Computational Logic

A Motivational Introduction

The Program Correctness Problem

- Conventional models of using computers - not easy to determine correctness!
\diamond Has become a very important issue, not just in safety-critical apps.
\diamond Components with assured quality, being able to give a warranty, ...
\diamond Being able to run untrusted code, certificate carrying code, ...

A Simple Imperative Program

- Example:

```
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
        while(Number <= 5)
        { Square = Number * Number;
            printf("%d\n",Square);
            Number = Number + 1; } }
```

- Is it correct? With respect to what?
- A suitable formalism is needed:
\diamond to provide specifications (describe problems), and
\diamond to reason about the correctness of programs (their implementation).

Natural Language

"Compute the squares of the natural numbers which are less or equal than 5 ."
Ideal at first sight, but:
\diamond verbose
\diamond vague
\diamond ambiguous
\diamond needs context (assumed information)

- ...

Philosophers and Mathematicians already pointed this out a long time ago...

Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic)

Aristotle likes cookies, and
Plato is a friend of anyone who likes cookies
imply that
Plato is a friend of Aristotle

- Symbolic logic:

A shorthand for classical logic - plus many useful results:
a_{1} : likes(aristotle, cookies)
$a_{2}: \forall X \operatorname{likes}(X$, cookies $) \rightarrow$ friend(plato, $\left.X\right)$
$t_{1}:$ friend(plato, aristotle)
$T\left[a_{1}, a_{2}\right] \vdash t_{1}$

- But, can logic be used:
\diamond To represent the problem (specifications)?
\diamond Even perhaps to solve the problem?

Using Logic

- For expressing specifications and reasoning about the correctness of programs we need:
\diamond Specification languages (assertions), modeling, ...
\diamond Program semantics (models, axiomatic, denotational, fixpoint, ...).
\diamond Proofs: program verification (and debugging, equivalence, ...).

Generating Squares: A Specification (I)

Numbers -we will use "Peano" representation for simplicity:
$0 \equiv 0 \quad 1 \equiv \mathrm{~s}(0) \quad 2 \equiv \mathrm{~s}(\mathrm{~s}(0)) \quad 3 \equiv \mathrm{~s}(\mathrm{~s}(\mathrm{~s}(0))) \quad \ldots$

- Defining the natural numbers:

0 is a natural, 1 is a natural, 2 is a natural, ...
$\operatorname{nat}(0) \quad \wedge \operatorname{nat}(s(0)) \quad \wedge \operatorname{nat}(s(s(0))) \quad \wedge \ldots$
\diamond A better solution: $\operatorname{nat}(0) \wedge \quad \forall X(\operatorname{nat}(X) \rightarrow \operatorname{nat}(s(X)))$

Generating Squares: A Specification (I)

Numbers -we will use "Peano" representation for simplicity:
$0 \equiv 0 \quad 1 \equiv \mathrm{~s}(0) \quad 2 \equiv \mathrm{~s}(\mathrm{~s}(0)) \quad 3 \equiv \mathrm{~s}(\mathrm{~s}(\mathrm{~s}(0))) \quad \ldots$

- Defining the natural numbers:

0 is a natural, 1 is a natural, 2 is a natural, ...
$\operatorname{nat}(0) \quad \wedge \operatorname{nat}(s(0)) \quad \wedge \operatorname{nat}(s(s(0))) \quad \wedge \ldots$
\diamond A better solution: $\operatorname{nat}(0) \wedge \quad \forall X(\operatorname{nat}(X) \rightarrow \operatorname{nat}(s(X)))$

- Order on the naturals (less or equal than):

$$
\begin{array}{llll}
l e(0,0) & l e(0, s(0)) & l e(0, s(s(0))) & \cdots \\
l e(s(0), s(0)) & l e(s(0), s(s(0))) & l e(s(0), s(s(s(0)))) & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\forall X(n a t(X) & \rightarrow l e(0, X)) & \wedge & \forall X \forall Y(l e(X, Y) \rightarrow l e(s(X), s(Y))) \\
\hline
\end{array}
$$

Generating Squares: A Specification (I)

Numbers -we will use "Peano" representation for simplicity:
$0 \equiv 0 \quad 1 \equiv \mathrm{~s}(0) \quad 2 \equiv \mathrm{~s}(\mathrm{~s}(0)) \quad 3 \equiv \mathrm{~s}(\mathrm{~s}(\mathrm{~s}(0))) \quad \ldots$

- Defining the natural numbers:

0 is a natural, $\quad 1$ is a natural, 2 is a natural,
$\operatorname{nat}(0) \quad \wedge \operatorname{nat}(s(0)) \quad \wedge \operatorname{nat}(s(s(0))) \quad \wedge \ldots$
\diamond A better solution: $\operatorname{nat}(0) \wedge \quad \forall X(\operatorname{nat}(X) \rightarrow \operatorname{nat}(s(X)))$

- Order on the naturals (less or equal than):

$$
\begin{array}{llll}
l e(0,0) & l e(0, s(0)) & l e(0, s(s(0))) & \ldots \\
l e(s(0), s(0)) & l e(s(0), s(s(0))) & l e(s(0), s(s(s(0)))) & \ldots \\
\cdots & \cdots & \cdots & \cdots \\
\forall X(n a t(X) \rightarrow l e(0, X)) & \wedge & \forall X \forall Y(l e(X, Y) \rightarrow l e(s(X), s(Y))) \\
\hline
\end{array}
$$

- Addition of naturals:

$$
\begin{array}{llll}
\begin{array}{ll}
a d d(0,0,0) & a d d(0, s(0), s(0))
\end{array} & a d d(0, s(s(0)), s(s(0))) & \ldots \\
a d d(s(0), 0, s(0)) & a d d(s(0), s(0), s(s(0))) & a d d(s(0), s(s(0)), s(s(s(0)))) & \ldots \\
\forall X(n a t(X) \rightarrow a d d(0, X, X)) & \wedge & \forall X \forall Y \forall Z(\operatorname{add}(X, Y, Z) \rightarrow a d d(s(X), Y, s(Z))) \\
\hline
\end{array}
$$

Generating Squares: A Specification (II)

- Multiplication of naturals:
"Multiply X and Y " is "add Y to itself X times," e.g.
$\operatorname{mult}(3,2,6) \equiv$ "three times 2 is 6 " (adding 2,3 times is 6$) \equiv 2+2+2=6$
$\operatorname{mult}(3,2,6) \wedge \operatorname{add}(6,2,8) \rightarrow \operatorname{mult}(4,2,8) \quad 2+2+2+2=8$
$\forall X(\operatorname{nat}(X) \rightarrow \operatorname{mult}(0, X, 0)) \wedge$
$\forall X \forall Y \forall Z \forall W(\operatorname{mult}(X, Y, W) \wedge \operatorname{add}(W, Y, Z) \rightarrow \operatorname{mult}(s(X), Y, Z))$
- Squares of the naturals:

$$
\forall X \forall Y(\operatorname{nat}(X) \wedge \operatorname{nat}(Y) \wedge \operatorname{mult}(X, X, Y) \rightarrow \operatorname{nat}(X q u a r e(X, Y))
$$

Generating Squares: A Specification (II)

- Multiplication of naturals:
"Multiply X and Y " is "add Y to itself X times," e.g.
mult $(3,2,6) \equiv$ "three times 2 is 6 " (adding 2, 3 times is 6) $\equiv 2+2+2=6$
$\operatorname{mult}(3,2,6) \wedge \operatorname{add}(6,2,8) \rightarrow \operatorname{mult}(4,2,8) \quad 2+2+2+2=8$

```
\forallX (nat (X) }->\mathrm{ mult (0, X,0))^
\forallX\forallY\forallZ\forallW (mult (X,Y,W)^add(W,Y,Z) -> mult (s(X),Y,Z))
```

- Squares of the naturals:

```
\forallX\forallY(nat(X)^nat(Y) ^mult (X,X,Y) }->\mathrm{ nat_square (X,Y))
```

We can now write a specification of the (imperative) program, i.e., conditions that we want the program to meet:

- Precondition (empty): true
- Postcondition:

$$
\forall X(\operatorname{output}(X) \leftarrow(\exists Y \operatorname{nat}(Y) \wedge l e(Y, s(s(s(s(s(0)))))) \wedge \text { nat_square }(Y, X)))
$$

Alternative Use of Logic?

- So, logic allows us to represent problems (program specifications).

i.e., the process of implementing solutions to problems.
- The importance of Programming Languages (and tools).
- Interesting question: can logic help here too?

From Representation/Specification to Computation

- Assuming the existence of a mechanical proof method (deduction procedure) a new view of problem solving and computing is possible [Green]:
\diamond program once and for all the deduction procedure in the computer,
\diamond find a suitable representation for the problem (i.e., the specification),
\diamond then, to obtain solutions, ask questions and let deduction procedure do rest:

- No correctness proofs needed!
(Correct) Answers / Results

Computing With Our Previous Description / Specification

Query	Answer
nat $(s(0)) \boldsymbol{?}$	$($ yes $)$
$\exists X$ add $(s(0), s(s(0)), X) \boldsymbol{?}$	$X=s(s(s(0)))$
$\exists X$ add $(s(0), X, s(s(s(0)))) \boldsymbol{?}$	$X=s(s(0))$
$\exists X$ nat $(X) \boldsymbol{?}$	$X=0 \vee X=s(0) \vee X=s(s(0)) \vee \ldots$
$\exists X \exists Y$ add $(X, Y, s(0)) \boldsymbol{?}$	$(X=0 \wedge Y=s(0)) \vee(X=s(0) \wedge Y=0)$
$\exists X$ nat_square $(s(s(0)), X) \boldsymbol{?}$	$X=s(s(s(s(0))))$
$\exists X$ nat_square $(X, s(s(s(s(0))))) \boldsymbol{?}$	$X=s(s(0))$
$\exists X \exists Y$ nat_square $(X, Y) \boldsymbol{?}$	$(X=0 \wedge Y=0) \vee(X=s(0) \wedge Y=s(0)) \vee(X=$
	$s(s(0)) \wedge Y=s(s(s(s(0))))) \vee \ldots$
$\exists X$ output $(X) \boldsymbol{?}$	$X=0 \vee X=s(0) \vee X=s(s(s(s(0)))) \vee X=$
	$s^{9}(0) \vee X=s^{16}(0) \vee X=s^{25}(0)$

Which Logic?

- We have already argued the convenience of representing the problem in logic, but
\diamond which logic?
* propositional
* predicate calculus (first order)
* higher-order logics
* modal logics
* λ-calculus
* ...
\diamond which reasoning procedure?
* natural deduction, classical methods
* resolution
* Prawitz/Bibel, tableaux
* bottom-up fixpoint
* rewriting
* narrowing
* ...

Issues

- We try to maximize expressive power.

Example: propositions vs. first-order formulas.
\diamond Propositional logic:

$$
\begin{array}{ll}
\text { "spot is a dog" } & p \\
\text { "dogs have tail" } & q
\end{array}
$$

But how can we conclude that Spot has a tail?
\diamond Predicate logic extends the expressive power of propositional logic:

$$
\begin{aligned}
& \operatorname{dog}(\text { spot }) \\
& \forall X \operatorname{dog}(X) \rightarrow \operatorname{has} _t a i l(X)
\end{aligned}
$$

Now, using deduction we can conclude:
has_tail(spot)

- But one of the main issues is whether we have an effective reasoning procedure.
\rightarrow It is important to understand the underlying properties and the theoretical limits!

Comparison of Logics (I)

- Propositional logic:
"spot is a dog" p
+ decidability
- limited expressive power
+ practical deduction mechanism
\rightarrow Circuit design, "answer set" programming, ...
- Predicate logic: (first order)
"spot is a dog" dog(spot)
+/- decidability
+/- good expressive power
+ practical deduction mechanism (e.g., SLD-resolution)
\rightarrow Classical logic programming!

Comparison of Logics (II)

- Higher-order predicate logic:
"There is a relationship for spot" X (spot)
- decidability
+ good expressive power
- practical deduction mechanism

But interesting subsets \rightarrow HO logic programming, functional-logic prog., ...

- Other logics: Decidability? Expressive power? Practical deduction mechanism? Often (very useful) variants of previous ones:
\diamond Predicate logic + constraints (in place of unification)
\rightarrow constraint programming!
\diamond Propositional temporal logic, etc.
- Interesting case: λ-calculus
+ similar to predicate logic in results, allows higher order
- does not support predicates (relations), only functions
\rightarrow Functional programming!

Generating squares by SLD-Resolution - Logic Programming (I)

- We code the problem as definite (Horn) clauses:

```
nat(0)
\negat(X)\vee nat (s(X))
\negat( }X)\vee\operatorname{add}(0,X,X)
\neg a d d ( X , Y , Z ) \vee \operatorname { a d d } ( s ( X ) , Y , s ( Z ) )
\negnat (X)\vee mult (0, X,0)
~mult (X,Y,W)\vee \negadd (W,Y,Z)\vee mult }(s(X),Y,Z
~at}(X)\vee\neg\operatorname{nat}(Y)\vee\neg\operatorname{mult}(X,X,Y)\vee\mathrm{ nat_square }(X,Y
```

- Query: nat $(s(0))$?
\diamond In order to refute: $\neg \operatorname{nat}(s(0))$
\diamond Resolution:

$\neg \operatorname{nat}(s(0))$	and	$\neg \operatorname{nat}(X) \vee \operatorname{nat}(s(X))$	with unifier	$\{X / 0\}$	giving	$\neg \operatorname{nat}(0)$
$\neg \operatorname{nat}(0)$	and	$\operatorname{nat}(0)$	with unifier	$\}$	giving	\square

\diamond Answer: (yes)

Generating squares by SLD-Resolution - Logic Programming (II)

- We code the problem as definite (Horn) clauses:

```
nat(0)
\negat(X)\veenat(s(X))
\negat( }X)\vee\operatorname{add}(0,X,X)
\neg a d d ( X , Y , Z ) \vee ~ a d d ~ ( s ( X ) , Y , s ( Z ) )
\negat( }X)\vee\mathrm{ mult (0, X,0)
~mult (X,Y,W)\vee \negadd (W,Y,Z)\vee mult (s(X),Y,Z)
~at }(X)\vee\neg\operatorname{nat}(Y)\vee\neg\mathrm{ mult }(X,X,Y)\veenat_square ( X,Y
```

- Query: $\exists X \exists Y$ add $(X, Y, s(0))$?
\diamond In order to refute: $\neg a d d(X, Y, s(0))$
\diamond Resolution:
$\neg a d d(X, Y, s(0))$ and $\neg \operatorname{nat}(X) \vee \operatorname{add}(0, X, X))$ with unifier $\{X=0, Y=s(0)\}$ giving $\neg \operatorname{nat}(s(0)) \quad$ (and $\neg \operatorname{nat}(s(0))$ is resolved as before)
\diamond Answer: $X=0, Y=s(0)$
\diamond Alternative:
$\neg a d d(X, Y, s(0))$ with $\neg a d d(X, Y, Z) \vee \operatorname{add}(s(X), Y, s(Z))$ giving $\neg a d d(X, Y, 0) \ldots$

Generating Squares in a Practical Logic Programming System (I)

```
:- module(_,_,[’sr/bfall']).
```

```
nat(0).
nat(s(X)) :- nat(X).
le(0,X) :- nat(X).
le(s(X),s(Y)) :- le(X,Y).
add(0,Y,Y) :- nat(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).
mult(0,Y,0) :- nat(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).
nat_square(X,Y) :- nat(X), nat(Y), mult(X,X,Y).
output(X) :- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).
```


A (very brief) History of Logic Programming (I)

- 60's
\diamond Green: programming as problem solving.
\diamond Robinson: resolution.
- 70's
\diamond Kowalski: SLD resolution (very efficient).
\diamond Colmerauer: Prolog ("Programmation et Logique"). Interpreter in Fortran.
\diamond Kowalski: procedural interpretation of Horn clause logic. Read:
A if B_{1} and B_{2} and \cdots and B_{n} as:
to solve (execute) A, solve (execute) B_{1} and B_{2} and,..., B_{n}
Algorithm = logic + control.
\diamond D.H.D. Warren: develops first compiler, DEC-10 Prolog.
* Almost completely written in Prolog.
* Very efficient (same as Lisp).
* Top-level, debugger, very useful builtins, ... becomes the standard.

A (very brief) History of Logic Programming (II)

- 80's, 90's
\diamond Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth Generation Project), US (MCC), Europe (ECRC, ESPRIT projects), leading to the current EU "framework research programs".
\diamond Numerous commercial Prolog implementations, programming books, using the de facto standard, the Edinburgh Prolog family.
\diamond Leading in 1995 to The ISO Prolog standard.
\diamond Parallel and concurrent logic programming systems.
\diamond Constraint Logic Programming (CLP): A major extension - opened new areas and even communities:
* Commercial CLP systems with fielded applications.
* Concurrent constraint programming systems.
- 2000-...
\diamond Many other extensions: full higher order, support for types/modes, concurrency, distribution, objects, functional syntax, ...
\diamond Highly optimizing compilers, automatic, automatic parallelism, automatic verification and debugging, advanced environments.

Also, Datalog, Answer Set Programming (ASP) - support for negation through stable models.

Applications (I)

- Many applications:
\diamond Natural language processing
\diamond Scheduling/Optimization problems
\diamond Many AI-related problems, (Multi) agent programming
\diamond Heterogeneous data integration
\diamond Program analyzers and verifiers
$\diamond \ldots$
Many in combination with other languages.
- Some examples:
\diamond The IBM Watson System (2011) has important parts written in Prolog.
\diamond Clarissa, a voice user interface by NASA for browsing ISS procedures.
\diamond The first Erlang interpreter was developed in Prolog by Joe Armstrong.
\diamond The Microsoft Windows NT Networking Installation and Configuration system.
\diamond The Ericsson Network Resource Manager (NRM).
\diamond "A flight booking system handling nearly a third of all airline tickets in the world" (SICStus).
\diamond The java abstract machine specification is written in Prolog.

[^0]
Applications (II)

The IBM Watson system (from WikipediA):
"Watson is a question-answering computer system capable of answering questions posed in natural language, developed in IBM's DeepQA project... it competed on Jeopardy! against champions Brad Rutter and Ken Jennings, winning the first place prize of \$1 million."

Adam Lally, John M. Prager, Michael C. McCord, Branimir Boguraev, Siddharth Patwardhan, James Fan, Paul Fodor, Jennifer Chu-Carroll: Question analysis: How Watson reads a clue. IBM J. Res. Dev. 56(3): 2:
"Prior to our decision to use Prolog for this task, we had implemented custom pattern-matching frameworks over parses. These frameworks ended up replicating some of the features of Prolog but lacked the full feature set of Prolog or the efficiency of a good Prolog implementation. Using Prolog for this task has significantly improved our productivity in developing new pattern-matching rules and has delivered the execution efficiency necessary to be competitive in a Jeopardy! game."

[^0]: $\diamond \ldots$

