
Computational Logic

Constraint Logic Programming

1

Constraints

• Constraint: conditions that a solution must satisfy

⋄ X + Y = 20

⋄ X ∧ Y is true
⋄ The third field of the data structure is greater that the second
⋄ The murderer is one of those who had met the cabaret entertainer

• CLP: LP plus the ability to compute with some form of constraints
(which are solved by the system during computation)

• (Additional) features of a CLP system:

⋄ Domain of computation (reals, rationals, integers, booleans, structures, . . .)
⋄ Expressions that can be built (+, ∗,∧,∨)
⋄ Constraints allowed: equations, disequations, inequations, etc.

(=, ̸=,≤,≥, <,>)
⋄ Constraint solving algorithms: simplex, gauss, etc.

• Solutions: assignments to variables, or new constraints among variables.

2

A comparison with classic LP (I)

• Example (plain Prolog): q(X, Y, Z):-Z = f(X, Y).

?- q(3, 4, Z).

Z = f(3,4)

?- q(X, Y, f(3,4)).

X = 3, Y = 4

?- q(X, Y, Z).

Z = f(X,Y)

• Example (plain Prolog): p(X, Y, Z):-Z is X +Y.

?- p(3, 4, Z).

Z = 7

?- p(X, 4, 7).

{INSTANTIATION ERROR} ← is/2 not reversible, does not work!

3

A Comparison with classic LP (II)

• Example (CLP(ℜ) package):

:- use_package(clpr).

p(X, Y, Z) :- Z .=. X + Y.

?- p(3, 4, Z).

Z .=. 7

?- p(X, 4, 7).

X .=. 3

4 ?- p(X, Y, 7).

X .=. 7 - Y ← with clpr arithmetic is reversible!

4

A Comparison with classic LP (III)

• Advantages:

⋄ Helps making programs expressive and flexible.
⋄ May save much coding.
⋄ In some cases, more efficient than classic LP programs due to solvers typically

being very efficiently implemented.
⋄ Also, efficiency due to search space reduction:

* LP: generate-and-test.
* CLP: constrain-and-generate.

• Disadvantages:

⋄ Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

• Some solutions:

⋄ Better algorithms.
⋄ Compile-time optimizations (program transformation, global analysis, etc).
⋄ Parallelism.

5

Example of Search Space Reduction

• Using plain Prolog (generate–and–test):
% Find three consecutive numbers in the p/1 relation.

solution(X, Y, Z) :-

p(X), p(Y), p(Z),

test(X, Y, Z).

p(11). p(3). p(7). p(16). p(15). p(14).

test(X, Y, Z) :- Y is X + 1, Z is Y + 1.

• Query:
?- solution(X, Y, Z).

X = 14, Y = 15, Z = 16 ? ;

no

• 458 steps (all solutions: 475 steps).

6

Example of Search Space Reduction

• Using the CLP(ℜ) package (generate–and–test):
% Find three consecutive numbers in the p/1 relation.

:- use_package(clpr).

solution(X, Y, Z) :-

p(X), p(Y), p(Z),

test(X, Y, Z).

p(11). p(3). p(7). p(16). p(15). p(14).

test(X, Y, Z) :- Y .=. X + 1, Z .=. Y + 1.

• Query:
?- solution(X, Y, Z).

X .=. 14, Y .=. 15, Z .=. 16 ? ;

no

• 458 steps (all solutions: 475 steps).

7

Generate–and–test Search Tree

Y=14Y=15

X=15X=16X=7X=11 X=14

Z
=

1
4

Z
=

1
5

Z
=

1
6

Z
=

7
Z

=
3

Z
=

1
1

g

Y=11 Y=3 Y=7 Y=16

B

A

X=3

A4 A5A1 A2 A3

B1 B2 B3 B4 B5

8

Example of Search Space Reduction

• Move test(X, Y, Z) to the beginning (constrain–and–generate):
% Find three consecutive numbers in the p/1 relation.

:- use_package(clpr).

solution(X, Y, Z) :-

test(X, Y, Z),

p(X), p(Y), p(Z).

p(11). p(3). p(7). p(16). p(15). p(14).

• Using plain Prolog: test(X, Y, Z):-Y is X +1, Z is Y +1.
?- solution(X, Y, Z).

{INSTANTIATION ERROR}

• Using the CLP(ℜ) package: test(X, Y, Z):-Y .=.X +1, Z .=.Y +1.
?- solution(X, Y, Z).

X .=. 14, Y .=. 15, Z .=. 16 ? ;

no

In 11 steps (and all solutions in 11 steps)!

9

Constrain–and–generate Search Tree

Y=16 Y=15

X=15X=16X=7X=3X=11 X=14

Z
=

1
6

g

10

Constraint Systems: CLP(X)

• The semantics is parameterized by the constraint domain X :
CLP(X), where X ≡ (Σ,D,L, T):

⋄ Σ: set of predicate and function symbols, together with their arity
⋄ L ⊆ Σ–formulae: constraints
⋄ D: the set of actual elements in the constraint domain
⋄ D: meaning of predicate and function symbols (and hence, constraints).
⋄ T : a first–order theory (axiomatizes some properties of D)

• (D,L) is a constraint domain

• Assumptions:

⋄ L built upon a first–order language
⋄ = ∈ Σ and = is identity in D
⋄ There are identically false and identically true constraints in L
⋄ L is closed w.r.t. renaming, conjunction, and existential quantification

11

Constraint Domains (I)

• Σ = {0, 1,+, ∗,=, <,≤}, D = R (the reals), D interprets Σ as usual, ℜ = (D,L)

→ Arithmetic over the reals (“ℜ” domain).
⋄ Eg.: x2 + 2xy < y

x ∧ x > 0 (≡ xxx + xxy + xxy < y ∧ 0 < x)

⋄ Question: is 0 needed? How can it be represented?

• Σ′ = {0, 1,+,=, <,≤}, ℜLin = (D′,L′)

→ Linear arithmetic (“ℜLin” domain)
⋄ Eg.: 3x− y < 3 (≡ x + x + x < 1 + 1 + 1 + y)

• Σ′′ = {0, 1,+,=}, ℜLinEq = (D′′,L′′)

→ Linear equations (“ℜLinEq” domain)
⋄ Eg.: 3x + y = 5 ∧ y = 2x

• A corresponding set of domains can be defined on the rationals (“Q” domain)
12

Constraint Domains (II)

• A very special domain:

⋄ Σ = {<constant and function symbols>,=}
⋄ D = { finite trees }
⋄ D interprets Σ as tree constructors

* Each f ∈ Σ with arity n maps n trees to a tree with root labeled f and
whose subtrees are the arguments of the mapping

⋄ Constraints: syntactic tree equality
⋄ FT = (D,L)

→ Equality constraints over the Herbrand domain (FT domain)
⋄ Eg.: g(h(Z), Y) = g(Y, h(a))

• LP ≡ CLP(FT)

⋄ I.e., classical LP can be viewed as constraint logic programming over
Herbrand terms with a single constraint predicate symbol : = .

13

Constraint Domains (III)

• Σ = {<constants>, λ, ., ::,=}

• D = { finite strings of constants }

• D interprets . as string concatenation, :: as string length

→ Equations over strings of constants (D domain)
⋄ Eg.: X.A.X = X.A

• Σ = {0, 1,¬,∧,=}

• D = {true, false}

• D interprets symbols in Σ as boolean functions

• BOOL = (D,L)

→ Boolean constraints (BOOL domain)
⋄ Eg.: ¬(x ∧ y) = 1

14

CLP(X) Programs

• Recall that:

⋄ Σ is a set of predicate and function symbols
⋄ L ⊆ Σ–formulae are the constraints

• Π ⊆ Σ: set of predicate symbols definable by a program

⋄ Atom: p(t1, t2, . . . , tn), where p ∈ Π and t1, t2, . . . , tn are terms
⋄ Primitive constraint: p(t1, t2, . . . , tn), where
t1, t2, . . . , tn are terms and p ∈ Σ is a predicate symbol
⋄ Constraint: (first–order) formula built from primitive constraints

• The class of constraints will vary (generally only a subset of formulas are
considered constraints)

• A CLP program is a collection of rules of the form a← b1, . . . , bn where a is an
atom and the bi’s are atoms or constraints

• A fact is a rule a← c where c is a constraint

• A goal (or query) G is a conjunction of constraints and atoms

15

A case study: CLP(ℜ)

• CLP(ℜ): language based on Prolog + constraint solving over the reals (RLin)

⋄ Same execution strategy as standard Prolog (depth–first, left–to–right)
⋄ Allows linear equations and disequations over the reals
⋄ Linear constraints are solved;

non-linear constraints are passive: delayed until linear or simple checks:
* X*Y = 7 becomes linear when X is assigned a definite value
* X*X+2*X+1 = 0 becomes a check when X is assigned a definite value

⋄ Prolog arithmetic is subsumed by constraint solving

• Note: CLP(ℜ) is really CLP((ℜ,FT)) — FT is often omitted.

• Supported in modern Prologs coexisting with the ISO primitives is/2, >/2 etc.

• In Ciao, via the clpr package:

⋄ Uses .=. , .>. , etc. to distinguish the clpr constraints from the ISO-Prolog
arithmetic primitives.
⋄ I.e., X .=.Y + 5, Y .>.1 vs. X is Y +5, Y >1

16

Linear Equations (CLP(ℜ) package)

• Vector × vector multiplication (dot product):
· : ℜn ×ℜn −→ ℜ
(x1, x2, . . . , xn) · (y1, y2, . . . , yn) = x1 · y1 + · · · + xn · yn
• Vectors represented as lists of numbers
:- use_package(clpr).

prod([], [], Result) :- Result .=. 0.

prod([X|Xs], [Y|Ys], Result) :-

Result .=. X * Y + Rest, prod(Xs, Ys, Rest).

• Unification becomes constraint solving!
?- prod([2, 3], [4, 5], K).

K .=. 23

?- prod([2, 3], [5, X2], 22).

X2 .=. 4

?- prod([2, 7, 3], [Vx, Vy, Vz], 0).

Vx .=. -1.5*Vz - 3.5*Vy

• Any computed answer is, in general, an equation over the variables in the query

17

Systems of Linear Equations (CLP(ℜ))

• Can we solve systems of equations? E.g.,

3x + y = 5

x + 8y = 3

• Write them down at the top level prompt:
?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).

X .=. 1.6087, Y .=. 0.173913

• A more general predicate can be built mimicking the mathematical vector notation
A · x = b:
system(_Vars, [], []).

system(Vars, [Co|Coefs], [Ind|Indeps]) :-

prod(Vars, Co, Ind),

system(Vars, Coefs, Indeps).

• We can now express (and solve) equation systems
?- system([X, Y], [[3, 1],[1, 8]],[5, 3]).

X .=. 1.6087, Y .=. 0.173913

18

Non–linear Equations (CLP(ℜ))

• Non–linear equations are delayed
?- sin(X) .=. cos(X).

sin(X) .=. cos(X)

• This is also the case if there exists some procedure to solve them
?- X*X + 2*X + 1 .=. 0.

-2*X - 1 .=. X * X

• Reason: no general solving technique is known. CLP(ℜ) solves only linear
(dis)equations.

• Once equations become linear, they are handled properly:
?- X .=. cos(sin(Y)), Y .=. 2+Y*3.

Y .=. -1, X .=. 0.666367

• Disequations are solved using a modified, incremental Simplex
?- X + Y .=<. 4, Y .>=. 4, X .>=. 0.

Y .=. 4, X .=. 0

19

Fibonaci Revisited (Prolog)

• Fibonaci numbers:

F0 = 0

F1 = 1

Fn+2 = Fn+1 + Fn

• (The good old) Prolog version:
fib(0, 0).

fib(1, 1).

fib(N, F) :-

N > 1,

N1 is N - 1,

N2 is N - 2,

fib(N1, F1),

fib(N2, F2),

F is F1 + F2.

• Can only be used with the first argument instantiated to a number

20

Fibonaci Revisited (CLP(ℜ))

• CLP(ℜ) package version: syntactically similar to the previous one:
:- use_package(clpr).

fib(N,N) :- N .=. 0.

fib(N,N) :- N .=. 1.

fib(N,R) :- N .>. 1, F1 .>=. 0, F2 .>=. 0,

N1 .=. N - 1, N2 .=. N - 2,

fib(N1,F1), fib(N2,F2),

R .=. F1 + F2.

• Note all constraints included in program (F1 >=0, F2 >=0) – good practice!
• Only real numbers and equations used (no data structures, no other constraint

system): “pure CLP(ℜ)”
• Semantics greatly enhanced! E.g.:
?- fib(N, F).

F .=. 0, N .=. 0 ;

F .=. 1, N .=. 1 ;

F .=. 1, N .=. 2 ;

F .=. 2, N .=. 3 ;

21

Analog RLC circuits (CLP(ℜ))

• Analysis and synthesis of analog circuits

• RLC network in steady state

• Each circuit is composed either of:

⋄ A simple component, or
⋄ A connection of simpler circuits

• For simplicity, we will suppose subnetworks connected only in parallel and series
−→ Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)

• We want to relate the current (I), voltage (V) and frequency (W) in steady state

• Entry point: circuit(C, V, I, W) states that:
across the network C , the voltage is V , the current is I and the frequency is W

• V and I must be modeled as complex numbers (the imaginary part takes into
account the angular frequency)

• Note that Herbrand terms are used to provide data structures

22

Analog RLC circuits (CLP(ℜ))

• Complex number X + Y i modeled as c(X, Y)

• Basic operations:
:- use_package(clpr).

c_add(c(Re1,Im1), c(Re2,Im2), c(Re12,Im12)) :-

Re12 .=. Re1+Re2,

Im12 .=. Im1+Im2.

c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-

Re3 .=. Re1 * Re2 - Im1 * Im2,

Im3 .=. Re1 * Im2 + Re2 * Im1.

(equality is c_equal(c(R, I), c(R, I)) , can be left to [extended] unification)

23

Analog RLC circuits (CLP(ℜ))

• Circuits in series:
circuit(series(N1, N2), V, I, W) :-

c_add(V1, V2, V),

circuit(N1, V1, I, W),

circuit(N2, V2, I, W).

• Circuits in parallel:
circuit(parallel(N1, N2), V, I, W) :-

c_add(I1, I2, I),

circuit(N1, V, I1, W),

circuit(N2, V, I2, W).

24

Analog RLC circuits (CLP(ℜ))

Each basic component can be modeled as a separate unit:

• Resistor: V = I ∗ (R + 0i)

circuit(resistor(R), V, I, _W) :-

c_mult(I, c(R, 0), V).

• Inductor: V = I ∗ (0 +WL i)

circuit(inductor(L), V, I, W) :-

Im .=. W * L,

c_mult(I, c(0, Im), V).

• Capacitor: V = I ∗ (0− 1
WC i)

circuit(capacitor(C), V, I, W) :-

Im .=. -1 / (W * C),

c_mult(I, c(0, Im), V).

25

Analog RLC circuits (CLP(ℜ))

• Example:

I = 0.65

L = 0.073

C = ?R = ?

V = 4.5

ω = 2400

?- circuit(parallel(inductor(0.073),

series(capacitor(C), resistor(R))),

c(4.5, 0), c(0.65, 0), 2400).

R .=. 6.91229, C .=. 0.00152546

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).

26

The N Queens Problem

• Problem:
place N chess queens in a N × N board such that they do not attack each other

• Data structure: a list holding the column position for each row

• The final solution is a permutation of the list [1, 2, ..., N]

• E.g.: the solution is represented as [2, 4, 1, 3]

• General idea:

⋄ Start with partial solution
⋄ Nondeterministically select new queen
⋄ Check safety of new queen against those already placed
⋄ Add new queen to partial solution if compatible; start again with new partial

solution

27

The N Queens Problem in Prolog

queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]

queens(Ns, [], Qs).

queens([], Qs, Qs). % All queens placed!

queens(Unplaced, Placed, Qs) :-

select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]

no_attack(Placed, Q, 1), % Fail if attack

queens(NewUnplaced , [Q|Placed], Qs).% OK->Choose next q

no_attack([], _Queen, _Nb).

no_attack([Y|Ys], Queen, Nb) :-

Queen =\= Y + Nb, Queen =\= Y - Nb,

Nb1 is Nb + 1, no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).

select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).

queens_list(N, [N|Ns]) :-

N > 0, N1 is N - 1, queens_list(N1, Ns).

28

The N Queens Problem in Prolog - search space

29

The N Queens Problem in CLP(ℜ) (in Ciao clpr syntax)

:- use_package(clpr).

queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing

constrain_values(I, N, [X|Xs]) :-

I .>. 0,

X .>. 0, X .<=. N, % All queens between 0 and N

I1 .=. I - 1,

constrain_values(I, N, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version

no_attack([Y|Ys], Queen, Nb) :- % but using constraints

Queen .<>. Y + Nb, Queen .<>. Y - Nb,

Nb1 .=. Nb + 1, no_attack(Ys, Queen, Nb1).

place_queens(0, _).

place_queens(N, Q) :-

N .>. 0,

member(N, Q),

N1 .=. N - 1, place_queens(N1, Q).

30

The N Queens Problem in CLP(ℜ)

• This last program can attack the problem in its most general instance:
?- queens(N,L).

L = [], N .=. 0 ;

L = [1], N .=. 1 ;

L = [2, 4, 1, 3], N .=. 4 ;

L = [3, 1, 4, 2], N .=. 4 ;

L = [5, 2, 4, 1, 3], N .=. 5 ;

L = [5, 3, 1, 4, 2], N .=. 5 ;

L = [3, 5, 2, 4, 1], N .=. 5 ;

L = [2, 5, 3, 1, 4], N .=. 5

...

• Remark: Herbrand terms used to build the data structures

• But also used as constraints (e.g., length of already built list Xs in
no_attack(Xs, X, 1))

• Note that in fact we are using both ℜ and FT

31

The N Queens Problem in CLP(ℜ) – search space

32

The N Queens Problem in CLP(ℜ)

• CLP(ℜ) generates internally a set of equations for each board size
?- constrain_values(4, 4, Qs).

Qs = [_A,_B,_C,_D],

nonzero(_E), _A.=<.4.0, _E.=.3.0+_A-_D,

nonzero(_F), _A.>.0, _F.=. -3.0+_A-_D,

nonzero(_G), _B.=<.4.0, _G.=.2.0+_A-_C,

nonzero(_H), _B.>.0, _H.=. -2.0+_A-_C,

nonzero(_I), _C.=<.4.0, _I.=.1+_A-_B,

nonzero(_J), _C.>.0, _J.=. -1+_A-_B,

nonzero(_K), _D.=<.4.0, _K.=.2.0+_B-_D,

nonzero(_L), _D.>.0, _L.=. -2.0+_B-_D,

nonzero(_M), _M.=.1+_B-_C,

nonzero(_N), _N.=. -1+_B-_C,

nonzero(_O), _O.=.1+_C-_D,

nonzero(_P), _P.=. -1+_C-_D ?

• place_queens(4,[_A,_B,_C,_D]) adds all possible queens in [_A,_B,_C,_D] .

33

The N Queens Problem in CLP(ℜ)

• Constraints are (incrementally) simplified as new queens are added
?- constrain_values(4, 4, Qs), Qs = [3,1|_].

Qs = [_A,_B,_C,_D],

nonzero(_E), _A.=.3.0, _E.=.6.0-_D,

nonzero(_F), _B.=.1.0, _F.=. -_D,

nonzero(_G), _C.=<.4.0, _G.=.5.0-_C,

nonzero(_H), _C.>.0, _H.=.1.0-_C,

nonzero(_I), _D.=<.4.0, _I.=.3.0-_D,

nonzero(_J), _D.>.0, _J.=. -1.0-_D,

nonzero(_K), _K.=.2.0-_C,

nonzero(_L), _L.=. -_C,

nonzero(_M), _M.=.1+_C-_D,

nonzero(_N), _N.=. -1+_C-_D ?

• Bad choices are rejected using constraint consistency:
?- constrain_values(4, 4, Qs), Qs = [3,2|_].

no

34

Finite Domains (I)

• A finite domain constraint solver associates each variable with a finite subset of Z

• Example: E ∈ {−123,−10..4, 10}
Can be represented as, e.g., E ::[-123, -10..4, 10] [Eclipse notation]
or as E in -123\/(-10..4)\/10 [Ciao notation]

• We can:

⋄ Establish the domain of a variable (in).
⋄ Perform arithmetic operations (+ , - , * , /) on the variables
⋄ Establish linear relationships among arithmetic expressions (#= , #< , #=<)

• These operations / relationships narrow the domains of the variables

• Note: In Ciao this functionality is loaded with a
:- use_package(clpfd).

directive in the source code –or, equivalently, adding in the module declaration:
:- module(_, ..., [clpfd]).

35

Finite Domains (II)

Examples:

?- X #= A + B, A in 1..3, B in 3..7.

X in 4..10, A in 1..3, B in 3..7

• The respective minimums and maximums are added
• There is no unique solution

?- X #= A - B, A in 1..3, B in 3..7.

X in -6..0, A in 1..3, B in 3..7

• The min value of X is the min value of A minus the max value of B
• (Similar for the maximum values)

?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.

A = 3, B = 3, X = 0

• Putting more constraints results in a unique solution.

36

Finite Domains (III)

Some useful primitives in finite domains:

• domain(Variables, Min, Max) : A shorthand for several in constraints

• labeling(Options, VarList) :

⋄ instantiates variables in VarList to values in their domains
⋄ Options dictates the search order

?- domain([X, Y, Z],1,1000), X*X+Y*Y #= Z*Z, X #>= Y,

labeling([],[X,Y,Z]).

X = 4, Y = 3, Z = 5,

X = 8, Y = 6, Z = 10,

X = 12, Y = 5, Z = 13,

...

• minimize(G, X) : solve G minimizing the value of variable X

• This can be used to minimize (c.f., maximize) a solution

37

A classic example: SEND MORE MONEY

% S E N D

% + M O R E

% _________

% M O N E Y

:- use_package(clpfd).

smm([S,E,N,D,M,O,R,Y]) :-

domain([S,E,N,D,M,O,R,Y], 0, 9), % All digits 0..9

0 #< S, 0 #< M, % No leftmost zeros

all_different([S,E,N,D,M,O,R,Y]), % All digits different

S*1000 + E*100 + N*10 + D + %

M*1000 + O*100 + R*10 + E #= % Arith. constr.

M*10000 + O*1000 + N*100 + E*10 + Y, %

labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables

38

A Project Management Problem (I)

• The job whose dependencies and
task lengths are given by this graph...

D

E F

0

1 2 3

4

B C

1

0 G

A

... should be finished in 10 time units or less.

• Constraints:

pn1(A,B,C,D,E,F,G) :-

domain([A,B,C,D,E,F,G], 0, 10),

A #>= 0, G #=< 10,

B #>= A, C #>= A, D #>= A,

E #>= B + 1, E #>= C + 2,

F #>= C + 2, F #>= D + 3,

G #>= E + 4, G #>= F + 1.

39

A Project Management Problem (II)

• Query:
?- pn1(A,B,C,D,E,F,G).

A in 0..4, B in 0..5, C in 0..4,

D in 0..6, E in 2..6, F in 3..9, G in 6..10.

• Note the slack of the variables

• Some additional constraints must be respected as well, but are not shown by
default

• Minimize the total project time:
?- minimize(pn1(A,B,C,D,E,F,G), G).

A = 0, B in 0..1, C = 0, D in 0..2,

E = 2, F in 3..5, G = 6

• Variables without slack represent critical tasks

40

A Project Management Problem (III)

• An alternative setting:

D

E F

0

1 2 3

4

B C

0 G

A

X

• We can accelerate task F at some cost
pn2(A, B, C, D, E, F, G, X) :-

domain([A,B,C,D,E,F,G,X], 0, 10),

A #>= 0, G #=< 10,

B #>= A, C #>= A, D #>= A,

E #>= B + 1, E #>= C + 2,

F #>= C + 2, F #>= D + 3,

G #>= E + 4, G #>= F + X.

• We do not want to accelerate it more than needed!

→ minimize G and maximize X .

A = 0, B in 0..1, C = 0, D = 0,

E = 2, F = 3, G = 6, X = 3.

41

A Project Management Problem (IV)

• We have two independent tasks B and D whose lengths are not fixed:

D

E F

0

2B C

0 G

A

1

Y

4

X

• We can finish any of B, D in 2 time units at best

• Some shared resource disallows finishing both tasks in 2 time units: they will take
6 time units

42

A Project Management Problem (V)

• Constraints describing the net:
pn3(A,B,C,D,E,F,G,X,Y) :-

domain([A,B,C,D,E,F,G,X,Y], 0, 10),

A #>= 0, G #=< 10,

X #>= 2, Y #>= 2, X + Y #= 6,

B #>= A, C #>= A, D #>= A,

E #>= B + X, E #>= C + 2,

F #>= C + 2, F #>= D + Y,

G #>= E + 4, G #>= F + 1.

• Query:
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G).

A = 0, B = 0, C = 0, D in 0..1, E = 2,

F in 4..5, X = 2, Y = 4, G = 6

• I.e., we must devote more resources to task B
• All tasks but F and D are critical now
• Sometimes, minimize/2 not enough to provide best solution (pending constr.):
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G), labeling([],[D,F]).

43

The N-Queens Problem Using Finite Domains (in Ciao clpfd syntax)

• By far, the fastest implementation
:- use_package(clpfd).

queens(N, Qs, Type) :- % Type is labeling strategy

constrain_values(N, N, Qs), % Constrain before placing

all_different(Qs), % Using built-in constraint

labeling(Type,Qs). % Labeling places the queens

constrain_values(0, _N, []).

constrain_values(N, NMax, [X|Xs]) :-

N > 0, N1 is N - 1, X in 1 .. NMax, % Limits X values

constrain_values(N1, NMax, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Same as CLP(R) version

no_attack([Y|Ys], Queen, Nb) :- % but using clpfd primitives

Queen #= Y + Nb, Queen #= Y - Nb, Nb1 is Nb + 1,

no_attack(Ys, Queen, Nb1).

• Query: ?- queens(20, Q, [ff]). (Type is the type of labeling desired.)
Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?

44

CLP(FT) (a.k.a. Logic Programming)

• Equations over Finite Trees

• Check that two trees are isomorphic (same elements in each level)
iso(Tree, Tree).

iso(t(R, I1, D1), t(R, I2, D2)) :-

iso(I1, D2),

iso(D1, I2).

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).

L=b, X=u, Y=v, Z=W ? ;

L=b, X=u, Y=W, Z=v ? ;

L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ? ;

L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)),

Z=v ?

45

CLP(WE)

• Equations over finite strings

• Primitive constraints: concatenation (.), string length (::)

• Find strings meeting some property:
?- "123".Z = Z."231", Z::0. ?- "123".Z = Z."231", Z::3.

no no

?- "123".Z = Z."231", Z::1. ?- "123".Z = Z."231", Z::4.

Z = "1" Z = "1231"

?- "123".Z = Z."231", Z::2.

no

• These constraint solvers are very complex

• Often incomplete algorithms are used

46

CLP((WE ,Q))

• Word equations plus arithmetic over Q (rational numbers)

• Prove that the sequence xi+2 = |xi+1| − xi has a period of length 9 (for any
starting x0, x1)

• Strategy: describe the sequence, try to find a subsequence such that the period
condition is violated

• Sequence description (syntax is Prolog III slightly modified):
seq(<Y, X>). abs(Y, Y) :- Y >= 0.

seq(<Y1 - X, Y, X>.U) :- abs(Y,-Y) :- Y < 0.

seq(<Y, X>.U)

abs(Y, Y1).

• Query: Is there any 11–element sequence such that the 2–tuple initial seed is
different from the 2–tuple final subsequence (the seed of the rest of the
sequence)?
?- seq(U.V.W), U::2, V::7, W::2, U#W.

fail

47

Summarizing

• In general:

⋄ Data structures (Herbrand terms) for free
⋄ Each logical variable may have constraints associated with it (and with other

variables)

• Problem modeling :

⋄ Rules represent the problem at a high level
* Program structure, modularity
* Recursion used to set up constraints

⋄ Constraints encode problem conditions
⋄ Solutions also expressed as constraints

• Combinatorial search problems:

⋄ CLP languages provide backtracking: enumeration is easy
⋄ Constraints keep the search space manageable

• Tackling a problem:

⋄ Keep an open mind: often new approaches possible

48

Complex Constraints

• Some complex constraints allow expressing simpler constraints

• May be operationally treated as passive constraints

• E.g.: cardinality operator #(L, [c1, . . . , cn], U) meaning that the number of true
constraints lies between L and U (which can be variables themselves)
⋄ If L = U = n, all constraints must hold
⋄ If L = U = 1, one and only one constraint must be true
⋄ Constraining U = 0, we force the conjunction of the negations to be true
⋄ Constraining L > 0, the disjunction of the constraints is specified

• Disjunctive constructive constraint: c1 ∨ c2

⋄ If properly handled, avoids search and backtracking

⋄ E.g.: nz(X) ← X > 0.

nz(X) ← X < 0.
nz(X) ← X < 0 ∨X > 0.

49

Other Primitives

• CLP(X) systems usually provide additional primitives

• E.g.:

⋄ enum(X) enumerates X inside its current domain
⋄ maximize(X) (c.f. minimize(X)) works out maximum (minimum value) for
X under the active constraints

⋄ delay Goal until Condition specifies when the variables are instantiated
enough so that Goal can be effectively executed
* Its use needs deep knowledge of the constraint system
* Also widely available in Prolog systems
* Not really a constraint: control primitive

50

Implementation Issues: Satisfiability

• Algorithms must be incremental in order to be practical

• Incrementality refers to the performance of the algorithm

• It is important that algorithms to decide satisfiability have a good average case
behavior

• Common technique: use a solved form representation for satisfiable constraints

• Not possible in every domain

• E.g. in FT constraints are represented in the form x1 = t1(ỹ), . . . , xn = tn(ỹ),
where

⋄ each ti(ỹ) denotes a term structure containing variables from ỹ

⋄ no variable xi appears in ỹ

(i.e., idempotent substitutions, guaranteed by the unification algorithm)

51

Implementation Issues: Backtracking in CLP(X)

• Implementation of backtracking more complex than in Prolog

• Need to record changes to constraints

• Constraints typically stored as an association of variable to expression

• Trailing expressions is, in general, costly: cannot be stored at every change

• Avoid trailing when there is no choice point between two successive changes

• A standard technique: use time stamps to compare the age of the choice point
with the age of the variable at the time of last trailing

X<Y+Z, Y=Z+W

X<Y+4, Y=4+W, Z=4

X<9, Y=5, Z=4, W=1 trail W, timestamp it

trail X, Y, Z, timestamp them

timestamp X, Y, Z, W

52

Implementation Issues: Extensibility

• Constraint domains often implemented now in Prolog-based systems using:

⋄ Attributed variables [Neumerkel,Holzbaur]:
* Provide a hook into unification.
* Allow attaching an attribute to a variable.
* When unification with that variable occurs, user-defined code is called.
* Used to implement constraint solvers (and other applications, e.g.,

distributed execution).
⋄ Constraint handling rules (CHRs):

* Higher-level abstraction.
* Allows defining propagation algorithms (e.g., constraint solvers) in a

high-level way.
* Often translated to attributed variable-based low-level code.

53

Attributed Variables Example: Freeze

• Primitives:
⋄ attach_attribute(X,C)

⋄ get_attribute(X,C)

⋄ detach_attribute(X)

⋄ update_attribute(X,C)

⋄ verify_attribute(C,T)

⋄ combine_attributes(C1,C2)

• Example: Freeze
freeze(X, Goal) :-

attach_attribute(V, frozen(V,Goal)),

X = V.

verify_attribute(frozen(Var,Goal), Value) :-

detach_attribute(Var),

Var = Value,

call(Goal).

combine_attributes(frozen(V1,G1), frozen(V2,G2)) :-

detach_attribute(V1),

detach_attribute(V2),

V1 = V2,

attach_attribute(V1, frozen(V1,(G1,G2))).

54

Programming Tips

• Over-constraining:
⋄ Seems to be against general advice “do not perform extra work”, but can

actually cut more search space
⋄ Specially useful if infer is weak
⋄ Or else, if constraints outside the domain are being used

• Use control primitives (e.g., cut) very sparingly and carefully

• Determinacy is more subtle, (partially due to constraints in non–solved form)

• Choosing a clause does not preclude trying other exclusive clauses
(as with Prolog and plain unification)

• Compare:
max(X,Y,X) :- X .>. Y. ?- max(X, Y, Z).

max(X,Y,Y) :- X .<=. Y. Z .=. X, Y .<. X ;

with
max(X,Y,X) :- X .>. Y, !. ?- max(X, Y, Z).

max(X,Y,Y) :- X .<=. Y. Z .=. X, Y .<. X

55

CLP Systems

• As mentioned before, CLP defines a class of languages obtained by
⋄ Specifying the particular constraint system(s)
⋄ Specifying the Computation and Selection rules

• Most practical systems include also the Herbrand domain with “=”, but then add
different domains and/or solver algorithms

• Most use the Computation and Selection rules of Prolog

56

Some Classic CLP Systems

• CLP(ℜ):
⋄ Linear arithmetic over reals (=,≤, >) – CLP(R)

Incremental Gaussian elimination and incremental Simplex

• PrologIII:
⋄ CLP(R)
⋄ Boolean (=), 2-valued Boolean Algebra – CLP(B)
⋄ Infinite (rational) trees (=, ̸=)
⋄ Equations over finite strings – CLP(WE)

• CHIP (and its successor: the ILOG library):
⋄ CLP(FD), CLP(B), CLP(Q)
⋄ User–defined constraints and solver algorithms

• BNR-Prolog / CLP(BNR):
⋄ Arithmetic over reals (closed intervals); CLP(FD), CLP(B).

• RISC–CLP:
⋄ Arithmetic constraints over reals, also non-linear

(using Presburger arithmetic)

57

Some Current CLP Systems

• clp(FD)/gprolog:
⋄ CLP(FD).

• SICStus:
⋄ CLP(R), CLP(Q), CLP(FD)
⋄ Attributed variables and CHR for adding domains.

• ECLiPSe:
⋄ CLP(R), CLP(Q), CLP(FD).

• SWI:
⋄ CLP(R), CLP(Q), CLP(FD), CLP(B).
⋄ Attributed variables and CHR for additional domains.

• Ciao:
⋄ CLP(R), CLP(Q), CLP(FD).
⋄ Attributed variables and CHR for additional domains.
⋄ Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!

58

Some origins and other instances

• Ancestors:

⋄ SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981),
MACSYMA (1983), ...

• Constraints in logic languages: – the origin of “constraint programming”:

⋄ General theory developed (Jaffar and Lassez ’97).
⋄ First, standalone systems developed: clpr, CHIP, ...
⋄ Later, included in mainstream Prolog implementations.
⋄ Has given rise to a whole research area!

• Constraints in imperative languages:

⋄ Equation solving libraries (ILOG, GECODE, ...)
⋄ Timestamping of variables: x :=x + 1 ↔ xi+1 := xi + 1

(similar to iterative methods in numerical analysis)

• Constraints in functional languages, via extensions:

⋄ Evaluation of expressions including free variables.
⋄ Absolute Set Abstraction.

59

