Computational Logic

Automated Deduction Fundamentals

Elements of First-Order Predicate Logic

First Order Language:

- An alphabet consists of the following classes of symbols:

1. variables denoted by $X, Y, Z, B o o, \ldots$, (infinite)
2. constants denoted by $1, a, b o o, j o h n, \ldots$,
3. functors denoted by $f, g,+,-, .$. ,
4. predicate symbols denoted by $p, q, d o g, \ldots$,
5. connectives, which are: \neg (negation), \vee (disjunction), \wedge (conjunction), \rightarrow (implication) and \leftrightarrow (equivalence),
6. quantifiers, which are: \exists (there exists) and \forall (for all),
7. parentheses, which are: (and) and the comma, that is: ",".

- Each functor and predicate symbol has a fixed arity, they are often represented in Functor/Arity form, e.g. f/3.
- A constant can be seen as a functor of arity 0 .
- Propositions are represented by a predicate symbol of arity 0 .

Important: Notation Convention Used

(A bit different from standard notational conventions in logic, but good for compatibility with LP systems)

- Variables: start with a capital letter or a "." (X, Y, a, _1)
- Atoms, functors, predicate symbols: start with a lower case letter or are enclosed in ' ' (f, g, a, 1, x, y, z, 'X', '1')

Terms and Atoms

We define by induction two classes of strings of symbols over a given alphabet.

- The class of terms:
\diamond a variable is a term,
\diamond a constant is a term,
\diamond if f is an n-ary functor and t_{1}, \ldots, t_{n} are terms then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- The class of atoms (different from LP!):
\diamond a proposition is an atom,
\diamond if p is an n-ary pred. symbol and t_{1}, \ldots, t_{n} are terms then $p\left(t_{1}, \ldots, t_{n}\right)$ is an atom,
\diamond true and false are atoms.
- The class of Well Formed Formulas (WFFs):
\diamond an atom is a WFF,
\diamond if F and G are WFFs then so are $\neg F,(F \vee G),(F \wedge G),(F \rightarrow G)$ and $(F \leftrightarrow G)$,
\diamond if F is a WFF and X is a variable then $\exists X F$ and $\forall X F$ are WFF.
- Literal: positive or negative (non-negated or negated) atom.

Examples

Examples of Terms

- Given:
\diamond constants: $a, b, c, 1$, spot, john...
\diamond functors: $f / 1, g / 3, h / 2,+/ 3 \ldots$
\diamond variables: $X, L, Y \ldots$
- Correct: spot, f(john), f(X), +(1,2,3), +(X,Y,L), f(f(spot)), h(f(h(1,2)),L)
- Incorrect: $\operatorname{spot}(X),+(1,2), g, f(f(h))$

Examples of Literals

- Given the elements above and:
\diamond predicate symbols: dog/1, p/2, q/0, r/0, barks/1...
- Correct: $q, r, \operatorname{dog}(s p o t), p(X, f(j o h n)) \ldots$
- Incorrect: $q(X)$, barks(f), dog(barks(X))

Examples (Contd.)

Examples of WFFs

- Given the elements above
- Correct: $q, q \rightarrow r, r \leftarrow q, \operatorname{dog}(X) \leftarrow \operatorname{barks}(X), \operatorname{dog}(X), p(X, Y), \exists X(\operatorname{dog}(X) \wedge$ $\operatorname{barks}(X) \wedge \neg q), \exists Y(\operatorname{dog}(Y) \rightarrow \operatorname{bark}(Y))$
- Incorrect: $q \vee, \exists p$

More about WFFs

- Allow us to represent knowledge and reason about it
\diamond Marcus was a man
\diamond Marcus was a pompeian
\diamond All pompeians were romans
\diamond Caesar was a ruler

> man(marcus)
> $\forall X$ pompeian(marcus)
> pompeian $(X) \rightarrow$ roman (X)
> ruler(caesar)
\diamond All romans were loyal to Caesar or they hated him $\forall X$ roman $(X) \rightarrow$ loyalto $(X$, caesar) \vee hate $(X$, caesar)
\diamond Everyone is loyal to someone $\quad \forall X \exists Y$ loyalto (X, Y)

- We can now reason about this knowledge using standard deductive mechanisms.
- But there is in principle no guarantee that we will prove a given theorem.

Towards Efficient Automated Deduction

- Automated deduction is search.
- Complexity of search: directly dependent on branching factor at nodes (exponentially!).
- It is vital to cut down the branching factor:
\diamond Canonical representation of nodes (allows identifying identical nodes).
\diamond As few inference rules as possible.

Towards Efficient Automated Deduction (Contd.)

Clausal Form

- The complete set of logical operators $(\leftarrow, \wedge, \vee, \neg, \ldots)$ is redundant.
- A minimal (canonical) form would be interesting.
- It would be interesting to separate the quantifiers from the rest of the formula so that they did not need to be considered.
- It would also be nice if the formula were flat (i.e. no parenthesis).
- Conjunctive normal form has these properties [Davis 1960].

Deduction Mechanism

- A good example:

Resolution - only two inference rules (Resolution rule and Replacement rule).

Classical Clausal Form: Conjunctive Normal Form

- General formulas are converted to:
\diamond Set of Clauses.
\diamond Clauses are in a logical conjunction.
$\diamond A$ clause is a disjunction of the form. literal $_{1} \vee$ literal $_{2} \vee \ldots \vee$ literal $_{n}$
\diamond The literal $_{i}$ are negated or non-negated atoms.
\diamond All variables are implicitly universally quantified: i.e. if X_{1}, \ldots, X_{k} are the variables that appear in a clause it represents the formula:
$\forall X_{1}, \ldots, X_{k} \quad$ literal $_{1} \vee$ literal $_{2} \vee \ldots \vee$ literal $_{n}$
- Any formula can be converted to clausal form automatically by:

1. Converting to Prenex form.
2. Converting to conjunctive normal form (conjunction of disjunctions).
3. Converting to Skolem form (eliminating existential quantifiers).
4. Eliminating universal quantifiers.
5. Separating conjunctions into clauses.

- The unsatisfiability of a system is preserved.

Substitutions

- A substitution is a finite mapping from variables to terms, written as $\theta=\left\{X_{1} / t_{1}, \ldots, X_{n} / t_{n}\right\}$ where
\diamond the variables X_{1}, \ldots, X_{n} are different,
\diamond for $i=1, \ldots, n X_{i} \neg \equiv t_{i}$.
- A pair X_{i} / t_{i} is called a binding.
- $\operatorname{domain}(\theta)=\left\{X_{1}, . ., X_{n}\right\}$ and $\operatorname{range}(\theta)=\operatorname{vars}\left(\left\{t_{1}, \ldots, t_{n}\right\}\right)$.
- If $\operatorname{range}(\theta)=\emptyset$ then θ is called ground.
- If θ is a bijective mapping from variables to variables then θ is called a renaming.
- Examples:
$\diamond \theta_{1}=\{X / f(A), Y / X, Z / h(b, Y), W / a\}$
$\diamond \theta_{2}=\{X / a, Y / a, Z / h(b, c), W / f(d)\} \quad$ (ground)
$\diamond \theta_{3}=\{X / A, Y / B, Z / C, W / D\} \quad$ (renaming)

Substitutions (Contd.)

- Substitutions operate on expressions, i.e. a term, a sequence of literals or a clause, denoted by E.
- The application of θ to E (denoted $E \theta$) is obtained by simultaneously replacing each occurrence in E of X_{i} by $t_{i}, X_{i} / t_{i} \in \theta$.
- The resulting expression $E \theta$ is called an instance of E.
- If θ is a renaming then $E \theta$ is called a variant of E.
- Example:
$\theta_{1}=\{X / f(A), Y / X, Z / h(b, Y), W / a\}$
$p(X, Y, X) \theta_{1}=p(f(A), X, f(A))$

Composition of Substitutions

- Given $\theta=\left\{X_{1} / t_{1}, \ldots, X_{n} / t_{n}\right\}$ and $\eta=\left\{Y_{1} / s_{1}, \ldots, Y_{m} / s_{m}\right\}$ their composition $\theta \eta$ is defined by removing from the set

$$
\left\{X_{1} / t_{1} \eta, \ldots, X_{n} / t_{n} \eta, Y_{1} / s_{1}, \ldots, Y_{m} / s_{m}\right\}
$$

those pairs $X_{i} / t_{i} \eta$ for which $X_{i} \equiv t_{i} \eta$, as well as those pairs Y_{i} / s_{i} for which $Y_{i} \in\left\{X_{1}, \ldots, X_{n}\right\}$.

- Example: if $\theta=\{X / 3, Y / f(X, 1)\}$ and $\eta=\{X / 4\}$ then $\theta \eta=\{X / 3, Y / f(4,1)\}$.
- For all substitutions θ, η and γ and an expression E
i) $(E \theta) \eta \equiv E(\theta \eta)$
ii) $(\theta \eta) \gamma=\theta(\eta \gamma)$.
- θ is more general than η if for some γ we have $\eta=\theta \gamma$.
- Example: $\theta=\{X / f(Y)\}$ more general than $\eta=\{X / f(h(G))\}$

Unifiers

- If $A \theta \equiv B \theta$, then
$\diamond \theta$ is called a unifier of A and B
$\diamond A$ and B are unifiable
- A unifier θ of A and B is called a most general unifier (mgu) if it is more general than any other unifier of A and B.
- If two atoms are unifiable then they have a most general unifier.
- θ is idempotent if $\theta \theta=\theta$.
- A unifier θ of A and B is relevant if all variables appearing either in $\operatorname{domain}(\theta)$ or in range (θ), also appear in A or B.
- If two atoms are unifiable then they have an mgu which is idempotent and relevant.
- An mgu is unique up to renaming.

Unification Algorithm

- Non-deterministically choose from the set of equations an equation of a form below and perform the associated action.

1. $f\left(s_{1}, \ldots, s_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right) \rightarrow$ replace by $s_{1}=t_{1}, \ldots, s_{n}=t_{n}$
2. $f\left(s_{1}, \ldots, s_{n}\right)=g\left(t_{1}, \ldots, t_{m}\right)$ where $f \not \equiv g \rightarrow$ halt with failure
3. $X=X \rightarrow$ delete the equation
4. $t=X$ where t is not a variable \rightarrow replace by the equation $X=t$
5. $X=t$ where $X \not \equiv t$ and X has another occurrence in the set of equations \rightarrow
5.1 if X appears in t then halt with failure
5.2 otherwise apply $\{X / t\}$ to every other equation

- Consider the set of equations $\{f(X)=f(f(Z)), g(a, Y)=g(a, X)\}$:
$\diamond(1)$ produces $\{X=f(Z), g(a, Y)=g(a, X)\}$
\diamond then (1) Yields $\{X=f(Z), a=a, Y=X\}$
$\diamond(3)$ produces $\{X=f(Z), Y=X\}$
\diamond now only (5) can be applied, giving $\{X=f(Z), Y=f(Z)\}$
\diamond No step can be applied, the algorithm successfully terminates.

Unification Algorithm revisited

- Let A and B be two formulas:

1. $\theta=\epsilon$
2. while $A \theta \neq B \theta$:
2.1 find leftmost symbol in $A \theta$ s.t. the corresponding symbol in $B \theta$ is different
2.2 let t_{A} and t_{B} be the terms in $A \theta$ and $B \theta$ starting with those symbols
(a) if neither t_{A} nor t_{B} are variables or one is a variable occurring in the other \rightarrow halt with failure
(b) otherwise, let t_{A} be a variable \rightarrow the new θ is the result of $\theta\left\{t_{A} / t_{B}\right\}$
3. end with θ being an m.g.u. of A and B

Unification Algorithm revisited (Contd.)

- Example: $A=p(X, X) B=p(f(A), f(B))$
θ
ϵ
$\{X / f(A)\}$
$\{X / f(B), A / B\}$

A θ
$p(X, X)$
$p(f(A), f(A))$
$p(f(B), f(B))$
B θ
$p(f(A), f(B))$
$p(f(A), f(B))$
$p(f(B), f(B))$

- Example: $A=p(X, f(Y)) B=p(Z, X)$

θ	$A \theta$	$B \theta$
ϵ	$p(X, f(Y))$	$p(Z, X)$
$\{X / Z\}$	$p(Z, f(Y))$	$p(Z, Z)$
$\{X / f(Y), Z / f(Y)\}$	$p(f(Y), f(Y))$	$p(f(Y), f(Y))$

$\{X / f(B), A / B\}$
$p(f(Y), f(Y))$
$p(f(Y), f(Y))$

Element
$\{X / f(A)\}$
$\{A / B\}$

Element $\{X / Z\}$
$\{Z / f(Y)\}$

Resolution with Variables

- It is a formal system with:
\diamond A first order language with the following formulas:
* Clauses: without repetition, and without an order among their literals.
* The empty clause \square.
\diamond An empty set of axioms.
\diamond Two inference rules: resolution and replacement.

Resolution with Variables (Contd.)

- Resolution:

$$
\begin{aligned}
& r_{1}: A \vee F_{1} \vee \cdots \vee F_{n} \\
& \frac{r_{2}: \neg B \vee G_{1} \vee \cdots \vee G_{m}}{\left(\left(F_{1} \vee \cdots \vee F_{n}\right) \sigma \vee G_{1} \vee \cdots \vee G_{m}\right) \theta}
\end{aligned}
$$

where
$\diamond A$ and B are unifiable with substitution θ
$\diamond \sigma$ is a renaming s.t. $\left(A \vee F_{1} \vee \cdots \vee F_{n}\right) \sigma$ and $\neg B \vee G_{1} \vee \cdots \vee G_{m}$ have no variables in common
$\diamond \theta$ is the m.g.u. of $A \sigma$ and B
The resulting clause is called the resolvent of r_{1} and r_{2}.

- Replacement: $A \vee B \vee F_{1} \vee \cdots \vee F_{n} \Rightarrow\left(A \vee F_{1} \vee \cdots \vee F_{n}\right) \theta$ where
$\diamond A$ and B are unifiable atoms
$\diamond \theta$ is the m.g.u. of A and B

Basic Properties

- Resolution is correct - i.e. all conclusions obtained using it are valid.
- There is no guarantee of directly deriving a given theorem.
- However, resolution (under certain assumptions) is refutation complete: if we have a set of clauses $K=\left[C_{0}, C_{1}, \ldots, C_{n}\right]$ and it is inconsistent then resolution will arrive at the empty clause \square in a finite number of steps.
- Therefore, a valid theorem (or a question that has an answer) is guaranteed to be provable by refutation. To prove " p " given $K_{0}=\left[C_{0}, C_{1}, \ldots, C_{n}\right]$:

1. Negate it $(\neg p)$.
2. Construct $K=\left[\neg p, C_{0}, C_{1}, \ldots, C_{n}\right]$.
3. Apply resolution steps repeatedly to K.

- Furthermore, we can obtain answers by composing the substitutions along a path that leads to \square (very important for realizing Green's dream!).
- It is important to use a good method in applying the resolution steps - i.e. in building the resolution tree (or proof tree).
- Again, the main issue is to reduce the branching factor.

Proof Tree

- Given a set of clauses $K=\left\{C_{0}, C_{1}, \cdots, C_{n}\right\}$ the proof tree of K is a tree s.t. :
\diamond the root is C_{0}
\diamond the branch from the root starts with the nodes labeled with $C_{0}, C_{1}, \cdots, C_{n}$
\diamond the descendent nodes of C_{n} are labeled by clauses obtained from the parent clauses using resolution
\diamond a derivation in K is a branch of the proof tree of K
- The derivation $C_{0} C_{1} \cdots C_{n} F_{0} \cdots F_{m}$ is denoted as $K, F_{0} \cdots F_{m}$

Proof Tree (Contd.)

- Example: part of the proof tree for K, with:

Characteristics of the Proof Tree

- It can be infinite:

$$
\begin{aligned}
& \mathrm{K}=[\mathrm{p}(\mathrm{e}), \neg \mathrm{p}(\mathrm{X}) \mathrm{v} \mathrm{p}(\mathrm{f}(\mathrm{X}))]
\end{aligned}
$$

- Even if it is finite, it can be too large to be explored efficiently
- Aim: determine some criteria to limit the number of derivations and the way in which the tree is explored \Rightarrow strategy
- Any strategy based on this tree is correct: if \square appears in a subtree of the proof tree of K, then \square can be derived from K and therefore K is unsatisfiable

General Strategies

- Depth-first with backtracking: First descendant to the left; if failure or \square then backtrack

General Strategies (Contd.)

- Breadth first: all sons of all sibling nodes from left to right

General Strategies (Contd.) (Contd.)

- Iterative deepening
\diamond Advance depth-first for a time.
\diamond After a certain depth, switch to another branch as in breadth-first.
- Completeness issues / possible types of branches:
\diamond Success (always finite)
\diamond Finite failure
\diamond Infinite failure (provably infinite branches)
\diamond Non-provably infinite branches

Linear Strategies

- Those which only explore linear derivations
- A derivation $K, F_{0} \cdots F_{m}$ is linear if
$\diamond F_{0}$ is obtained by resolution or replacement using C_{0}
$\diamond F_{i}, i>0$ is obtained by resolution or replacement using F_{i-1}
- Examples:

Characteristics of these Strategies

1 If \square can be derived from K by using resolution with variables, it can also be derived by linear resolution
2 Let K be $K^{6} \cup\left\{C_{0}\right\}$ where $K^{‘}$ is a satisfiable set of clauses, i.e. \square cannot be derived from $K^{\text {c }}$ by using resolution with variables. If \square can be derived from K by using resolution with variables it can also be derived by linear resolution with root C_{0}.

- From (1), if the strategy is breadth first, it is complete.
- From (2), if we want to prove that B is derived form $K^{\text {‘ }}$ then we can apply linear resolution to $K=K^{\prime} \cup\{\neg B\}$.
- Depth first with backtracking is not complete:

Input Strategies

- Example:
- Those which only explore input derivations
- A derivation $K, F_{0} \cdots F_{m}$ is input if
$\diamond F_{0}$ is obtained by resolution or replacement using C_{0}
$\diamond F_{i}, i>0$ is obtained by resolution or replacement using at least a clause in K

$$
\mathrm{K}=[\neg \mathrm{p} \vee \neg \mathrm{q}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{r}, \mathrm{q} \vee \neg \mathrm{~s}, \mathrm{~s} \vee \mathrm{q}]
$$

Input Strategies

- In an input derivation, if F_{i-1} does not appear in any derivation of a successor clause, it can be eliminated from the derivation without changing the result
- If F_{i-1} appears in the derivation of $F_{j}, j>1, F_{i-1}$ can be allocated in position $j-1$
- As a result, we can limit ourselves to linear input derivations without losing any input derivable clause
- Let K be $K^{،} \cup\left\{C_{0}\right\}$ where \square is derived by using resolution with variables, C_{0} is a negative Horn clause and all clauses in K^{\prime} are positive Horn clauses. There is an input derivation with root C_{0} finishing in \square and in which the replacement rule is not used (Hernschen 1974)
- A Horn clause is a clause in which at most one literal is positive:
\diamond it is positive if precisely one literal is positive
\diamond it is negative if all literals are negatives
- As a result, in those conditions, a breadth first input strategy is complete, and a depth first input strategy with backtracking is complete if the tree is finite.

Ordered Strategies

- We consider a new formal system in which:

1. clauses are ordered sets
2. ordered resolution of two clauses
$A=p_{1} \vee \cdots \vee p_{n}$ and $B=q_{1} \vee \cdots \vee q_{m}$
where p_{1} is a positive literal and q_{1} is a negative literal is possible iff $\neg p_{1}$ and $\sigma\left(q_{1}\right)$ are unifiable (σ is a renaming, s.t. p_{1} and $\sigma\left(q_{1}\right)$ have no variables in common)
3. the resolvent of A and B is $\theta\left(p_{2} \vee \cdots \vee p_{n} \vee \sigma\left(q_{2} \vee \cdots \vee q_{m}\right)\right)$ where θ is an m.g.u of $\neg p_{1}$ and $\sigma\left(q_{1}\right)$

- Let $K=K^{6} \cup\left\{C_{0}\right\}$ be a set of clauses s.t. \square is derived by using resolution with variables, C_{0} is a negative Horn clause and all clauses in $K^{\text {‘ }}$ are positive Horn clauses with the positive literal in the first place. There is a sorted input derivation with root C_{0} arriving at \square.
- In this context a sorted linear input with:
\diamond breadth first: is complete
\diamond depth first with backtracking: is complete if the tree is finite

