Computational Logic

Fundamentals of Definite Programs:
Syntax and Semantics

Towards Logic Programming

- Conclusion: resolution is a complete and effective deduction mechanism using: Horn clauses (related to "Definite programs"), Linear, Input strategy
Breadth-first exploration of the tree (or an equivalent approach) (possibly ordered clauses, but not required - see Selection rule later)
- Very close to what is generally referred to as SLD-resolution (see later)
- This allows to some extent realizing Green's dream (within the theoretical limits of the formal method), and efficiently!

Towards Logic Programming (Contd.)

- Given these results, why not use logic as a general purpose programming language? [Kowalski 74]
- A "logic program" would have two interpretations:
\diamond Declarative ("LOGIC"): the logical reading (facts, statements, knowledge)
\diamond Procedural ("CONTROL"): what resolution does with the program
- ALGORITHM = LOGIC + CONTROL
- Specify these components separately
- Often, worrying about control is not needed at all (thanks to resolution)
- Control can be effectively provided through the ordering of the literals in the clauses

Towards Logic Programming: Another (more compact) Clausal Form

- All formulas are transformed into a set of Clauses.
\diamond A clause has the form:
where

are literals, and are the conclusions and conditions of a rule:

$$
\underbrace{\operatorname{conc}_{1}, \ldots, \text { conc }_{m}}_{\text {"conclusions" }} \leftarrow \underbrace{\operatorname{cond}_{1}, \ldots, \operatorname{cond}_{n}}_{\text {"conditions" }}
$$

\diamond All variables are implicitly universally quantified: (if X_{1}, \ldots, X_{k} are the variables) $\forall X_{1}, \ldots, X_{k}$ conc $_{1} \vee \ldots \vee$ conc $_{m} \leftarrow$ cond $_{1} \wedge \ldots \wedge$ cond $_{n}$

- More compact than the traditional clausal form:
\diamond no connectives, just commas
\diamond no need to repeat negations: all negated atoms on one side, non-negated ones on the other
- A Horn Clause then has the form:

$$
\operatorname{conc}_{1} \leftarrow \operatorname{cond}_{1}, \ldots, \operatorname{cond}_{n}
$$

where n can be zero and possibly conc $_{1}$ empty.

Some Logic Programming Terminology - "Syntax" of Logic Programs

- Definite Program: a set of positive Horn clauses
- The single conclusion is called the head.
- The conditions are called "goals" or "procedure calls".
- goal $_{1}, \ldots$, goal $_{n}(n \geq 0)$ is called the "body".
- if $n=0$ the clause is called a "fact" (and the arrow is normally deleted)
- Otherwise it is called a "rule"
- Query (question): a negative Horn clause (a "headless" clause)
- A procedure is a set of rules and facts in which the heads have the same predicate symbol and arity.
- Terms in a goal are also called "arguments".

Some Logic Programming Terminology (Contd.)

- Examples: grandfather $(X, Y) \leftarrow$ father (X, Z), mother (Z, Y). grandfather $(X, Y) \leftarrow$. grandfather (X, Y).
\leftarrow grandfather (X, Y).

LOGIC: Declarative "Reading" (Informal Semantics)

- A rule (has head and body)

$$
\text { head }_{\leftarrow} \text { goal }_{1}, \ldots, \text { goal }_{n} .
$$

which contains variables X_{1}, \ldots, X_{k} can be read as for all X_{1}, \ldots, X_{k} :
"head" is true if "goal ${ }_{1}$ " and \ldots and "goal ${ }_{n}$ " are true

- A fact $\mathrm{n}=0$ (has only head)

> head.
for all X_{1}, \ldots, X_{k} : "head" is true (always)

- A query (the headless clause)

$$
\leftarrow \text { goal }_{1}, \ldots, \text { goal }_{n}
$$

can be read as:
for which X_{1}, \ldots, X_{k} are "goal ${ }_{1}$ " and \ldots and "goal n " true?

LOGIC: Declarative Semantics - Herbrand Base and Universe

- Given a first-order language L, with a non-empty set of variables, constants, function symbols, relation symbols, connectives, quantifiers, etc. and given a syntactic object A,

$$
\operatorname{ground}(A)=\{A \theta \mid \exists \theta \in \text { Subst, } \operatorname{var}(A \theta)=\emptyset\}
$$

i.e. the set of all "ground instances" of A.

- Given L, U_{L} (Herbrand universe) is the set of all ground terms of L.
- B_{L} (Herbrand Base) is the set of all ground atoms of L.
- Similarly, for the language L_{P} associated with a given program P we define U_{P}, and B_{P}.
- Example:

$$
\begin{aligned}
& P=\{\quad p(f(X)) \leftarrow p(X) . \quad p(a) . \quad q(a) . \quad q(b) . \quad\} \\
& U_{P}=\{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots\} \\
& B_{P}=\{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots\}
\end{aligned}
$$

Herbrand Interpretations and Models

- A Herbrand Interpretation is a subset of B_{L}, i.e. the set of all Herbrand interpretations $I_{L}=\wp\left(B_{L}\right)$.
(Note that I_{L} forms a complete lattice under \subseteq - important for fixpoint operations to be introduced later).
- Example: $P=\{\quad p(f(X)) \leftarrow p(X) . \quad p(a) . \quad q(a) . \quad q(b) . \quad\}$
$U_{P}=\{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots\}$
$B_{P}=\{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots\}$
$I_{P}=$ all subsets of B_{P}
- A Herbrand Model is a Herbrand interpretation which contains all logical consequences of the program.
- The Minimal Herbrand Model H_{P} is the smallest Herbrand interpretation which contains all logical consequences of the program. (It is unique.)
- Example:
$H_{P}=\{q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots\}$

Declarative Semantics, Completeness, Correctness

- Declarative semantics of a logic program P: the set of ground facts which are logical consequences of the program (i.e., H_{P}). (Also called the "least model" semantics of P).
- Intended meaning of a logic program P : the set M of ground facts that the user expects to be logical consequences of the program.
- A logic program is correct if $H_{P} \subseteq M$.
- A logic program is complete if $M \subseteq H_{P}$.
- Example:
father(john,peter).
father(john,mary).
mother(mary,mike).
grandfather $(X, Y) \leftarrow$ father (X, Z), father (Z, Y).
with the usual intended meaning is correct but incomplete.

CONTROL: Linear (Input) Resolution in this Clausal Form

We now turn to the operational semantics of logic programs, given by a concrete operational procedure: Linear (Input) Resolution.

- Complementary literals:
\diamond in two different clauses
\diamond on different sides of \leftarrow
\diamond unifiable with unifier θ
father(john,mary) \leftarrow
grandfather $(X, Y) \leftarrow$ father (X, Z), mother (Z, Y)
$\theta=\{X / j o h n, Z / m a r y\}$

CONTROL: Linear (Input) Resolution in this Clausal Form (Contd.)

- Resolution step (linear, input, ...):
\diamond given a clause and a resolvent, we can build a new resolvent which follows from them by:
* renaming apart the clause ("standardization apart" step)
* putting all the conclusions to the left of the \leftarrow
* putting all the conditions to the right of the \leftarrow
* if there are complementary literals (unifying literals at different sides of the arrow in the two clauses), eliminating them and applying θ to the new resolvent
- LD-Resolution: linear (and input) resolution, applied to definite programs Note that then all resolvents are negative Horn clauses (like the query).

Example

- from
father(john, peter) \leftarrow
mother(mary,david) \leftarrow
we can infer
father(john, peter), mother(mary,david) \leftarrow
- from
father(john,mary) \leftarrow
grandfather $(X, Y) \leftarrow$ father (X, Z), mother (Z, Y)
we can infer
grandfather $\left(j o h n, \mathrm{Y}^{\prime}\right) \leftarrow$ mother $\left(\right.$ mary, $\left.\mathrm{Y}^{\prime}\right)$

CONTROL: A proof using LD-Resolution

- Prove "grandfather(john,david) \leftarrow " using the set of axioms:

1. father(john,peter) \leftarrow
2. father(john,mary) \leftarrow
3. father(peter,mike) \leftarrow
4. mother(mary,david) \leftarrow
5. grandfather $(\mathrm{L}, \mathrm{M}) \leftarrow$ father (L, N), father (N, M)
6. grandfather $(X, Y) \leftarrow$ father (X, Z), mother (Z, Y)

- We introduce the predicate to prove (negated!)

7. \leftarrow grandfather(john,david)

- We start resolution: e.g. 6 and 7

8. \leftarrow father (john, Z^{1}), mother $\left(Z^{1}\right.$,david) $\quad X^{1} /$ john, $Y^{1 / d a v i d ~}$

- using 2 and 8

9. \leftarrow mother(mary,david)
$Z^{1} /$ mary

- using 4 and 9

CONTROL: Rules and SLD-Resolution

- Two control-related issues are still left open in LD-resolution.

Given a current resolvent R and a set of clauses K :
\diamond given a clause C in K, several of the literals in R may unify the non-negated a complementary literal in C
\diamond given a literal L in R, it may unify with complementary literals in several clauses in K

- A Computation (or Selection rule) is a function which, given a resolvent (and possibly the proof tree up to that point) returns (selects) a literal from it. This is the goal that will be used next in the resolution process.
- A Search rule is a function which, given a literal and a set of clauses (and possibly the proof tree up to that point), returns a clause from the set. This is the clause that will be used next in the resolution process.

CONTROL: Rules and SLD-Resolution (Contd.)

- SLD-resolution: Linear resolution for Definite programs with Selection rule.
- An SLD-resolution method is given by the combination of a computation (or selection) rule and a search rule.
- Independence of the computation rule: Completeness does not depend on the choice of the computation rule.
- Example: a "left-to-right" rule (as in ordered resolution) does not impair completeness - this coincides with the completeness result for ordered resolution.
- Fundamental result:
"Declarative" semantics $\left(H_{P}\right) \equiv$ "operational" semantics (SLD-resolution)
l.e., all the facts in H_{P} can be deduced using SLD-resolution.

CONTROL: Procedural reading of a logic program

- Given a rule

$$
\text { head } \leftarrow \text { goal }_{1}, \ldots, \text { goal }_{n} .
$$

it can be seen as a description of the goals the solver (resolution method) has to execute in order to solve "head"

- Possible, given computation and search rules.
- In general, "In order to solve 'head', solve 'goal ${ }_{1}$ ' and ... and solve 'goal ${ }_{n}$ '"
- If ordered resolution is used (left-to-right computation rule), then read "In order to solve 'head', first solve 'goal ${ }_{1}$ ' and then 'goal ${ }_{2}$ ' and then \ldots and finally solve 'goal ${ }_{n}$ ' "
- Thus the "control" part corresponding to the computation rule is often associated with the order of the goals in the body of a clause
- Another part (corresponding to the search rule) is often associated with the order of clauses

CONTROL: Procedural reading of a logic program (Contd.)

- Example - read "procedurally": father(john,peter).
father(john,mary).
father(peter,mike).
father $(X, Y) \leftarrow$ mother (Z, Y), married (X, Z).

Towards a Fixpoint Semantics for LP - Fixpoint Basics

- A fixpoint for an operator $T: X \rightarrow X$ is an element of $x \in X$ such that $x=T(x)$.
- If X is a poset, T is monotonic if $\forall x, y \in X, x \leq y \Rightarrow T(x) \leq T(y)$
- If X is a complete lattice and T is monotonic the set of fixpoints of T is also a complete lattice [Tarski]
- The least element of the lattice is the least fixpoint of T, denoted $l f p(T)$
- Powers of a monotonic operator (successive applications):

$$
\begin{aligned}
& T \uparrow 0(x)=x \\
& T \uparrow n(x)=T(T \uparrow(n-1)(x))(n \text { is a successor ordinal }) \\
& T \uparrow \omega(x)=\sqcup\{T \uparrow n(x) \mid n<\omega\}
\end{aligned}
$$

We abbreviate $T \uparrow \alpha(\perp)$ as $T \uparrow \alpha$

- There is some ω such that $T \uparrow \omega=l f p T$. The sequence $T \uparrow 0, T \uparrow 1, \ldots, l f p T$ is the Kleene sequence for T
- In a finite lattice the Kleene sequence for a monotonic operator T is finite

Towards a Fixpoint Semantics for LP - Fixpoint Basics (Contd.)

- A subset Y of a poset X is an (ascending) chain iff $\forall y, y^{\prime} \in Y, y \leq y^{\prime} \vee y^{\prime} \leq y$
- A complete lattice X is ascending chain finite (or Noetherian) if all ascending chains are finite
- In an ascending chain finite lattice the Kleene sequence for a monotonic operator T is finite

Lattice Structures

finite

finite_depth

A Fixpoint Semantics for Logic Programs, and Equivalences

- The Immediate consequence operator T_{P} is a mapping: $T_{P}: I_{P} \rightarrow I_{P}$ defined by: $T_{P}(I)=\left\{A \in B_{P} \mid \exists C \in \operatorname{ground}(P), C=A \leftarrow L_{1}, \ldots, L_{n}\right.$ and $\left.L_{1}, \ldots L_{n} \in I\right\}$ (in particular, if $(A \leftarrow) \in P$, then every element of $\operatorname{ground}(A)$ is in $\left.T_{P}(I), \forall I\right)$.
- T_{P} is monotonic, so it has a least fixpoint I^{*} so that $T_{P}\left(I^{*}\right)=I^{*}$, which can be obtained by applying T_{P} iteratively starting from the bottom element of the lattice (the empty interpretation)
- (Characterization Theorem) [Van Emden and Kowalski] A program P has a Herbrand model H_{P} such that :
$\diamond H_{P}$ is the least Herbrand Model of P.
$\diamond H_{P}$ is the least fixpoint of $T_{P}\left(l f p T_{P}\right)$.
$\diamond H_{P}=T_{P} \uparrow \omega$.
I.e., least model semantics $\left(H_{P}\right) \equiv$ fixpoint semantics (lfp T_{P})
- Because it gives us some intuition on how to build H_{P}, the least fixpoint semantics can in some cases (e.g., finite models) also be an operational semantics (e.g., in deductive databases).

A Fixpoint Semantics for Logic Programs: Example

- Example:

$$
\begin{aligned}
& P=\{ p(f(X)) \leftarrow p(X) . \\
& p(a) . \\
& q(a) . \\
&q(b) .\} \\
& U_{P}=\{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots\} \\
& B_{P}=\{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots\} \\
& I_{P}=\text { all subsets of } B \\
& H_{P}=\{q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots\} \\
& T_{P} \uparrow 0=\{p(a), q(a), q(b)\} \\
& T_{P} \uparrow 1=\{p(a), q(a), q(b), p(f(a))\} \\
& T_{P} \uparrow 2=\{p(a), q(a), q(b), p(f(a)), p(f(f(a)))\} \\
& \ldots \\
& T_{P} \uparrow \omega=H_{P}
\end{aligned}
$$

