Computational Logic

Fundamentals of Definite Programs:

Syntax and Semantics

1

Towards Logic Programming

- Conclusion: resolution is a complete and effective deduction mechanism using: Horn clauses (related to "Definite programs"), Linear, Input strategy
 Breadth-first exploration of the tree (or an equivalent approach) (possibly ordered clauses, but not required – see Selection rule later)
- Very close to what is generally referred to as SLD-resolution (see later)
- This allows to some extent realizing Green's dream (within the theoretical limits of the formal method), and efficiently!

Towards Logic Programming (Contd.)

- Given these results, why not use logic as a general purpose *programming language*? [Kowalski 74]
- A "logic program" would have two interpretations:
 - ◊ Declarative ("LOGIC"): the logical reading (facts, statements, knowledge)
 - Procedural ("CONTROL"): what resolution does with the program
- ALGORITHM = LOGIC + CONTROL
- Specify these components separately
- Often, worrying about control is not needed at all (thanks to resolution)
- Control can be effectively provided through the ordering of the literals in the clauses

Towards Logic Programming: Another (more compact) Clausal Form

• All formulas are transformed into a set of *Clauses*.

- ◇ All variables are implicitly universally quantified: (if $X_1, ..., X_k$ are the variables) $\forall X_1, ..., X_k$ conc₁ ∨ ... ∨ conc_m ← cond₁ ∧ ... ∧ cond_n
- More compact than the traditional clausal form:
 - no connectives, just commas
 - no need to repeat negations: all negated atoms on one side, non-negated ones on the other
- A *Horn Clause* then has the form: where *n* can be zero and possibly *conc*₁ empty.

 $conc_1 \leftarrow cond_1, ..., cond_n$

Some Logic Programming Terminology – "Syntax" of Logic Programs

• *Definite Program:* a set of positive Horn clauses

 $head \leftarrow goal_1, ..., goal_n$

- The single *conclusion* is called the head.
- The conditions are called "goals" or "procedure calls".
- $goal_1,...,goal_n$ ($n \ge 0$) is called the "body".
- if n = 0 the clause is called a "fact" (and the arrow is normally deleted)
- Otherwise it is called a "rule"
- Query (question): a negative Horn clause (a "headless" clause)
- A procedure is a set of rules and facts in which the heads have the same predicate symbol and arity.
- Terms in a goal are also called "arguments".

Some Logic Programming Terminology (Contd.)

```
    Examples:
grandfather(X,Y) ← father (X,Z), mother(Z,Y).
grandfather(X,Y) ←.
grandfather(X,Y).
← grandfather(X,Y).
```

LOGIC: Declarative "Reading" (Informal Semantics)

• A rule (has head and body)

```
head \leftarrow goal_1, ..., goal_n.
```

which contains variables $X_1, ..., X_k$ can be read as for all $X_1, ..., X_k$: "head" is true if "goal₁" and ... and "goal_n" are true

• A fact n=0 (has only head)

head.

for all $X_1, ..., X_k$: "head" is true (always)

• A query (the headless clause)

```
\leftarrow goal_1,...,goal_n
```

can be read as:

for which $X_1, ..., X_k$ are "goal₁" and ... and "goal_n" true?

LOGIC: Declarative Semantics – Herbrand Base and Universe

 Given a first-order language L, with a non-empty set of variables, constants, function symbols, relation symbols, connectives, quantifiers, etc. and given a syntactic object A,

 $ground(A) = \{A\theta | \exists \theta \in Subst, var(A\theta) = \emptyset\}$

i.e. the set of all "ground instances" of A.

- Given L, U_L (Herbrand universe) is the set of all ground terms of L.
- B_L (Herbrand Base) is the set of all ground atoms of L.
- Similarly, for the language *L*_P associated with a given program *P* we define *U*_P, and *B*_P.
- Example:

$$P = \{ p(f(X)) \leftarrow p(X), \quad p(a), \quad q(a), \quad q(b), \} \\ U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \dots \} \\ B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \dots \}$$

Herbrand Interpretations and Models

• A *Herbrand Interpretation* is a subset of B_L , i.e. the set of all Herbrand interpretations $I_L = \wp(B_L)$.

(Note that I_L forms a *complete lattice* under \subseteq – important for fixpoint operations to be introduced later).

• Example:
$$P = \{ p(f(X)) \leftarrow p(X), p(a), q(a), q(b), \}$$

 $U_P = \{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \}$
 $B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \}$
 $I_P = all subsets of B_P$

- A *Herbrand Model* is a Herbrand interpretation which contains all logical consequences of the program.
- The *Minimal Herbrand Model* H_P is the smallest Herbrand interpretation which contains all logical consequences of the program. (It is unique.)
- Example:

 $H_P = \{q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots\}$

Declarative Semantics, Completeness, Correctness

- Declarative semantics of a logic program P: the set of ground facts which are logical consequences of the program (i.e., H_P). (Also called the "least model" semantics of P).
- Intended meaning of a logic program P:

the set M of ground facts that the user expects to be logical consequences of the program.

- A logic program is *correct* if $H_P \subseteq M$.
- A logic program is *complete* if $M \subseteq H_P$.
- Example:
 - father(john,peter).
 - father(john,mary).
 - mother(mary,mike).
 - grandfather(X,Y) \leftarrow father(X,Z), father(Z,Y).

with the usual intended meaning is *correct* but *incomplete*.

We now turn to the *operational semantics* of logic programs, given by a concrete operational procedure: *Linear (Input) Resolution*.

- Complementary literals:
 - in two different clauses
 - \diamond on different sides of \leftarrow
 - \diamond unifiable with unifier θ

```
\begin{array}{l} father(john,mary) \leftarrow \\ grandfather(X,Y) \leftarrow father(X,Z), \, mother(Z,Y) \end{array}
```

```
\theta = \{X/john, Z/mary\}
```

CONTROL: Linear (Input) Resolution in this Clausal Form (Contd.)

- Resolution step (linear, input, ...):
 - given a clause and a resolvent, we can build a new resolvent which follows from them by:
 - * renaming apart the clause ("standardization apart" step)
 - * putting *all* the conclusions to the left of the \leftarrow
 - * putting *all* the conditions to the right of the \leftarrow
 - * if there are complementary literals (unifying literals at different sides of the arrow in the two clauses), eliminating them and applying θ to the new resolvent
- LD-Resolution: linear (and input) resolution, applied to definite programs Note that then all resolvents are negative Horn clauses (like the query).

Example

```
    from

            father(john,peter) ←
                 mother(mary,david) ←
                 we can infer
                 father(john,peter), mother(mary,david) ←
```

```
from
```

```
\begin{array}{l} \mbox{father(john,mary)} \leftarrow \\ \mbox{grandfather}(X,Y) \leftarrow \mbox{father}(X,Z), \mbox{ mother}(Z,Y) \\ \mbox{we can infer} \\ \mbox{grandfather(john,Y')} \leftarrow \mbox{mother(mary,Y')} \end{array}
```

CONTROL: A proof using LD-Resolution

- Prove "grandfather(john,david) \leftarrow " using the set of axioms:
 - 1. father(john,peter) \leftarrow
 - 2. father(john,mary) \leftarrow
 - 3. father(peter,mike) \leftarrow
 - 4. mother(mary,david) \leftarrow
 - 5. grandfather(L,M) \leftarrow father (L,N), father(N,M)
 - 6. grandfather(X,Y) \leftarrow father (X,Z), mother(Z,Y)
- We introduce the predicate to prove (negated!)
 - 7. \leftarrow grandfather(john,david)
- We start resolution: e.g. 6 and 7

8. \leftarrow father(john,Z¹), mother(Z¹,david) X¹/john, Y¹/david

- using 2 and 8
 - 9. \leftarrow mother(mary,david)
- using 4 and 9

 \leftarrow

CONTROL: Rules and SLD-Resolution

- Two control-related issues are still left open in LD-resolution. Given a current resolvent *R* and a set of clauses *K*:
 - \diamond given a clause *C* in *K*, several of the literals in *R* may unify the non-negated a complementary literal in *C*
 - \diamond given a literal L in R, it may unify with complementary literals in several clauses in K
- A *Computation* (or *Selection* rule) is a function which, given a resolvent (and possibly the proof tree up to that point) returns (selects) a literal from it. This is the goal that will be used next in the resolution process.
- A *Search* rule is a function which, given a literal and a set of clauses (and possibly the proof tree up to that point), returns a clause from the set. This is the clause that will be used next in the resolution process.

CONTROL: Rules and SLD-Resolution (Contd.)

- SLD-resolution: Linear resolution for Definite programs with Selection rule.
- An SLD-resolution *method* is given by the combination of a *computation (or selection) rule* and a *search rule*.
- Independence of the computation rule: Completeness does not depend on the choice of the computation rule.
- Example: a "left-to-right" rule (as in ordered resolution) does not impair completeness this coincides with the completeness result for ordered resolution.
- Fundamental result:

"Declarative" semantics (H_P) \equiv "operational" semantics (SLD-resolution) I.e., all the facts in H_P can be deduced using SLD-resolution.

• Given a rule

 $head \leftarrow goal_1, ..., goal_n.$

it can be seen as a description of the goals the solver (resolution method) has to execute in order to solve "head"

- Possible, given computation and search rules.
- In general, "In order to solve 'head', solve 'goal₁' and ... and solve 'goal_n' "
- If ordered resolution is used (left-to-right computation rule), then read "In order to solve 'head', *first* solve 'goal₁' and *then* 'goal₂' and *then* ... and *finally* solve 'goal_n' "
- Thus the "control" part corresponding to the computation rule is often associated with the order of the goals in the body of a clause
- Another part (corresponding to the search rule) is often associated with the order of clauses

CONTROL: Procedural reading of a logic program (Contd.)

• Example – read "procedurally":

father(john,peter).

father(john,mary).

father(peter,mike).

 $father(X,Y) \leftarrow mother(Z,Y), married(X,Z).$

Towards a Fixpoint Semantics for LP – Fixpoint Basics

- A *fixpoint* for an operator $T: X \to X$ is an element of $x \in X$ such that x = T(x).
- If X is a poset, T is monotonic if $\forall x, y \in X, x \leq y \Rightarrow T(x) \leq T(y)$
- If X is a complete lattice and T is monotonic the set of fixpoints of T is also a complete lattice [Tarski]
- The least element of the lattice is the *least fixpoint* of T, denoted lfp(T)
- Powers of a monotonic operator (successive applications):

$$\begin{split} T \uparrow 0(x) &= x \\ T \uparrow n(x) &= T(T \uparrow (n-1)(x))(n \text{ is a successor ordinal}) \\ T \uparrow \omega(x) &= \sqcup \{T \uparrow n(x) | n < \omega \} \end{split}$$

We abbreviate $T\uparrow \alpha(\bot)$ as $T\uparrow \alpha$

- There is some ω such that $T \uparrow \omega = lfp T$. The sequence $T \uparrow 0, T \uparrow 1, ..., lfp T$ is the *Kleene sequence* for T
- In a finite lattice the Kleene sequence for a monotonic operator T is finite

Towards a Fixpoint Semantics for LP – Fixpoint Basics (Contd.)

- A subset Y of a poset X is an (ascending) chain iff $\forall y, y' \in Y, y \leq y' \lor y' \leq y$
- A complete lattice X is *ascending chain finite* (or *Noetherian*) if all ascending chains are finite
- In an ascending chain finite lattice the Kleene sequence for a monotonic operator ${\cal T}$ is finite

Lattice Structures

finite

$finite_depth$

ascending chain finite

A Fixpoint Semantics for Logic Programs, and Equivalences

- The *Immediate consequence operator* T_P is a mapping: T_P : I_P → I_P defined by: T_P(I) = {A ∈ B_P|∃C ∈ ground(P), C = A ← L₁, ..., L_n and L₁, ..., L_n ∈ I} (in particular, if (A ←) ∈ P, then every element of ground(A) is in T_P(I), ∀ I).
- T_P is monotonic, so it has a least fixpoint I^* so that $T_P(I^*) = I^*$, which can be obtained by applying T_P iteratively starting from the bottom element of the lattice (the empty interpretation)
- (Characterization Theorem) [Van Emden and Kowalski] A program P has a Herbrand model H_P such that :
 - \diamond H_P is the least Herbrand Model of P.
 - \diamond H_P is the least fixpoint of T_P (*lfp* T_P).
 - $\diamond H_P = T_P \uparrow \omega.$
 - I.e., least model semantics (H_P) \equiv fixpoint semantics ($lfp T_P$)
- Because it gives us some intuition on how to build H_P, the least fixpoint semantics can in some cases (e.g., finite models) also be an operational semantics (e.g., in *deductive databases*).

A Fixpoint Semantics for Logic Programs: Example

• Example:

$$P = \{ \begin{array}{l} p(f(X)) \leftarrow p(X). \\ p(a). \\ q(a). \\ q(b). \end{array} \}$$

$$U_{P} = \{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots\}$$

$$B_{P} = \{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots\}$$

$$I_{P} = all \text{ subsets of } B$$

$$H_{P} = \{q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots\}$$

$$T_{P} \uparrow 0 = \{p(a), q(a), q(b), p(f(a))\}$$

$$T_{P} \uparrow 1 = \{p(a), q(a), q(b), p(f(a)), p(f(f(a)))\}$$

$$\dots$$

$$T_{P} \uparrow \omega = H_{P}$$