
Computational Logic

Logic Programming:

Model and Fixpoint Semantics
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Towards the Model and Fixpoint Semantics

• We have seen previously the operational semantics (SLD-resolution).

• We now present the (declarative) Model Semantics:

� We define our semantic domain (Herbrand interpretations).
� We introduce the Minimal Herbrand Model.

• And the (also declarative) Fixpoint Semantics.

� We recall some basic fixpoint theory.
� Present the TP operator and the classic fixpoint semantics.
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Declarative Semantics – Herbrand Base and Universe

• Given a first-order language L, with a non-empty set of variables, constants,
function symbols, relation symbols, connectives, quantifiers, etc. and given a
syntactic object A,

ground(A) = {Aθ|∃θ ∈ Subst, var(Aθ) = ∅}

i.e. the set of all “ground instances” of A.

• Given L, UL (Herbrand universe) is the set of all ground terms of L.

• BL (Herbrand Base) is the set of all ground atoms of L.

• Similarly, for the language LP associated with a given program P we define UP ,
and BP .
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Declarative Semantics – Herbrand Base and Universe (example)

• Program:

P = { p(X)← q(X).

p(a).

p(b).

q(c). }

• Herbrand universe:
UP = {a, b, c}

• Herbrand base:
BP = {p(a), p(b), p(c), q(a), q(b), q(c)}
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Declarative Semantics – Herbrand Base and Universe (example)

• Program:

P = { p(f (X))← p(X).

p(a).

q(a).

q(b). }

• Herbrand universe:
UP = {a, b, f (a), f (b), f (f (a)), f (f (b)), . . .}

• Herbrand base:
BP = {p(a), p(b), q(a), q(b), p(f (a)), p(f (b)), q(f (a)), . . .}
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Herbrand Interpretations and Models

• A Herbrand Interpretation is a subset of BL, i.e. the set of all Herbrand
interpretations IL = ℘(BL).
(Note that IL forms a complete lattice under ⊆ – important for fixpoint operations
to be introduced later).

• A Herbrand Model is a Herbrand interpretation which contains all logical
consequences of the program.

• The Minimal Herbrand Model HP is the smallest Herbrand interpretation which
contains all logical consequences of the program. (Theorem: it is unique.)
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Declarative Semantics – Herbrand Model (example)

• Program:

P = { p(X)← q(X).

p(a).

p(b).

q(c). }

• Herbrand universe:
UP = {a, b, c}

• Herbrand base:
BP = {p(a), p(b), p(c), q(a), q(b), q(c)}

• All possible interpretations:
IP = all subsets of BP

• Herbrand model:
HP = {p(a), p(b), q(c), p(c)}
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Declarative Semantics – Herbrand Base and Universe (example)

• Program:

P = { p(f (X))← p(X).

p(a).

q(a).

q(b). }

• Herbrand universe:
UP = {a, b, f (a), f (b), f (f (a)), f (f (b)), . . .}

• Herbrand base:
BP = {p(a), p(b), q(a), q(b), p(f (a)), p(f (b)), q(f (a)), . . .}

• All possible interpretations:
IP = all subsets of BP

• Herbrand model:
HP = {p(a), q(a), q(b), p(f (a)), p(f (f (a))), . . .}
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Declarative Semantics, Completeness, Correctness

• Declarative semantics of a logic program P :
the set of ground facts which are logical consequences of the program (i.e., HP ).
(I.e., the Minimal Herbrand model (or “least model”) of P ).

• Intended meaning of a logic program P :
the set I of ground facts that the user expects to be logical consequences of the
program.

• A logic program is correct if HP ⊆ I.

• A logic program is complete if I ⊆ HP .

• Example:
father(john,peter).

father(john,mary).

mother(mary,mike).

grandfather(X,Y)← father(X,Z), father(Z,Y).

with the usual intended meaning is correct but incomplete.
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Towards a Fixpoint Semantics for LP – Fixpoint Basics

• A fixpoint for an operator T : X → X is an element of x ∈ X such that x = T (x).

• If X is a poset, T is monotonic if ∀x, y ∈ X, x ≤ y ⇒ T (x) ≤ T (y)

• If X is a complete lattice and T is monotonic the set of fixpoints of T is also a
complete lattice [Tarski]

• The least element of the lattice is the least fixpoint of T , denoted lfp (T )

• Powers of a monotonic operator (successive applications):
T ↑ 0(x) = x

T ↑ n(x) = T (T ↑ (n− 1)(x))(n is a successor ordinal)
T ↑ ω(x) = t{T ↑ n(x)|n < ω}

We abbreviate T ↑ α(⊥) as T ↑ α

• There is some ω such that T ↑ ω = lfp T . The sequence T ↑ 0, T ↑ 1, ..., lfp T is the
Kleene sequence for T

• In a finite lattice the Kleene sequence for a monotonic operator T is finite
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Towards a Fixpoint Semantics for LP – Fixpoint Basics (Contd.)

• A subset Y of a poset X is an (ascending) chain iff ∀y, y′ ∈ Y, y ≤ y′ ∨ y′ ≤ y

• A complete lattice X is ascending chain finite (or Noetherian) if all ascending
chains are finite

• In an ascending chain finite lattice the Kleene sequence for a monotonic operator
T is finite
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Lattice Structures
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A Fixpoint Semantics for Logic Programs

• Semantic domain: IL = ℘(BL).

• I.e., the elements of the semantic domain and interpretations
(subsets of the Herbrand base).

• Semantic operator (defined on programs):
the immediate consequences operator, TP :

� TP is a mapping: TP : IP → IP defined by:

TP (I) = {A ∈ BP | ∃C ∈ ground(P ), C = A← L1, ..., Ln and L1, . . . Ln ∈ I}

(in particular, if (A←) ∈ P , then every element of ground(A) is in TP (I), ∀ I).

• TP is monotonic, so:

� it has a least fixpoint I∗ so that TP (I∗) = I∗,
� this fixpoint can be obtained by applying TP iteratively starting from the bottom

element of the lattice (the empty interpretation).
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A Fixpoint Semantics for Logic Programs: Example 1 (finite)

P = { p(X, a)← q(X).

p(X, Y )← q(X), r(Y ).

q(a). r(b).

q(b). r(c). }

UP = {a, b, c}

BP = { p(a, a), p(a, b), p(a, c), p(b, a), p(b, b), p(b, c), p(c, a), p(c, b), p(c, c),
q(a), q(b), q(c),

r(a), r(b), r(c)}

IP = all subsets of BP

HP = {q(a), q(b), r(b), r(c), p(a, a), p(b, a), p(a, b), p(b, b), p(a, c), p(b, c)}

TP ↑ 0 = {q(a), q(b), r(b), r(c)}
TP ↑ 1 = {q(a), q(b), r(b), r(c)} ∪ {p(a, a), p(b, a), p(a, b), p(b, b), p(a, c), p(b, c)}
TP ↑ 2 = TP ↑ 1 = lfp(TP ) = HP
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A Fixpoint Semantics for Logic Programs: Example 2 (infinite)

P = { p(f (X))← p(X).

p(a).

q(a).

q(b). }

UP = {a, b, f (a), f (b), f (f (a)), f (f (b)), . . .}
BP = {p(a), p(b), q(a), q(b), p(f (a)), p(f (b)), q(f (a)), . . .}
IP = all subsets of BP

HP = {q(a), q(b), p(a)} ∪ {p(fn(a)) | n ∈ N}
where we define fn(a) to be f nested n times and then applied to a.
(i.e., q(a), q(b), p(a), p(f (a)), p(f (f (a))), p(f (f (f (a)))), ...)

TP ↑ 0 = {p(a), q(a), q(b)}
TP ↑ 1 = {p(a), q(a), q(b), p(f (a))}
TP ↑ 2 = {p(a), q(a), q(b), p(f (a)), p(f (f (a)))}
. . .

TP ↑ ω = HP
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A Fixpoint Semantics for Logic Programs: Example 3 (infinite)

• Example:

P = { nat(0).
nat(s(X))← nat(X).

sum(0, X,X).

sum(s(X), Y, s(Z))← sum(X, Y, Z). }

UP = {0} ∪ {s(x) | x ∈ UP}

(i.e., {0, s(0), s(s(0)), s(s(s(0))), ...}).

BP = {nat(x) | x ∈ UP} ∪ {sum(x, y, z) | x, y, z ∈ UP}

(i.e., {nat(0), nat(s(0)), nat(s(s(0))), ...} ∪
{sum(0, 0, 0), sum(s(0), 0, 0), sum(0, s(0), 0), sum(0, 0, s(0)), ...}).
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A Fixpoint Semantics for Logic Programs: Example 3 (infinite, cont.)

Constructing the least fixpoint of the TP operator:

TP ↑ 0 = {nat(0)} ∪ {sum(0, x, x) | x ∈ UP}
TP ↑ 1 = TP ↑ 0 ∪ {nat(s(0))}

∪ {sum(s(0), y, s(y)) | y ∈ UP}
TP ↑ 2 = TP ↑ 1 ∪ {nat(s(s(0)))}

∪ {sum(s(s(0)), y, s(s(y))) | y ∈ UP}
TP ↑ 3 = TP ↑ 2 ∪ {nat(s(s(s(0))))}

∪ {sum(s(s(s(0))), y, s(s(s(y)))) | y ∈ UP}
...
TP ↑ ω = {nat(x) | x ∈ UP} ∪

{sum(sn(0), y, sn(y)) | y ∈ UP ∧ n ∈ N}

where we define sx(y) to be s nested x times and then applied to y.
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Semantics – Equivalences

• (Characterization Theorem) [Van Emden and Kowalski]
A program P has a Herbrand model HP such that :

� HP is the least Herbrand Model of P .
� HP is the least fixpoint of TP (lfp TP ).
� HP = TP ↑ ω.

I.e., least model semantics (HP ) ≡ fixpoint semantics (lfp TP )

• In addition, there is also an equivalence with the operational semantics
(SLD-resolution):

� SLD-resolution answers “yes” to a ∈ BP ⇐⇒ a ∈ HP .

• Because it gives us a way to directly build HP (for finite models), the least fixpoint
semantics can in some cases also be an operational semantics (e.g., for datalog
in deductive databases).

18


