
Computational Logic

Fundamentals of Definite Programs:

Syntax and Semantics

1

Towards Logic Programming

• Conclusion: resolution is a complete and effective deduction mechanism using:
Horn clauses (related to “Definite programs”),
Linear, Input strategy
Breadth-first exploration of the tree (or an equivalent approach)
(possibly ordered clauses, but not required – see Selection rule later)

• Very close to what is generally referred to as SLD-resolution (see later)

• This allows to some extent realizing Green’s dream (within the theoretical limits of
the formal method), and efficiently!

2

Towards Logic Programming (Contd.)

• Given these results, why not use logic as a general purpose programming
language? [Kowalski 74]

• A “logic program” would have two interpretations:

� Declarative (“LOGIC”): the logical reading (facts, statements, knowledge)
� Procedural (“CONTROL”): what resolution does with the program

• ALGORITHM = LOGIC + CONTROL

• Specify these components separately

• Often, worrying about control is not needed at all (thanks to resolution)

• Control can be effectively provided through the ordering of the literals in the
clauses

3

Towards Logic Programming: Another (more compact) Clausal Form

• All formulas are transformed into a set of Clauses.

� A clause has the form: conc1, ..., concm ← cond1, ..., condn
where conc1, ..., concm︸ ︷︷ ︸

“or”
cond1, ..., condn︸ ︷︷ ︸

“and”
are literals, and are the conclusions and conditions of a rule:
conc1, ..., concm︸ ︷︷ ︸
“conclusions”

← cond1, ..., condn︸ ︷︷ ︸
“conditions”

� All variables are implicitly universally quantified: (if X1, ..., Xk are the variables)
∀X1, ..., Xk conc1 ∨ ... ∨ concm ← cond1 ∧ ... ∧ condn

• More compact than the traditional clausal form:

� no connectives, just commas
� no need to repeat negations: all negated atoms on one side, non-negated

ones on the other

• A Horn Clause then has the form: conc1 ← cond1, ..., condn
where n can be zero and possibly conc1 empty.

4

Some Logic Programming Terminology – “Syntax” of Logic Programs

• Definite Program: a set of positive Horn clauses head← goal1, ..., goaln

• The single conclusion is called the head.

• The conditions are called “goals” or “procedure calls”.

• goal1,...,goaln (n ≥ 0) is called the “body”.

• if n = 0 the clause is called a “fact” (and the arrow is normally deleted)

• Otherwise it is called a “rule”

• Query (question): a negative Horn clause (a “headless” clause)

• A procedure is a set of rules and facts in which the heads have the same
predicate symbol and arity.

• Terms in a goal are also called “arguments”.

5

Some Logic Programming Terminology (Contd.)

• Examples:
grandfather(X,Y)← father (X,Z), mother(Z,Y).
grandfather(X,Y)←.
grandfather(X,Y).
← grandfather(X,Y).

6

LOGIC: Declarative “Reading” (Informal Semantics)

• A rule (has head and body)

head← goal1, ..., goaln.

which contains variables X1, ..., Xk can be read as
for all X1, ..., Xk:
“head” is true if “goal1” and ... and “goaln” are true

• A fact n=0 (has only head)

head.

for all X1, ..., Xk: “head” is true (always)

• A query (the headless clause)

← goal1, ..., goaln

can be read as:
for which X1, ..., Xk are “goal1” and ... and “goaln” true?

7

LOGIC: Declarative Semantics – Herbrand Base and Universe

• Given a first-order language L, with a non-empty set of variables, constants,
function symbols, relation symbols, connectives, quantifiers, etc. and given a
syntactic object A,

ground(A) = {Aθ|∃θ ∈ Subst, var(Aθ) = ∅}

i.e. the set of all “ground instances” of A.

• Given L, UL (Herbrand universe) is the set of all ground terms of L.

• BL (Herbrand Base) is the set of all ground atoms of L.

• Similarly, for the language LP associated with a given program P we define UP ,
and BP .

• Example:
P = { p(f (X))← p(X). p(a). q(a). q(b). }
UP = {a, b, f (a), f (b), f (f (a)), f (f (b)), . . .}
BP = {p(a), p(b), q(a), q(b), p(f (a)), p(f (b)), q(f (a)), . . .}

8

Herbrand Interpretations and Models

• A Herbrand Interpretation is a subset of BL, i.e. the set of all Herbrand
interpretations IL = ℘(BL).
(Note that IL forms a complete lattice under ⊆ – important for fixpoint operations
to be introduced later).

• Example: P = { p(f (X))← p(X). p(a). q(a). q(b). }
UP = {a, b, f (a), f (b), f (f (a)), f (f (b)), . . .}
BP = {p(a), p(b), q(a), q(b), p(f (a)), p(f (b)), q(f (a)), . . .}
IP = all subsets of BP

• A Herbrand Model is a Herbrand interpretation which contains all logical
consequences of the program.

• The Minimal Herbrand Model HP is the smallest Herbrand interpretation which
contains all logical consequences of the program. (It is unique.)

• Example:
HP = {q(a), q(b), p(a), p(f (a)), p(f (f (a))), . . .}

9

Declarative Semantics, Completeness, Correctness

• Declarative semantics of a logic program P :
the set of ground facts which are logical consequences of the program (i.e., HP).
(Also called the “least model” semantics of P).

• Intended meaning of a logic program P :
the set M of ground facts that the user expects to be logical consequences of the
program.

• A logic program is correct if HP ⊆M .

• A logic program is complete if M ⊆ HP .

• Example:
father(john,peter).

father(john,mary).

mother(mary,mike).

grandfather(X,Y)← father(X,Z), father(Z,Y).

with the usual intended meaning is correct but incomplete.

10

CONTROL: Linear (Input) Resolution in this Clausal Form

We now turn to the operational semantics of logic programs,
given by a concrete operational procedure: Linear (Input) Resolution.

• Complementary literals:

� in two different clauses

� on different sides of←

� unifiable with unifier θ

father(john,mary)←
grandfather(X,Y)← father(X,Z), mother(Z,Y)

θ = {X/john, Z/mary}

11

CONTROL: Linear (Input) Resolution in this Clausal Form (Contd.)

• Resolution step (linear, input, ...):

� given a clause and a resolvent, we can build a new resolvent which follows
from them by:

* renaming apart the clause (“standardization apart” step)
* putting all the conclusions to the left of the←

* putting all the conditions to the right of the←

* if there are complementary literals (unifying literals at different sides of the
arrow in the two clauses), eliminating them and applying θ to the new
resolvent

• LD-Resolution: linear (and input) resolution, applied to definite programs
Note that then all resolvents are negative Horn clauses (like the query).

12

Example

• from
father(john,peter)←
mother(mary,david)←

we can infer
father(john,peter), mother(mary,david)←

• from
father(john,mary)←
grandfather(X,Y)← father(X,Z), mother(Z,Y)

we can infer
grandfather(john,Y’)← mother(mary,Y’)

13

CONTROL: A proof using LD-Resolution

• Prove “grandfather(john,david)←” using the set of axioms:
1. father(john,peter)←
2. father(john,mary)←
3. father(peter,mike)←
4. mother(mary,david)←
5. grandfather(L,M)← father (L,N), father(N,M)
6. grandfather(X,Y)← father (X,Z), mother(Z,Y)

• We introduce the predicate to prove (negated!)
7. ← grandfather(john,david)

• We start resolution: e.g. 6 and 7
8. ← father(john,Z1), mother(Z1,david) X1/john, Y1/david

• using 2 and 8
9. ← mother(mary,david) Z1/mary

• using 4 and 9
←

14

CONTROL: Rules and SLD-Resolution

• Two control-related issues are still left open in LD-resolution.
Given a current resolvent R and a set of clauses K:

� given a clause C in K, several of the literals in R may unify the non-negated a
complementary literal in C
� given a literal L in R, it may unify with complementary literals in several

clauses in K

• A Computation (or Selection rule) is a function which, given a resolvent (and
possibly the proof tree up to that point) returns (selects) a literal from it. This is
the goal that will be used next in the resolution process.

• A Search rule is a function which, given a literal and a set of clauses (and
possibly the proof tree up to that point), returns a clause from the set. This is the
clause that will be used next in the resolution process.

15

CONTROL: Rules and SLD-Resolution (Contd.)

• SLD-resolution: Linear resolution for Definite programs with Selection rule.

• An SLD-resolution method is given by the combination of a computation (or
selection) rule and a search rule.

• Independence of the computation rule: Completeness does not depend on the
choice of the computation rule.

• Example: a “left-to-right” rule (as in ordered resolution) does not impair
completeness – this coincides with the completeness result for ordered resolution.

• Fundamental result:
“Declarative” semantics (HP) ≡ “operational” semantics (SLD-resolution)
I.e., all the facts in HP can be deduced using SLD-resolution.

16

CONTROL: Procedural reading of a logic program

• Given a rule

head← goal1, ..., goaln.

it can be seen as a description of the goals the solver (resolution method) has to
execute in order to solve “head”

• Possible, given computation and search rules.

• In general, “In order to solve ‘head’, solve ‘goal1’ and ... and solve ‘goaln’ ”

• If ordered resolution is used (left-to-right computation rule), then read “In order to
solve ‘head’, first solve ‘goal1’ and then ‘goal2’ and then ... and finally solve ‘goaln’
”

• Thus the “control” part corresponding to the computation rule is often associated
with the order of the goals in the body of a clause

• Another part (corresponding to the search rule) is often associated with the order
of clauses

17

CONTROL: Procedural reading of a logic program (Contd.)

• Example – read “procedurally”:
father(john,peter).
father(john,mary).
father(peter,mike).
father(X,Y)← mother(Z,Y), married(X,Z).

18

Towards a Fixpoint Semantics for LP – Fixpoint Basics

• A fixpoint for an operator T : X → X is an element of x ∈ X such that x = T (x).

• If X is a poset, T is monotonic if ∀x, y ∈ X, x ≤ y ⇒ T (x) ≤ T (y)

• If X is a complete lattice and T is monotonic the set of fixpoints of T is also a
complete lattice [Tarski]

• The least element of the lattice is the least fixpoint of T , denoted lfp (T)

• Powers of a monotonic operator (successive applications):
T ↑ 0(x) = x

T ↑ n(x) = T (T ↑ (n− 1)(x))(n is a successor ordinal)
T ↑ ω(x) = t{T ↑ n(x)|n < ω}

We abbreviate T ↑ α(⊥) as T ↑ α

• There is some ω such that T ↑ ω = lfp T . The sequence T ↑ 0, T ↑ 1, ..., lfp T is the
Kleene sequence for T

• In a finite lattice the Kleene sequence for a monotonic operator T is finite

19

Towards a Fixpoint Semantics for LP – Fixpoint Basics (Contd.)

• A subset Y of a poset X is an (ascending) chain iff ∀y, y′ ∈ Y, y ≤ y′ ∨ y′ ≤ y

• A complete lattice X is ascending chain finite (or Noetherian) if all ascending
chains are finite

• In an ascending chain finite lattice the Kleene sequence for a monotonic operator
T is finite

20

Lattice Structures

�
�Z
Z

#
##c

cc�
�c

cc

b
b
b
bb�

�
�
��

>
d e

a b c

⊥

finite

!!!!!!!!!!!

���
���

���

�
�
�

�
�
��

Q
Q
Q
Q
Q
QQ

PPPPPPPPPPPPP

aaaaaaaaaaa

S
S
S

�
�
�

�
�
�
��

�
�
�
�
�
��

!!
!!

!!
!!

!!
!

�
��

�
��

�
��

��
��

��
��

��
��
�

J
J
J
JJ

�
�
�

S
S
S

�
�
�

@
@
@

@@

Q
Q
Q

Q
Q
QQ

aa
aa

aa
aa

aa
a

PP
PP

PP
PP

PP
PP

P

... inf ...

... inf ...

⊥

>

finite depth

ascending chain finite

>
1

2

3

4

⊥

21

A Fixpoint Semantics for Logic Programs, and Equivalences

• The Immediate consequence operator TP is a mapping: TP : IP → IP defined by:
TP (I) = {A ∈ BP |∃C ∈ ground(P), C = A← L1, ..., Ln and L1, . . . Ln ∈ I}
(in particular, if (A←) ∈ P , then every element of ground(A) is in TP (I), ∀ I).

• TP is monotonic, so it has a least fixpoint I∗ so that TP (I∗) = I∗, which can be
obtained by applying TP iteratively starting from the bottom element of the lattice
(the empty interpretation)

• (Characterization Theorem) [Van Emden and Kowalski]
A program P has a Herbrand model HP such that :

� HP is the least Herbrand Model of P .
� HP is the least fixpoint of TP (lfp TP).
� HP = TP ↑ ω.

I.e., least model semantics (HP) ≡ fixpoint semantics (lfp TP)

• Because it gives us some intuition on how to build HP , the least fixpoint
semantics can in some cases (e.g., finite models) also be an operational
semantics (e.g., in deductive databases).

22

A Fixpoint Semantics for Logic Programs: Example

• Example:

P = { p(f (X))← p(X).

p(a).

q(a).

q(b). }

UP = {a, b, f (a), f (b), f (f (a)), f (f (b)), . . .}
BP = {p(a), p(b), q(a), q(b), p(f (a)), p(f (b)), q(f (a)), . . .}
IP = all subsets of B
HP = {q(a), q(b), p(a), p(f (a)), p(f (f (a))), . . .}

TP ↑ 0 = {p(a), q(a), q(b)}
TP ↑ 1 = {p(a), q(a), q(b), p(f (a))}
TP ↑ 2 = {p(a), q(a), q(b), p(f (a)), p(f (f (a)))}
. . .

TP ↑ ω = HP

23

