Computational Logic

Constraint Logic Programming

Constraints

- Constraint: conditions that a solution must satisfy
$\diamond X+Y=20$
$\diamond X \wedge Y$ is true
\diamond The third field of the data structure is greater that the second
\diamond The murderer is one of those who had met the cabaret entertainer
- CLP: LP plus the ability to compute with some form of constraints (which are solved by the system during computation)
- (Additional) features of a CLP system:
\diamond Domain of computation (reals, rationals, integers, booleans, structures, ...)
\diamond Expressions that can be built $(+, *, \wedge, \vee)$
\diamond Constraints allowed: equations, disequations, inequations, etc. $(=, \neq, \leq, \geq,<,>)$
\diamond Constraint solving algorithms: simplex, gauss, etc.
- Solutions: assignments to variables, or new constraints among variables.

A comparison with classic LP (I)

- Example (plain Prolog): $q(X, Y, Z):-Z=f(X, Y)$.

$$
\begin{aligned}
& ?-q(3,4, Z) . \\
& Z=f(3,4)
\end{aligned}
$$

$$
\text { ?- } q(X, Y, f(3,4)) \text {. }
$$

$$
\mathrm{X}=3, \quad \mathrm{Y}=4
$$

$$
\text { ?- } q(X, Y, Z) .
$$

$$
Z=f(X, Y)
$$

- Example (plain Prolog): p(X, Y, Z):-Z is X +Y.

```
?- p(3, 4, Z).
Z = 7
```

?- $\mathrm{p}(\mathrm{X}, 4,7$).
\{INSTANTIATION ERROR\} \leftarrow is/2 not reversible, does not work!

A Comparison with classic LP (II)

- Example (CLP((\Re) package):
:- use_package(clpr).
$\mathrm{p}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}):-\mathrm{Z} .=\mathrm{X}+\mathrm{Y}$.
?- p(3, 4, Z).
Z .=. 7
?- $\mathrm{p}(\mathrm{X}, 4,7)$.
X . =. 3

4 ?- $\mathrm{p}(\mathrm{X}, \mathrm{Y}, 7)$.
$\mathrm{X} .=.7$ - $\mathrm{Y} \quad \leftarrow$ with clpr arithmetic is reversible!

A Comparison with classic LP (III)

- Advantages:
\diamond Helps making programs expressive and flexible.
\diamond May save much coding.
\diamond In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
\diamond Also, efficiency due to search space reduction:
* LP: generate-and-test.
* CLP: constrain-and-generate.
- Disadvantages:
\diamond Complexity of solver algorithms (simplex, gauss, etc) can affect performance.
- Some solutions:
\diamond Better algorithms.
\diamond Compile-time optimizations (program transformation, global analysis, etc).
\diamond Parallelism.

Example of Search Space Reduction

- Using plain Prolog (generate-and-test):
\% Find three consecutive numbers in the p/1 relation.

```
solution(X, Y, Z) :-
        p(X), p(Y), p(Z),
    test(X, Y, Z).
p(11). p(3). p(7). p(16). p(15). p(14).
test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
```

- Query:

```
?- solution(X, Y, Z).
X = 14, Y = 15, Z = 16 ? ;
no
```

- 458 steps (all solutions: 475 steps).

Example of Search Space Reduction

- Using the CLP($\Re)$ package (generate-and-test):
\% Find three consecutive numbers in the p/1 relation.
: - use_package (clpr).
solution(X, Y, Z) :$p(X), p(Y), p(Z)$,
test(X, Y, Z).
$p(11) \cdot p(3) \cdot p(7) \cdot p(16) \cdot p(15) \cdot p(14)$.
test (X, Y, Z) : $\mathrm{Y}=\mathrm{X}=\mathrm{X}+1, \mathrm{Z} .=. \mathrm{Y}+1$.
- Query:
?- solution(X, Y, Z).
$\mathrm{X} .=.14, \mathrm{Y} .=.15, \mathrm{Z} .=.16$? ;
no
- 458 steps (all solutions: 475 steps).

Generate-and-test Search Tree

Example of Search Space Reduction

- Move test (X, Y, Z) to the beginning (constrain-and-generate):

```
% Find three consecutive numbers in the p/1 relation.
:- use_package(clpr).
solution(X, Y, Z) :-
    test(X, Y, Z),
    p(X), p(Y), p(Z).
p(11). p(3). p(7). p(16). p(15). p(14).
```

- Using plain Prolog: test $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}):-\mathrm{Y}$ is $\mathrm{X}+1, \mathrm{Z}$ is $\mathrm{Y}+1$.
?- solution(X, Y, Z).
\{INSTANTIATION ERROR\}
- Using the $\operatorname{CLP}(\Re)$ package: test $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}):-\mathrm{Y} .=. \mathrm{X}+1, \mathrm{Z} .=. \mathrm{Y}+1$. ?- solution(X, Y, Z). $\mathrm{X} .=.14, \mathrm{Y} .=.15, \mathrm{Z} .=.16$? ; no

In 11 steps (and all solutions in 11 steps)!

Constrain-and-generate Search Tree

Constraint Systems: $\operatorname{CLP}(\mathcal{X})$

- The semantics is parameterized by the constraint domain \mathcal{X} :
$\operatorname{CLP}(\mathcal{X})$, where $\mathcal{X} \equiv(\Sigma, \mathcal{D}, \mathcal{L}, \mathcal{T})$:
$\diamond \Sigma$: set of predicate and function symbols, together with their arity
$\diamond \mathcal{L} \subseteq \Sigma$-formulae: constraints
$\diamond D$: the set of actual elements in the constraint domain
$\diamond \mathcal{D}$: meaning of predicate and function symbols (and hence, constraints).
$\diamond \mathcal{T}$: a first-order theory (axiomatizes some properties of \mathcal{D})
- $(\mathcal{D}, \mathcal{L})$ is a constraint domain
- Assumptions:
$\diamond \mathcal{L}$ built upon a first-order language
$\diamond=\in \Sigma$ and $=$ is identity in \mathcal{D}
\diamond There are identically false and identically true constraints in \mathcal{L}
$\diamond \mathcal{L}$ is closed w.r.t. renaming, conjunction, and existential quantification

Constraint Domains (I)

- $\Sigma=\{0,1,+, *,=,<, \leq\}, \mathrm{D}=\mathbf{R}$ (the reals), \mathcal{D} interprets Σ as usual, $\Re=(\mathcal{D}, \mathcal{L})$
\rightarrow Arithmetic over the reals (" \Re " domain).
\diamond Eg.: $x^{2}+2 x y<\frac{y}{x} \wedge x>0(\equiv x x x+x x y+x x y<y \wedge 0<x)$
\diamond Question: is 0 needed? How can it be represented?
- $\Sigma^{\prime}=\{0,1,+,=,<, \leq\}, \Re_{\text {Lin }}=\left(\mathcal{D}^{\prime}, \mathcal{L}^{\prime}\right)$
\rightarrow Linear arithmetic (" $\Re_{\text {Lin }}$ " domain)
\diamond Eg.: $3 x-y<3(\equiv x+x+x<1+1+1+y)$
- $\Sigma^{\prime \prime}=\{0,1,+,=\}, \Re_{\text {LinEq }}=\left(\mathcal{D}^{\prime \prime}, \mathcal{L}^{\prime \prime}\right)$
\rightarrow Linear equations (" $\Re_{\text {LinEq }}$ " domain)
\diamond Eg.: $3 x+y=5 \wedge y=2 x$
- A corresponding set of domains can be defined on the rationals ("Q" domain)

Constraint Domains (II)

- A very special domain:
$\diamond \Sigma=\{<$ constant and function symbols $>,=\}$
$\diamond \mathrm{D}=\{$ finite trees $\}$
$\diamond \mathcal{D}$ interprets Σ as tree constructors
* Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
\diamond Constraints: syntactic tree equality
$\diamond \mathcal{F} \mathcal{T}=(\mathcal{D}, \mathcal{L})$
\rightarrow Equality constraints over the Herbrand domain ($\mathcal{F \mathcal { T }}$ domain)
\diamond Eg.: $g(h(Z), Y)=g(Y, h(a))$
- $\mathrm{LP} \equiv \operatorname{CLP}(\mathcal{F} \mathcal{T})$
\diamond I.e., classical LP can be viewed as constraint logic programming over Herbrand terms with a single constraint predicate symbol: =.

Constraint Domains (III)

- $\Sigma=\{<$ constants $>, \lambda, ., \because,=\}$
- $\mathrm{D}=\{$ finite strings of constants $\}$
- \mathcal{D} interprets . as string concatenation, :: as string length
\rightarrow Equations over strings of constants (\mathcal{D} domain)
\diamond Eg.: X.A. $X=X . A$
- $\Sigma=\{0,1, \neg, \wedge,=\}$
- $\mathrm{D}=\{$ true, false $\}$
- \mathcal{D} interprets symbols in Σ as boolean functions
- $\mathcal{B O O} \mathcal{L}=(\mathcal{D}, \mathcal{L})$
\rightarrow Boolean constraints ($\mathcal{B O O} \mathcal{L}$ domain)
\diamond Eg.: $\neg(x \wedge y)=1$

CLP (\mathcal{X}) Programs

- Recall that:
$\diamond \Sigma$ is a set of predicate and function symbols
$\diamond \mathcal{L} \subseteq \Sigma$-formulae are the constraints
- $\Pi \subseteq \Sigma$: set of predicate symbols definable by a program
\diamond Atom: $p\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, where $p \in \Pi$ and $t_{1}, t_{2}, \ldots, t_{n}$ are terms
\diamond Primitive constraint: $p\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, where $t_{1}, t_{2}, \ldots, t_{n}$ are terms and $p \in \Sigma$ is a predicate symbol
\diamond Constraint: (first-order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form $a \leftarrow b_{1}, \ldots, b_{n}$ where a is an atom and the b_{i} 's are atoms or constraints
- A fact is a rule $a \leftarrow c$ where c is a constraint
- A goal (or query) G is a conjunction of constraints and atoms

A case study: CLP(\Re)

- CLP (\Re) : language based on Prolog + constraint solving over the reals $\left(\mathcal{R}_{\text {Lin }}\right)$
\diamond Same execution strategy as standard Prolog (depth-first, left-to-right)
\diamond Allows linear equations and disequations over the reals
\diamond Linear constraints are solved; non-linear constraints are passive: delayed until linear or simple checks:
${ }^{*} X * Y=7$ becomes linear when X is assigned a definite value
* $\mathrm{X} * \mathrm{X}+2 * \mathrm{X}+1=0$ becomes a check when X is assigned a definite value
\diamond Prolog arithmetic is subsumed by constraint solving
- Note: $\operatorname{CLP}(\Re)$ is really $\operatorname{CLP}((\Re, \mathcal{F} \mathcal{T}))-\mathcal{F} \mathcal{T}$ is often omitted.
- Supported in modern Prologs coexisting with the ISO primitives is/2, >/2 etc.
- In Ciao, via the clpr package:
\diamond Uses .=., .>., etc. to distinguish the clpr constraints from the ISO-Prolog arithmetic primitives.
\diamond l.e., $\mathrm{X} .=\mathrm{Y}+5, \mathrm{Y} .>.1$ vs. X is $\mathrm{Y}+5, \mathrm{Y}>1$

Linear Equations (CLP($\Re)$ package)

- Vector \times vector multiplication (dot product):
$\cdot: \Re^{n} \times \Re^{n} \longrightarrow \Re$
$\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot\left(y_{1}, y_{2}, \ldots, y_{n}\right)=x_{1} \cdot y_{1}+\cdots+x_{n} \cdot y_{n}$
- Vectors represented as lists of numbers
:- use_package (clpr).
prod([], [], Result) :- Result .=. 0. prod([X|Xs], [Y|Ys], Result) :Result .=. X * Y + Rest, prod(Xs, Ys, Rest).
- Unification becomes constraint solving!

```
?- prod([2, 3], [4, 5], K).
K .=. 23
?- prod([2, 3], [5, X2], 22).
X2 .=. 4
?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
Vx .=. -1.5*Vz - 3.5*Vy
```

- Any computed answer is, in general, an equation over the variables in the query

Systems of Linear Equations (CLP($\Re)$)

- Can we solve systems of equations? E.g.,

$$
\begin{aligned}
& 3 x+y=5 \\
& x+8 y=3
\end{aligned}
$$

- Write them down at the top level prompt:

```
?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
X .=. 1.6087, Y .=. 0.173913
```

- A more general predicate can be built mimicking the mathematical vector notation $A \cdot x=b$:

```
system(_Vars, [], []).
system(Vars, [ColCoefs], [Ind|Indeps]) :-
    prod(Vars, Co, Ind),
    system(Vars, Coefs, Indeps).
```

- We can now express (and solve) equation systems
?- system([X, Y], [[3, 1],[1, 8]],[5, 3]).
$\mathrm{X} .=.1 .6087, \mathrm{Y} .=.0 .173913$

Non-linear Equations (CLP(凡))

- Non-linear equations are delayed

```
?- sin(X) .=. cos(X).
sin(X) .=. cos(X)
```

- This is also the case if there exists some procedure to solve them
? $-\mathrm{X} * \mathrm{X}+2 * \mathrm{X}+1$. $=0$.
$-2 * \mathrm{X}-1$. $=\mathrm{X}$ * X
- Reason: no general solving technique is known. CLP($\Re)$ solves only linear (dis)equations.
- Once equations become linear, they are handled properly:
?- $\mathrm{X} .=. \cos (\sin (\mathrm{Y})), \mathrm{Y} .=.2+\mathrm{Y}$ * 3 .
$\mathrm{Y} .=.-1, \mathrm{X} .=.0 .666367$
- Disequations are solved using a modified, incremental Simplex

```
?- X + Y .=<. 4, Y .>=. 4, X .>=. 0.
Y .=. 4, X .=. 0
```


Fibonaci Revisited (Prolog)

- Fibonaci numbers:

$$
\begin{aligned}
F_{0} & =0 \\
F_{1} & =1 \\
F_{n+2} & =F_{n+1}+F_{n}
\end{aligned}
$$

- (The good old) Prolog version:

$$
\operatorname{fib}(0,0) .
$$

$$
\text { fib }(1,1) .
$$

fib(N, F) :-

$$
\mathrm{N}>1,
$$

$$
\text { N1 is N - } 1 \text {, }
$$

N2 is N - 2,
fib(N1, F1),
fib(N2, F2),

$$
F \text { is } F 1+F 2 .
$$

- Can only be used with the first argument instantiated to a number

Fibonaci Revisited (CLP(R $^{(1))}$

- CLP((\Re) package version: syntactically similar to the previous one:

```
:- use_package(clpr).
fib(N,N) :- N :=. 0.
fib(N,N) :- N .=. 1.
fib(N,R) :-N .>. 1, F1 .>=. Q, F2 .>=. 0,
    N1 .=. N - 1, N2 .=. N - 2,
    fib(N1,F1), fib(N2,F2),
    R .=. F1 + F2.
```

- Note all constraints included in program ($\mathrm{F} 1>=0$, F2 >=0) - good practice!
- Only real numbers and equations used (no data structures, no other constraint system): "pure CLP(ঞ)"
- Semantics greatly enhanced! E.g.:

```
?- fib(N, F).
F :=. 0, N ==. 0 ;
F .=. 1, N .=. 1 ;
F :=. 1, N .=. 2 ;
F :=. 2, N ==. 3 ;
```


Analog RLC circuits (CLP($\Re)$)

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
\diamond A simple component, or
\diamond A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series \longrightarrow Ohm's laws will suffice (other networks need global, i.e., Kirchoff's laws)
- We want to relate the current (I), voltage (V) and frequency (W) in steady state
- Entry point: circuit(C, V, I, W) states that: across the network C , the voltage is V , the current is I and the frequency is W
- V and I must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures

Analog RLC circuits (CLP($\Re)$)

- Complex number $X+Y i$ modeled as $\mathrm{c}(\mathrm{X}, \mathrm{Y})$
- Basic operations:

```
:- use_package(clpr).
```

c_add $(c(\operatorname{Re} 1, \operatorname{Im} 1), \quad c(\operatorname{Re} 2, \operatorname{Im} 2), \quad c(\operatorname{Re} 12, \operatorname{Im} 12)):-$
$\operatorname{Re} 12$. = . Re1 $+\operatorname{Re} 2$,
$\operatorname{Im} 12$. =. $\operatorname{Im} 1+\operatorname{Im} 2$.
c_mult(c(Re1, $\operatorname{Im} 1), c(\operatorname{Re} 2, \operatorname{Im} 2), c(R e 3, \operatorname{Im} 3)):-$
Re3 .=. Re1 * Re2 - Im1 * Im2,
$\operatorname{Im} 3$: . $\operatorname{Re} 1$ * $\operatorname{Im} 2+\operatorname{Re} 2$ * $\operatorname{Im} 1$.
(equality is c_equal $(c(R, I), c(R, I))$, can be left to [extended] unification)

Analog RLC circuits (CLP($\Re)$)

- Circuits in series:

```
circuit(series(N1, N2), V, I, W) :-
    c_add(V1, V2, V),
    circuit(N1, V1, I, W),
    circuit(N2, V2, I, W).
```

- Circuits in parallel:

```
circuit(parallel(N1, N2), V, I, W) :-
```

 c_add (I1, I2, I),
 circuit(N1, V, I1, W),
 circuit(N2, V, I2, W).

Analog RLC circuits (CLP($\Re)$)

Each basic component can be modeled as a separate unit:

- Resistor: $V=I *(R+0 i)$

```
circuit(resistor(R), V, I, _W) :-
    c_mult(I, c(R, Q), V).
```

- Inductor: $V=I *(0+W L i)$

```
circuit(inductor(L), V, I, W) :-
    Im .=. W * L,
    c_mult(I, c(0, Im), V).
```

- Capacitor: $V=I *\left(0-\frac{1}{W C} i\right)$

```
circuit(capacitor(C), V, I, W) :-
    Im .=. -1 / (W * C),
    c_mult(I, c(0, Im), V).
```


Analog RLC circuits (CLP($\Re)$)

- Example:

?- circuit (parallel (inductor (0.073), series(capacitor(C), resistor(R))), $\mathrm{c}(4.5,0), \mathrm{c}(0.65,0), 2400)$.
R.=. 6.91229, C .=. 0.00152546
?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).

The N Queens Problem

- Problem: place N chess queens in a $N \times N$ board such that they do not attack each other
- Data structure: a list holding the column position for each row
- The final solution is a permutation of the list $[1,2, \ldots, N]$
- E.g.: the solution \square is represented as $[2,4,1,3]$
- General idea:
\diamond Start with partial solution
\diamond Nondeterministically select new queen
\diamond Check safety of new queen against those already placed
\diamond Add new queen to partial solution if compatible; start again with new partial solution

The N Queens Problem in Prolog

```
queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
    queens(Ns, [], Qs).
queens([], Qs, Qs).
    % All queens placed!
queens(Unplaced, Placed, Qs) :-
    select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
    no_attack(Placed, Q, 1), % Fail if attack
    queens(NewUnplaced, [Q|Placed], Qs).% OK->Choose next q
no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
    Queen =\= Y + Nb, Queen =\= Y - Nb,
    Nb1 is Nb + 1, no_attack(Ys, Queen, Nb1).
select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).
queens_list(0, []).
queens_list(N, [N|Ns]) :-
    N > 0, N1 is N - 1, queens_list(N1, Ns).
```

The N Queens Problem in Prolog - search space

The N Queens Problem in CLP((\Re)

```
:- use_package(clpr).
queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).
constrain_values(0, _N, []). % Constrain before placing
constrain_values(I, N, [X|Xs]) :-
    I .>. 0,
    X .>. O, X .<=. N, % All queens between 0 and N
    I1 .=. I - 1,
    constrain_values(I, N, Xs), no_attack(Xs, X, 1).
no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
    Queen .<>. Y + Nb, Queen .<>. Y - Nb,
    Nb1 .=. Nb + 1, no_attack(Ys, Queen, Nb1).
place_queens(0, _).
place_queens(N, Q) :-
    N .>. 0,
    member(N, Q),
    N1 .=. N - 1, place_queens(N1, Q).
```


The N Queens Problem in CLP((\Re)

- This last program can attack the problem in its most general instance:
?- queens (N, L).
$\mathrm{L}=[], \mathrm{N} .=.0$;
$\mathrm{L}=[1], \mathrm{N} .=.1$;
$\mathrm{L}=[2,4,1,3], \mathrm{N} .=.4$;
$\mathrm{L}=[3,1,4,2], \mathrm{N} .=.4$;
$\mathrm{L}=[5,2,4,1,3], \mathrm{N} .=.5$;
$\mathrm{L}=[5,3,1,4,2], \mathrm{N} .=.5$;
$\mathrm{L}=[3,5,2,4,1], \mathrm{N} .=.5$;
$\mathrm{L}=[2,5,3,1,4], \mathrm{N} .=.5$
- Remark: Herbrand terms used to build the data structures
- But also used as constraints (e.g., length of already built list Xs in no_attack(Xs, X, 1))
- Note that in fact we are using both \Re and $\mathcal{F T}$

The N Queens Problem in CLP (\Re) - search space

The N Queens Problem in CLP((\Re)

- CLP (\Re) generates internally a set of equations for each board size
?- constrain_values (4, 4, Qs).

Qs = [_A,_B,_C,_D],
nonzero (_E), _A. $=<.4 .0, \quad$ E. $=.3 .0+_$A-_D,
nonzero (_F), _A.>.0, _F.=. -3.0+_A-_D,
nonzero (_G), _B. $=<.4 .0, \quad$ G. $=.2 .0+_$A-_C,
nonzero (_H), _B.>.0, _H.=. $-2.0+$ A-_C,
nonzero (_I), _C. $=<.4 .0, \quad$ I. $=.1+_$A $-_$B,
nonzero (_J), _C.>.0, _J. =. -1+_A-_B,
nonzero (_K), _D. $=<.4 .0, \quad$ K. $=.2 .0+_B-_D$,
nonzero (_L), _D.>.0, _L. =. -2.0+_B-_D,
nonzero (_M),
_M. =. 1+_B-_C,
nonzero (_N),
nonzero(_0),
_N. =. -1+_B-_C,
_0. =. 1+_C-_D,
nonzero (_P),
_P. =. -1+_C-_D ?

- place_queens (4, [_A ,_B ,_C,_D]) adds all possible queens in [_A,_B ,_C,_D].

The N Queens Problem in CLP((\Re)

- Constraints are (incrementally) simplified as new queens are added

```
?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [_A,_B,_C,_D],
nonzero(_E), _A.=.3.0,
nonzero(_F), _B.=.1.0, _F.=. -_D,
_E.=.6.0-_D,
nonzero(_G), _C.=<.4.0, _G.=.5.0-_C,
nonzero(_H), _C.>.0, _H.=.1.0-_C,
nonzero(_I), _D.=<.4.0, _I.=.3.0 __D,
nonzero(_J), _D.>.0, _J.=. -1.0-_D,
nonzero(_K),
_K.=.2.0-_C,
nonzero(_L),
nonzero(_M),
nonzero(_N),
_L.=. -_C,
_M.=.1+_C-_D,
_N.=. -1+_C-_D ?
```

- Bad choices are rejected using constraint consistency:

```
?- constrain_values(4, 4, Qs), Qs = [3,2|_].
```

no

Finite Domains (I)

- A finite domain constraint solver associates each variable with a finite subset of \mathcal{Z}
- Example: $E \in\{-123,-10 . .4,10\}$ Can be represented as, e.g., $\mathrm{E}::[-123,-10 . .4,10] \quad$ [Eclipse notation] or as

E in $-123 \backslash /(-10 . .4) \backslash / 10$

- We can:
\diamond Establish the domain of a variable (in).
\diamond Perform arithmetic operations (+, $-, *, /$) on the variables
\diamond Establish linear relationships among arithmetic expressions (\#=, \#<, \#=<)
- These operations / relationships narrow the domains of the variables
- Note: In Ciao this functionality is loaded with a
:- use_package (clpfd).
directive in the source code -or, equivalently, adding in the module declaration:
:- module(_, ..., [clpfd]).

Finite Domains (II)

Examples:

```
?- X #= A + B, A in 1..3, B in 3..7.
X in 4..10, A in 1..3, B in 3..7
```

- The respective minimums and maximums are added
- There is no unique solution

```
?- X #= A - B, A in 1..3, B in 3..7.
X in -6..0, A in 1..3, B in 3..7
```

- The min value of X is the min value of A minus the max value of B
- (Similar for the maximum values)

$$
\begin{aligned}
?-X ~ \# & =A-B, A \text { in } 1 \ldots 3, B \text { in } 3 . .7, X \#>=0 . \\
A & =3, B=3, X=0
\end{aligned}
$$

- Putting more constraints results in a unique solution.

Finite Domains (III)

Some useful primitives in finite domains:

- domain(Variables, Min, Max) : A shorthand for several in constraints
- labeling(Options, VarList):
\diamond instantiates variables in VarList to values in their domains
\diamond Options dictates the search order

```
?- domain([X, Y, Z],1,1000), X*X+Y*Y #= Z*Z, X #>= Y,
        labeling([],[X,Y,Z]).
X = 4, Y = 3, Z = 5,
X = 8, Y = 6, Z = 10,
X = 12, Y = 5, Z = 13,
```

- minimize(G, X): solve G minimizing the value of variable X
- This can be used to minimize (c.f., maximize) a solution

A classic example: SEND MORE MONEY

```
% S E N D
+M O R E
M O N E Y
:- use_package(clpfd).
smm([S,E,N,D,M,O,R,Y]):-
domain([S,E,N,D,M,O,R,Y], O, 9), % All digits 0..9
0 #< S, 0 #< M,
% No leftmost zeros
all_different([S,E,N,D,M,O,R,Y]), % All digits different
    S*1000 + E* 100 + N* 10 + D + % %
    M*1000 + O*100 + R*10 + E #= % Arith. constr.
    M*10000 + O*1000 + N*100 + E*10 + Y, %
    labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables
```


A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...
... should be finished in 10 time units or less.
- Constraints:


```
pn1(A,B,C,D,E,F,G) :-
    domain([A,B,C,D,E,F,G], O, 10),
    A #>= 0, G #=< 10,
    B #>= A, C #>= A, D #>= A,
    E #>= B + 1, E #>= C + 2,
    F #>= C + 2, F #>= D + 3,
    G #>= E + 4, G #>= F + 1.
```


A Project Management Problem (II)

- Query:
?- pn1 (A,B,C,D,E,F,G).
A in 0..4, B in 0..5, C in 0..4,
D in $0 . .6$, E in $2 . .6, \mathrm{~F}$ in $3 . .9, \mathrm{G}$ in 6..10.
- Note the slack of the variables
- Some additional constraints must be respected as well, but are not shown by default
- Minimize the total project time:

```
?- minimize(pn1(A,B,C,D,E,F,G), G).
    A = 0, B in 0..1, C = 0, D in 0..2,
    E = 2, F in 3..5, G = 6
```

- Variables without slack represent critical tasks

A Project Management Problem (III)

- An alternative setting:
- We can accelerate task F at some cost

```
pn2(A, B, C, D, E, F, G, X) :-
    domain([A,B,C,D,E,F,G,X], O, 10),
    A #>= 0, G #=< 10,
    B #>= A, C #>= A, D #>= A,
    E #>= B + 1, E #>= C + 2,
    F #>= C + 2, F #>= D + 3,
    G #>= E + 4, G #>= F + X.
```


- We do not want to accelerate it more than needed!
\rightarrow minimize G and maximize X.

$$
\begin{aligned}
& A=0, B \text { in } 0.1, C=0, D=0, \\
& E=2, F=3, G=6, X=3 .
\end{aligned}
$$

A Project Management Problem (IV)

- We have two independent tasks \mathbf{B} and \mathbf{D} whose lengths are not fixed:

- We can finish any of \mathbf{B}, \mathbf{D} in 2 time units at best
- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units

A Project Management Problem (V)

- Constraints describing the net:

$$
\begin{aligned}
& \text { pn3 }(\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{X}, \mathrm{Y}):- \\
& \\
& \text { domain }([\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{X}, \mathrm{Y}], 0,10), \\
& \mathrm{A} \#>=0, \mathrm{G} \#=<10, \\
& \mathrm{X} \#>=2, \mathrm{Y} \#>=2, \mathrm{X}+\mathrm{Y} \#=6, \\
& \mathrm{~B} \#>=\mathrm{A}, \mathrm{C} \#>=\mathrm{A}, \mathrm{D} \#>=\mathrm{A}, \\
& \mathrm{E} \#>=\mathrm{B}+\mathrm{X}, \mathrm{E} \#>=\mathrm{C}+2, \\
& \mathrm{~F} \#>=\mathrm{C}+2, \mathrm{~F} \#>=\mathrm{D}+\mathrm{Y}, \\
& \mathrm{G} \#>=\mathrm{E}+4, \mathrm{G} \#>=\mathrm{F}+1 .
\end{aligned}
$$

- Query:

$$
\begin{aligned}
& ?-\operatorname{minimize}(\mathrm{pn} 3(A, B, C, D, E, F, G, X, Y), G) . \\
& A=0, B=0, C=0, D \text { in } 0 . .1, E=2, \\
& F \text { in } 4.5, X=2, Y=4, G=6
\end{aligned}
$$

- I.e., we must devote more resources to task B
- All tasks but F and D are critical now
- Sometimes, minimize/2 not enough to provide best solution (pending constr.): ?- minimize(pn3(A, B, C,D,E,F,G,X,Y),G), labeling([],[D,F]).

The N-Queens Problem Using Finite Domains

- By far, the fastest implementation

```
    :- use_package(clpfd).
    queens(N, Qs, Type) :-
    constrain_values(N, N, Qs),
    all_different(Qs),
    labeling(Type,Qs).
% Type is labeling strategy
% Constrain before placing
% Using built-in constraint
% Labeling places the queens
```

constrain_values($0, ~ _N$, []).
constrain_values (N, NMax, [X|Xs]) :-
$\mathrm{N}>0, \mathrm{~N} 1$ is $\mathrm{N}-1, \mathrm{X}$ in 1 .. NMax, $\%$ Limits X values
constrain_values(N1, NMax, Xs), no_attack(Xs, X, 1).
no_attack([], _Queen, _Nb). \% Same as CLP(R) version
no_attack([Y|Ys], Queen, Nb) :- \% but using clpfd primitives
Queen \#= Y + Nb, Queen \#= Y - Nb, Nb1 is Nb + 1,
no_attack(Ys, Queen, Nb1).

- Query: ?- queens (20, Q, [ff]). (Type is the type of labeling desired.) $\mathrm{Q}=[1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9]$?

$\operatorname{CLP}(\mathcal{F} \mathcal{T})$ (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

```
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
    iso(I1, D2),
    iso(D1, I2).
?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ? ;
L=b, X=u, Y=W, Z=v ? ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ? ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)),
    Z=v ?
```


$\operatorname{CLP}(\mathcal{W} \mathcal{E})$

- Equations over finite strings
- Primitive constraints: concatenation (.), string length ($\because:$)
- Find strings meeting some property:

```
?- "123".Z = Z."231", Z::0. ?- "123".Z = Z."231", Z::3.
no
?- "123".Z = Z."231", Z::1. ?- "123".Z = Z."231", Z::4.
Z = "1"
Z = "1231"
?- "123".Z = Z."231", Z::2.
no
```

- These constraint solvers are very complex
- Often incomplete algorithms are used

$\operatorname{CLP}((\mathcal{W E}, \mathcal{Q}))$

- Word equations plus arithmetic over \mathcal{Q} (rational numbers)
- Prove that the sequence $x_{i+2}=\left|x_{i+1}\right|-x_{i}$ has a period of length 9 (for any starting x_{0}, x_{1})
- Strategy: describe the sequence, try to find a subsequence such that the period condition is violated
- Sequence description (syntax is Prolog III slightly modified):

```
seq(<Y, X>).
seq(<Y1 - X, Y, X>.U) :-
    seq(<Y, X>,U)
    abs(Y, Y1).
```

- Query: Is there any 11-element sequence such that the 2-tuple initial seed is different from the 2-tuple final subsequence (the seed of the rest of the sequence)?

```
?- seq(U.V.W), U::2, V::7, W::2, U#W.
```

fail

Summarizing

- In general:
\diamond Data structures (Herbrand terms) for free
\diamond Each logical variable may have constraints associated with it (and with other variables)
- Problem modeling :
\diamond Rules represent the problem at a high level
* Program structure, modularity
* Recursion used to set up constraints
\diamond Constraints encode problem conditions
\diamond Solutions also expressed as constraints
- Combinatorial search problems:
\diamond CLP languages provide backtracking: enumeration is easy
\diamond Constraints keep the search space manageable
- Tackling a problem:
\diamond Keep an open mind: often new approaches possible

Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator $\#\left(L,\left[c_{1}, \ldots, c_{n}\right], U\right)$ meaning that the number of true constraints lies between L and U (which can be variables themselves)
\diamond If $L=U=n$, all constraints must hold
\diamond If $L=U=1$, one and only one constraint must be true
\diamond Constraining $U=0$, we force the conjunction of the negations to be true
\diamond Constraining $L>0$, the disjunction of the constraints is specified
- Disjunctive constructive constraint: $c_{1} \vee c_{2}$
\diamond If properly handled, avoids search and backtracking
\diamond E.g.: $\quad n z(X) \leftarrow X>0$. $n z(X) \leftarrow X<0$.

$$
n z(X) \leftarrow X<0 \vee X>0
$$

Other Primitives

- $\operatorname{CLP}(\mathcal{X})$ systems usually provide additional primitives
- E.g.:
\diamond enum(X) enumerates X inside its current domain
\diamond maximize (X) (c.f. minimize(X)) works out maximum (minimum value) for X under the active constraints
\diamond delay Goal until Condition specifies when the variables are instantiated enough so that Goal can be effectively executed
* Its use needs deep knowledge of the constraint system
* Also widely available in Prolog systems
* Not really a constraint: control primitive

Implementation Issues: Satisfiability

- Algorithms must be incremental in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a solved form representation for satisfiable constraints
- Not possible in every domain
- E.g. in $\mathcal{F T}$ constraints are represented in the form $x_{1}=t_{1}(\tilde{y}), \ldots, x_{n}=t_{n}(\tilde{y})$, where
\diamond each $t_{i}(\tilde{y})$ denotes a term structure containing variables from \tilde{y}
\diamond no variable x_{i} appears in \tilde{y}
(i.e., idempotent substitutions, guaranteed by the unification algorithm)

Implementation Issues: Backtracking in $\operatorname{CLP}(\mathcal{X})$

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use time stamps to compare the age of the choice point with the age of the variable at the time of last trailing

$X<9, Y=5, Z=4, W=1 \quad$ trail W, timestamp it $X<Y+4, Y=4+W, Z=4 \quad$ trail X, Y, Z, timestamp them
$X<Y+Z, Y=Z+W \quad$ timestamp X, Y, Z, W

Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
\diamond Attributed variables [Neumerkel,Holzbaur]:
* Provide a hook into unification.
* Allow attaching an attribute to a variable.
* When unification with that variable occurs, user-defined code is called.
* Used to implement constraint solvers (and other applications, e.g., distributed execution).
\diamond Constraint handling rules (CHRs):
* Higher-level abstraction.
* Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
* Often translated to attributed variable-based low-level code.

Attributed Variables Example: Freeze

- Primitives:
\diamond attach_attribute (X,C)
\diamond get_attribute (X,C)
\diamond detach_attribute (X)
\diamond update_attribute (X,C)
\diamond verify_attribute(C,T)
\diamond combine_attributes (C1,C2)
- Example: Freeze

```
freeze( X, Goal) :-
    attach_attribute( V, frozen(V,Goal)),
    X = V.
verify_attribute( frozen(Var,Goal), Value) :-
    detach_attribute( Var),
    Var = Value,
    call(Goal).
combine_attributes( frozen(V1,G1), frozen(V2,G2)) :-
    detach_attribute( V1),
    detach_attribute( V2),
    V1 = v2,
    attach_attribute( V1, frozen(V1,(G1,G2))).
```


Programming Tips

- Over-constraining:
\diamond Seems to be against general advice "do not perform extra work", but can actually cut more search space
\diamond Specially useful if infer is weak
\diamond Or else, if constraints outside the domain are being used
- Use control primitives (e.g., cut) very sparingly and carefully
- Determinacy is more subtle, (partially due to constraints in non-solved form)
- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)
- Compare:

```
max(X,Y,X) :- X .>. Y.
max(X,Y,Y) :- X .<=. Y.
```

```
?- max(X, Y, Z).
```

?- max(X, Y, Z).
Z .=. X, Y .<. X ;
Z .=. X, Y .<. X ;
with

```
```

max(X,Y,X) :- X .>. Y, !.

```
max(X,Y,X) :- X .>. Y, !.
?- max(X, Y, Z).
?- max(X, Y, Z).
max(X,Y,Y) :- X .<=. Y.
max(X,Y,Y) :- X .<=. Y.
Z .=. X, Y .<. X
```

Z .=. X, Y .<. X

```

\section*{CLP Systems}
- As mentioned before, CLP defines a class of languages obtained by
\(\diamond\) Specifying the particular constraint system(s)
\(\diamond\) Specifying the Computation and Selection rules
- Most practical systems include also the Herbrand domain with " \(=\) ", but then add different domains and/or solver algorithms
- Most use the Computation and Selection rules of Prolog

\section*{Some Classic CLP Systems}
- CLP( \(\Re):\)
\(\diamond\) Linear arithmetic over reals \((=, \leq,>)-\operatorname{CLP}(\mathrm{R})\)
Incremental Gaussian elimination and incremental Simplex
- PrologIII:
\(\diamond \operatorname{CLP}(\mathrm{R})\)
\(\diamond\) Boolean (=), 2-valued Boolean Algebra - CLP(B)
\(\diamond\) Infinite (rational) trees \((=, \neq)\)
\(\diamond\) Equations over finite strings - CLP(WE)
- CHIP (and its successor: the ILOG library):
\(\diamond \operatorname{CLP}(F D), \operatorname{CLP}(B), \operatorname{CLP}(Q)\)
\(\diamond\) User-defined constraints and solver algorithms
- BNR-Prolog / CLP(BNR):
\(\diamond\) Arithmetic over reals (closed intervals); CLP(FD), CLP(B).
- RISC-CLP:
\(\diamond\) Arithmetic constraints over reals, also non-linear (using Presburger arithmetic)

\section*{Some Current CLP Systems}
- clp(FD)/gprolog:
\(\diamond\) CLP (FD).
- SICStus:
\(\diamond \operatorname{CLP}(\mathrm{R}), \operatorname{CLP}(\mathrm{Q}), \operatorname{CLP}(\mathrm{FD})\)
\(\diamond\) Attributed variables and CHR for adding domains.
- ECL \({ }^{i}{ }^{\text {PS }}{ }^{e}\) :
\(\diamond \operatorname{CLP}(\mathrm{R}), \operatorname{CLP}(\mathrm{Q}), \operatorname{CLP}(\mathrm{FD})\).
- SWI:
\(\diamond \operatorname{CLP}(\mathrm{R}), \operatorname{CLP}(\mathrm{Q}), \operatorname{CLP}(F D), \operatorname{CLP}(\mathrm{B})\).
\(\diamond\) Attributed variables and CHR for additional domains.
- Ciao:
\(\diamond \operatorname{CLP}(\mathrm{R}), \operatorname{CLP}(\mathrm{Q}), \operatorname{CLP}(\mathrm{FD})\).
\(\diamond\) Attributed variables and CHR for additional domains.
\(\diamond\) Different domains can be activated on a per-module basis (packages).
\(\rightarrow\) Most Prolog systems now support constraints!

\section*{Some origins and other instances}
- Ancestors:
\(\diamond\) SKETCHPAD (1963), Waltz's algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...
- Constraints in logic languages: - the origin of "constraint programming":
\(\diamond\) General theory developed (Jaffar and Lassez '97).
\(\diamond\) First, standalone systems developed: clpr, CHIP, ...
\(\diamond\) Later, included in mainstream Prolog implementations.
\(\diamond\) Has given rise to a whole research area!
- Constraints in imperative languages:
\(\diamond\) Equation solving libraries (ILOG, GECODE, ...)
\(\diamond\) Timestamping of variables: \(\mathbf{x}:=\mathrm{x}+1 \leftrightarrow x_{i+1}:=x_{i}+1\) (similar to iterative methods in numerical analysis)
- Constraints in functional languages, via extensions:
\(\diamond\) Evaluation of expressions including free variables.
\(\diamond\) Absolute Set Abstraction.```

