ∃−x̃c′ ∧ c′′}

• Consider a program P in the CLP language determined by a 4–tuple (Σ,D,L, T)

and executing on an ideal CLP system. Then:

1. [SS(P)]D = lm(P,D), where

[SS(P)]D = {v(a) | (a← c) ∈ SS(P),D |= v(c)}
2. SS(P) = lfp(SDP)

3. (Soundness) if the goal G has a successful derivation with answer constraint
c, then P, T |= c→ G

4. (Completeness) if P, T |= c→ G then there are derivations for the goal G with
answer constraints c1, . . . , cn such that T |= c→ ∨n

i=1 ci

5. Assume T is satisfaction complete w.r.t. L. Then the goal G is finitely failed
for P iff P ∗, T |= ¬G.

20

Negation in CLP(X)

• Most LP results can be lifted to CLP(X)

• In particular, negation as failure (à la SLDNF) is still valid using:

� Satisfiability instead of unification
� Variable elimination instead of groundness

• Added bonus: if the system is solution compact , then negated constraints can be
expressed in terms of primitive constraints

• Less chances of a floundered / incorrect computation

21

