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Short description:

In this deliverable we describe the experiences with the first case-studies. Deliverable D-7

presented a number of proposed case-studies in detail, in this deliverable we have worked out

four case studies in more detail, and have an initial set of results.

The first case is the static strength reduction on floating point operations. Although this case

was the most advanced in terms of pervasive systems, it turned out to be the most rewarding

in terms of the use of state-of-the-art specialisation tools. We can perform fixed-point analysis

using standard program analysis tools, which has simplified the process of fixed point analysis,

and has allowed us to experiment with various algorithms for fixed point analysis. One algorithm,

a Kalman filter, has been studied in detail.

A second case-study that we undertook related to the timing analysis. This case study yielded

interesting results, but did not use off-the-shelf analysis tools. As such, it is an interesting test

case to show the use of analysis techniques, rather than the analysis tools.

The third case-study is an emulator of the PIC micro-controller written in Prolog. This em-

ulator can be specialised with respect to a given (legacy) PIC program and given inputs charac-

teristic of environments such as regular patterns on communication channels. The residual code

can then be analysed in order to discover properties of the PIC program.

The fourth case-study is a program for access right management. This is the user’s ability

to access resources, for example a printer that one is walking past, at the printer’s discretion. It

is a rule based program that is written as an interpreter of the access rules. We specialise the

interpreter in order to reduce the overhead. We find that there is virtually no overhead left in this

case.

The case-studies provide both a demonstration of gains that can be made in the pervasive

domain, and a genuine test of the scalability of the analysis and specialisation tools, since the

interpreters and their specialisations are definitely not toy problems, but contain in some cases

thousands of lines of Prolog code, with high-arity predicates.
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1 Introduction

Over the second year of the project we have tested analysis and specialisation techniques, and

their respective tools. We have selected a number of case studies from the pervasive domain, and

used existing techniques and tools to identify how program analysis and specialisation can aid in

developing pervasive systems.

In particular, we have selected the following areas that we expect specialisation and analysis

techniques to help achieve an improvement:

Memory foot-print. Pervasive systems are typically designed with little memory, in order to

reduce both production costs and system size. When developing software for pervasive

systems, one wants to reduce memory requirements; both in the code memory, which is

related to program size and the number of initialised variables, and in the data memory,

which is defined by the number of variables used and the size of any scratch-pad areas used

in computation.

Power consumption. To be truly pervasive, systems must be powered by batteries, or some

reusable supply. Amongst the sources of scavenged power are solar cells, and the harvest-

ing of kinetic or magnetic energy from the environment of the device. Power efficiency

prolongs battery life, or reduces the size of power scavenging units. In less pervasive

contexts where power supply is virtually unlimited, for example in a car, low power will

ultimately reduce fuel consumption. Power consumption can be reduced in various ways,

including using fewer instructions to achieve a goal, using simpler types of instructions

to achieve a goal, and maintaining less state during the pursuit of the goal. There are

other ways of reducing power consumption that are outside the scope of this deliverable,

in particular the reduction of power consumption on wireless networks.

Correctness. It is often hard to upgrade the software on a pervasive system once it is out in the

field. Even though virtually all software will be stored in some form of non-volatile RAM

or FLASH memory, it is often logistically difficult to upgrade the software embedded, for

example, in a washing machine.

Deliverable D7 identified six case-studies, describing each in detail. Three of the case-studies

from deliverable D7 were selected for this deliverable, plus one extra case-study that we think is

appropriate. Each of these four case-studies show improvements in at least one of the three areas

above.

The four case-studies described in this deliverable form the first round of experimentation on

the project. After concluding our study of these case-studies we will move to a second round,
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the results of which will be described in Deliverable D25. We expect two of the case-studies de-

scribed in this deliverable to be extended to the second round, and two or three new case-studies

that required more mature tools to be developed. The second round of case-studies will involve

experiments that are more challenging of the tools, but which aim to achieve improvements in

these same target areas.

1.1 Method

We present the case-studies below, in Sections 2–5. We have broken each-study into several

sections, which are organised as follows:

Problem description. This gives a short introduction to the case study, and explains the objec-

tives of this particular case-study.

Background. The background consists of other attempts to solve this problem. The problems

are often well recognised in literature. Often, using program analysis tools simplifies the

approach to solving the problem.

Approach. The approach details which program analysis techniques and tools are required to

deal with this problem. We detail how the techniques were applied in order to achieve our

results. We also highlight applicable differences between these tools and techniques and

the conventional approaches.

Results. The results can be quantitative (reduction of memory requirements byX%), or qual-

itative (the ability to spot certain types of errors). Depending on whether the case-study

works on legacy code or attempts to generate new programs, there may be comparisons

with existing code.

Future Work. Some of the case-studies have posed more questions then they provided answers.

Some of the future work might require us to come back to the case-study in the second

round

We give a brief overview of the case-studies in the next section, whereupon Table 1 in Section 1.3

shows how each case-study contributes to the overarching aims.

1.2 Case-studies

The first case-study is thePrecision Interpreter, and is discussed in Section 2. In this section

we study the mapping of floating point operations onto fixed point operations. The method
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that we use is that we create an interpreter for arithmetic expressions; the interpreter is then

specialised to a particular program, and we plan to then specialise it further to code. We did not

set out to invent new algorithms for mapping floating point arithmetic to fixed point arithmetic,

but merely to create a framework that easily allows experimentation with various algorithms.

Although this test case was the most advanced in terms of pervasive systems, it turned out to be

the most rewarding in terms of the use of state-of-the-art specialisation tools. We have obtained

preliminary results on this case, and will continue our research into this case for the final round

of case studies.

The second case-study that we undertook related is theTiming Analyserin Section 3. In this

study we develop a program that analyses legacy-code, which informs us about the timings of

the piece of legacy code. The timing information can be inspected and tell us whether the legacy

code is behaving correctly or not. This case-study yielded interesting results, but does not use

off-the-shelf analysis tools. As such, it is a case that shows the use of analysis techniques, rather

than the analysis tools.

The third case-study is thePIC Emulator, in Section 4. In this case we model the function-

ality of a PIC processor [40] as an emulator written in Prolog. The PIC emulator is specialised

with respect to a given (legacy) PIC program and given inputs characteristic of environments

such as regular patterns on communication channels. We then apply analysis techniques to the

specialised emulator in an attempt to discover properties of the PIC program, such as constant or

undefined register values and detection of dead code and other forms of redundancy. The special-

isation process uses theLOGEN partial evaluator and Binding Time Analysis that is developed

in other parts of the project, and general-purpose analysis tools are applied to the specialised

program.

The fourth case-study is theAccess Right Verifier, in Section 5. In this case study we inves-

tigate access rights management. This is the user’s ability to access resources on a server, at the

server’s discretion. We investigate using an interpreter that evaluates the access rules, and then

specialisation of the interpreter to reduce the overhead of this approach. We find that there is

virtually no overhead left in this case.

1.3 Contributions

Each case study exercises a particular set of techniques and tools, and aims to achieve one or more

of the goals listed before. In Table 1 we list the four case studies and their main contributions.

The PIC Emulator and Access Control Verifier case studies will address the reduction in

memory size in detail. We expect that the PIC emulator can point out how legacy PIC programs

can run in a smaller foot-print, and the Access Control Verifier is an example as to how a program
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Case-study Memory Power Correctness

Precision Interpreter
√

Timing Analyser
√

PIC Emulator
√ √ √

Access Control Verifier
√ √

Table 1: Contributions of each case-study.

that would seemingly need a large memory foot-print can run in a smaller amount of memory.

To an extent the Precision Interpreter also deals with reduced memory foot-print, but we expect

the gains to be marginal.

Reducing power consumption should be achieved by three of the case studies. The Precision

Interpreter should show how to execute a program with few fixed point instructions, rather than

to emulate floating point (for embedded devices that do not support floating point natively, such

as the StrongARM, PIC, and many DSPs). The PIC emulator should be able to spot dead code

in legacy applications, and the Access Control Verifier case study should demonstrate that a

complex rule driven program can run in a small memory foot-print.

The Timing Analyser and the PIC emulator address correctness – in both cases of legacy

code. The PIC emulator addresses correctness in a low level analysis of the encode, spotting

read-before-write hazards, and write-after-write instances (which may not be incorrect, but just

address dead code). The Timing Analyser assesses the timing characteristics of dead code.

The two case studies study legacy code (the Timing analyser and the PIC Emulator) are both

aimed at the PIC16F84 micro-controller, but both are aimed to be retargettable with a minimum

effort. The two other case-studies work to high level languages, the Precision Interpreter operates

on a domain-specific language, whereas the Access Control Verifier is implemented in Prolog.

An important part of the case-studies effort is to practically use the techniques and tools that

we develop, and identify their applicability in the pervasive domain. To this extent, we have

tried and employed different tools and techniques for each of the case-studies. A summary of

which tools were used in which of the case-studies is presented in Table 2. The tools marked

with a “(
√

)” have only been used for preliminary experimentation at present. All but one of

the case-studies require abstract interpretation. Ciao is used in all case studies except for the

Timing Analyser, which does not use any tools, it applies program analysis techniques. The

specialisation tools are used in the other three case-studies. More details on our experiences with

the tools are in Section 6.3.
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Case-study Abstr Int Ciao CiaoPPLOGEN SP

Precision Interpreter
√ √

(
√

) (
√

)

Timing Analyser
√

PIC Emulator
√ √ √

(
√

)
√

Access Control Verifier
√ √

Table 2: Deployment of tools and techniques.

1.4 Future case-studies

Not all case-studies defined in Deliverable 7 have been addressed in this first cycle. In the second

cycle of case-studies, we intend to address abstract interpreation and specialisation of matrix

operations in the Kalman Filter and analysis of the Stream Interpreter.
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initialise state;

forever {

obtain readings;

modify state using readings;

produce output from state;

}

Figure 1: Structure of many low level data processing applications.

2 Precision interpreter

In this section we present a program that is used to compile code for digital signal processing

tasks. We show that we can develop a simple interpreter for this problem (rather than a compiler),

and how we can specialise this interpreter, and finally generate PIC code from this interpreter.

The ambitiousness of this case-study means that in this deliverable we just present initial

quantitative results. We show that the approach is feasible by producing a working implemen-

tation. We will conclude this case-study in the second round by producing qualitative results to

show the effects of specialisation on performance for this domain.

2.1 Problem

Many programs on pervasive and wearable systems are based aroundfiltering input data. For

example, an accelerometer will read accelerations 100 times per second, and we need a program

to from these accelerations decide when a person makes a step. Or an ultrasonic microphone may

pick up chirps, and we need a program to translate the timings of those chirps into a location.

The code for all those algorithms follows a fairly well established path, shown in Figure 1.

The code to modify the state is usually very much straight line code, but may have a few decisions

in it. It is unusual for the code to contain any unbounded loops (other than the outermost forever

loop), because the readings must usually be processed in real time. Many programs follow the

above model. Examples include Kalman filters, Particle filters, Windowed averages, etc.

A simple example of a program of this nature is shown in Figure 2. It is a crude but highly

effective program to identify a person’s steps given acceleration data from an accelerometer.

The program calculates average energy levels over the last few samples, by using a decaying

average. One average is changed at low frequencies only, the other has a higher frequency cut-

off (governed by the constants0.95 and0.80).

For the code in Figure 2 to be used effectively, it needs to be run on a micro-controller. This

6



double lowFrequency = 0;

double highFrequency = 0;

boolean madeStep = false;

forever {

double m = acceleration();

m = m * m;

lowFrequency = lowFrequency * 0.99 + 0.01 * m;

highFrequency = highFrequency * 0.80 + 0.20 * m;

if (highFrequency > lowFrequency) {

if (!madeStep) {

madeStep = true;

step_detected();

}

} else {

madeStep = false;

}

}

Figure 2: Program to detect steps.

need arises both from the lower power consumption of the micro-controller, and also from the

smaller form factor. These issues would currently prevent a more general and powerful processor

from being used in the application. We can implement the program on a micro-controller in

several ways:

• We can use a C compiler for a PIC and translate the code above. The multiplications on

double precision floating point numbers will be translated to a library call that implements

floating point semantics, each floating point operation will require 1,000-2,000 instruc-

tions, or 7,000-14,000 instructions in total.

• We can hand translate the code to PIC assembly. We actually made this step, and in the pro-

cess we realised that the floating point numbers can be implemented as very low precision

numbers. Sixteen bits accuracy is sufficient for the two state variables (lowFrequency

andhighFrequency ), given that the input precision (mis only eight bits). We also no-

ticed that the range of the numbers is completely fixed, sincemwill always be in the range

[-2..2]. This fixed range obviates the need for any computations on the exponent part of the

floating point number. Finally, we observed that changing the constants slightly, radically
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simplifies the computation. Instead of the number0.80 we use0.75, instead of0.20 use

0.25, instead of0.99 use0.9921875 and instead of0.01 use0.0078125; all these changes

replace repeated fractions in bit patterns with a number of the form2−k or 1−2−k. Hence,

multiplication by the last number simply consists of a “shift right” operation by seven bits.

This version of the program takes 40 instructions to execute, gaining a factor 175-350

over the C version (which reduces power consumption of our program by two orders of

magnitude).

• The third way, and the subject of our case study is to write a compiler that can take the

program above and that, given a small set of annotations will generate code that is close to

the program that was hand-crafted in assembly.

The advantage of the last solution is that the programmer can experiment with precisions and

change their code without great effort.

This problem is a well known problem in computer architecture and compiler design, mainly

in the areas of multi-media code generation (the MMX instruction set of Intel), and DSP code

generation. In general one is trying to map an algorithm that is used onreal numbers (the

mathematical setR) onto an implementation that usesfixed pointnumbers (the set of numbers

{k2n|k ∈ Z. − 2b ≤ k < 2b} for somen ∈ Z andb ∈ N). The general problem is hard and

requires intimate analysis of the problem, but with sufficient annotations a reasonable mapping

can often be made. In the example above, some of the observations made when hand crafting

code in PIC assembly can be added to the code as annotations at source level.

The issue is to have a balance in the number of annotations required. For some operations it

is very hard to statically analyse the precision, or to reason about precision, for example division.

For other operations, such as addition and multiplication, it is easy to reason about the precision.

With this case study, it is our goal to find a way to experiment with different algorithms that

implement this mapping — we are not in particular interested in inventing a new algorithm to

perform the mapping.

2.2 Background

There has been extensive work in the literature about directly specifying the precision of vari-

ables. This work ranges from simple statistical approaches to finding the range of a variable,

through to analytical approaches based on propagating the precision between operators. In the

literature that we consider, the language used to write source programs is a variant of C. This is

usually an extension of C to allow variable types to be declared with annotations. Sometimes the

annotations directly specify the size of the variables and which bit-positions are used. In some

8



cases a new type is introduced that looks like a float to the programmer but represents a fixed

point number for the compiler. Most of the approaches are directed at DSP applications and so

offer support only for fractional fixed point numbers, not for arbitrary bit-positions within the

word, above or below the binary point.

2.2.1 FRIDGE: Fixed-point pRogrammIng DesiGn Environment

The FRIDGE project [54, 29] started in the late nineties, and specifically aimed at programming

DSP style processors. The input language is a superset of ANSI-C, with a data type for fixed

point arithmetic. They have a tool that translates programs written in ANSI C (with just floating

point numbers) into Fixed-C (with fixed point numbers), then they have a tool that goes from

Fixed-C back to ANSI-C, translating any fixed pint operations into integer operations, with shift

operations that keep the binary point in the right place. So, in effect FRIDGE offers a ANSI-C

source-to-source transformation

In particular, no assembly code is generated; it is up to the back-end of the C-compiler

to generate efficient code for fixed point operations. Although this makes FRIDGE portable

to any architecture, it will probably generate sub-optimal code. For example, if one wants to

multiply two 32 bit numbers which both represent numbers in the range [-1..1], then one needs

a multiplication that discards the low 32 bits of the answer, rather than the high 32 bits. In order

to achieve this in C, one will have to cast the int to a 64-bit long, perform the multiplication and

shift the result right by 32 places. The compiler will have to spot this sequence of instructions

and generate the instruction that multiplies two numbers and keeps the high part.

Internally, FRIDGE uses a propagation of interval arithmetic over the program. FRIDGE is

applicable to a large class of programs.

2.2.2 Fixed Point Refinement

The Ocapi project at IMEC aims to provide an environment for the design of reconfigurable

systems. As part of that, they have designed a component that maps floating point numbers to

fixed point numbers [12]. The method that is applied by Cmar et al. is highly interactive, aimed

at implementing the computations in (reconfigurable) hardware. Their main concern is to deal

with the quantisation errors that are introduced when the results of computations are stored in a

small number of bits.

Cmar et al. have chosen to perform all their computations in high precision, and only quantise

the number if the user explicitly asks for a quantisation, for example by assigning the number

to a fixed point variable (signal). The user has very fine control over the operations, as they can
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choose between signed and unsigned numbers (we only deal with signed numbers, for simplic-

ity), specify rounding modes and saturation modes, in addition to specifying the number of bits

and the exponent that are required.

2.2.3 Autoscaler

At the Multimedia Systems Laboratory of Seoul National University, Korea, two projects aim to

optimise and compile fixed point code [30, 32]. Fixed Point Optimisation Utility by Kim et al.

Similar to the FRIDGE project, the AUTOSCALER is a source to source code translation, taking

ANSI-C and producing ANSI-C. The difference is the method employed to get to the answer.

The AUTOSCALER approach defines the code generation as an optimisation problem, the cost

functions is defined in terms of the overhead of the generated code, and standard optimisation

algorithms, such as simulated annealing and linear programming are used to generate an answer.

In order to generate ranges, the AUTOSCALER uses a statistical approach, generating ranges

that are usually big enough (but maybe not always). The algorithm is executed with an input

signal which is generated based on statistical properties of the expected input, and the range of

each variable is monitored. The advantage of this approach is that it works on any calculation,

linear or non-linear, but it requires a model of the input signal.

2.2.4 Emdedded ISA Support

In [1] Aamodt et al. describe a new instruction set architecture that explicitly supports fixed-

point formats through the introduction of a new instruction. The Fractional Multiplication with

internal Left-Shift (FMLS) reduces the rounding noise and enhances run-time performance by

allowing a more direct representation of a fixed-point algorithm in an embedded ISA. This new

instruction has an associated algorithm, Intermediate-Result-Profiling based Shift Absorption

(IRA-SP) which discards internal most-significant-bits that that are redundant because of inter-

operand correlations.

2.2.5 R2D2 project

Menard et al [39] are investigating the automatic synthesis of components within a reconfigurable

computing context. The components are designed using floating point operations and then refined

into a finished product using fixed point operations. Generally applicable techniques are used to

synthesise appropriate architecture and then generate code to execute upon these architectures.

This technique falls into the area ofarchitecture aware compilation. They use a SQNR metric as
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a precision constraint, then optimise with regard to execution speed, within that contraint. The

analysis techqniue used is data-flow propagation on the necessary precision.

2.2.6 Comparison

There are two approaches to the problem within the literature. For the types of programs that are

under consideration in this context, there are no irregular control flows. All loops are bounded

statically at compile-time and hence code can be considered to be straight-line. Given this lack of

variability in control-flow it is feasible to perform an exact analysis over the program to propagate

dynamic ranges from variable to variable. This produces a precise solution for the translation,

no overflow errors can occur in the translation because it is a conservative over-approximation.

The other approach is to simulate the program and to test the ranges of variables over a range of

inputs. This gives a statistical solution with a low probability of overflow occurring in the output

program.

The simulation approach will be more efficient as it produces a tighter specification for the

program variable ranges. This increased efficiency comes at the cost of a possible overflow at

runtime, and the problem of generating appropriate test vectors that cover the program correctly

for each input. The analytical approach gives guarantees of correctness (with respect to over-

flow), but the hull of variable ranges is more conservative.

Our approach is an analytical method that increases the precision of the analysis whilst main-

taining the safety guarantees that a conservative approximation gives. It differs from the pre-

vious approaches to the problem by describing and analysing the algorithm under development

in a high-level domain-specific-language. This language uses real numbers and gives precise

guarantees of bit-accuracy - unlike an algorithm described using floating point arithmetic. This

algorithm is arbitrary precision, and can automatically be synthesised to the required precision

for a particular problem.

One major benefit of the language approach is fine-grained control over the possible opera-

tions that can be performed in source programs. This is not available when performing source-

to-source transformations on a pre-defined language where a lot of effort will go into handling

corner cases. One example of this is the lack of an explicit division operation in the language -

scaling is performed by multiplication with representable fractions. This removes the difficulty

of analysing division operation which can destroy the precision of an analysis result (the worst

case for any non-trivial interval is an infinite width result).
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2.3 Approach

Our approach has two main novel features. Most previous approaches have focused on the use

of a compiler to solve the problem. This has been necessary because of the overhead that an

interpreter would impose. We use an interpreter, this provides a large decrease in implementation

effort and allows us to try many different techniques for the analysis. The other novel feature is

using a specialiser to automatically compile code from the interpreter. This technique is more

common in higher-level languages but has not been tried at this low-level before. The goal

of our research is to realise the benefits of these features by producing a system that has both

clarity and simplicity. We believe that the introduction of these qualities will greatly improve the

development process in this area.

Interpreters offer clarity and simplicity because they are written in code with only local ef-

fect. A pure interpreter is decomposed into a structure that reflects the decomposition of the

problem. The lack of global effects, and the hierarchical structure can be represented directly in

a functional or logical language without any extra overhead. Although the solution to the prob-

lem contains no overhead, there is still a considerable overhead in mapping from the language

to this program structure for each instruction. This is called the interpretive overhead and is

one reason that a symbolic implementation like this would not be suitable for the resources of

our target system. In order to produce code that is efficent enough to meet these constraints we

must compile from our domain language into a target object form, removing the interpretative

overhead. This compilation is performed automatically by the ASAP tool-set (Ciao) using the

techniques that we describe in this report.

Previous research has focused on solving the annotation problem, and in generating code for

fixed point operations. Our goal is not to invent a new technique for defining the precision of

operations — this area has been thoroughly explored by others, such as the projects described

earlier. Our goal is to change the method used to solve the problem. We will show that the tool-set

is powerful enough toautomatically generatea compiler for the problem, from an interpreter. As

the interpreter is easier to write than the compiler, this results in a significant reduction of effort

for the compiler designer. Interpreters are simple enough to allow more experimentation, and

avoid part of the system being set in stone. This increase in flexibility will have direct benefits

— as a side-effect of our research we have found a new method of assigning precision.

For our approach, two interpreters are written. One is an interpreter of the domain language,

in this case the domain is precision specified code. The second interpreter is of the target instruc-

tion set. At present, we have only implemented the first interpreter; the second interpreter will

be implemented as part of Task 8.2. For the target interpreter it is important that each instruction

in the target Instruction Set Architecture (ISA) has a one-to-one mapping with a predicate in
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the interpreter. We perform compilation by specialising the domain interpreter with respect to

the program. This interpreter is written in a subset of Prolog that maps onto the predicates for

instructions in the target interpreter. This corresponds to writing an interpreter in the target ISA

for the domain language - but is much easier. This simplicity comes from writing in an extension

of the target language, where that extension includes normal Prolog control-flow and constructs.

At specialisation-time we specialise the domain-interpreter onto the extension, which gives a

syntactic isomorphism when the target ISA. For practical reasons, we have written the domain

interpreter directly in the extension (as described above), but this can be seen as equivalent to

two applications of the first Futamura projection.

In the rest of this section describing our approach we shall describe the work flow for the user

and compare it to a conventional approach in Section 2.3.1. In Section 2.3.2 we will describe

the target domain and provide a motivating example. Then in Section 2.3.3 we will describe the

staging issues in writing a multi-level interpreter. Then we shall cover the individual stages in

Sections 2.3.4, 2.3.5 and 2.3.6.

2.3.1 Design process for generated compiler

Easy and rapid development of the domain language is our goal. In Figure 3 we illustrate the pro-

cess used to compile a program from the source domain into the target form. We have shown both

the conventional approach, based on writing a compiler for the domain, and our approach, based

on writing an interpreter and automatically generating the compiler. The problem of writing an

entire compiler is that it involves a lot of work and it is very hard to verify. The conventional

approach to constructing the domain language is therefore reduced to using an existing language

and modifying it to support the features of the domain. We will compare this process to our own

development, and note that the alternative is much harder and lengthier. In the case of deriving

precision in filter codes the normal language chosen is C and the compiler that is modified is the

SUIF compiler [55].

There are four forms that the program exists in, that are common to both approaches:

Domain Specific Language (DSL)This language is defined by the user to reflect the problem

domain. In the conventional approach the DSL is C with annotations to describe the preci-

sion of a set of variables chosen by the user. Our approach is not limited by the semantics

of an underlying language and any appropriate set of language constructs can be defined

as the DSL.

DSL Representation In the conventional approach the program is translated to a modified SUIF

parse-tree. This requires modification of the SUIF format to change the parser. Our parsed
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representation is as a set of Prolog predicates; describing each program point.

Annotated Hull At this stage, the set of program variables is fully annotated with the size of

each variable. Various approaches are used in the literature to produce this full set from the

supplied set of annotations. Two types of technique are statistical simulation and analysis.

The former produces a tighter result with no guarantee of correctness. In contrast, the latter

produces a safe over-approximation with no guarantee of efficiency.

Target In both the conventional approach and our own, the output is an object file in the ISA of

the target processor. For this study our target is the PIC micro-controller. This architecture

is not currently supported in SUIF (to the best of the authors knowledge). In the general

case our goal is to target specialised micro-controllers that will not have support from

mainstream compilers. We think that a fair comparison between approaches would include

writing an appropriate back-end for SUIF.

Given these four forms, there are two processes that concern us. The process of develop-

ing this system (the work-flow of the domain designer) and the process of compiling programs

from the source domain to the target language. The work-flow under the conventional approach

requires the following tasks:

• Modify SUIF format / parser

• Perform hull analysis on internal SUIF representation

• Write a back-end for target system

The work-flow under our approach is much simpler for the designer.

• Write an interpreter for DSL in subset of Prolog

• Write an emulator of target system in Prolog

• Perform analysis on DSL

In the remainder of this section, we present the particular Domain Specific Language that we

targeted, but it should be stressed that the method extends to other DSLs,and to other algorithms

for mapping reals onto fixed point representations.
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2.3.2 Domain Specific Language

The language that we use supports arithmetic, assignment, and a system-wide loop. Other oper-

ations can easily be added at the front-end, such as as conditional execution, bounded loops,or

non recursive functions. However, the code above suffices to implement a Kalman-filter, the

most complex operation we wish to investigate.

We assume that data is streamed into and out of our program. IE, each iteration of the system

loop, some new data is available for processing. We assume that a surrounding system takes care

of synchronisation and delivers the data to the loop. Similarly, we assume that output data is

streamed out of our program.

The programming language supports two classes of variables, state variables (which hold

their value between iterations of the loop), and temporary variables, which hold values inside the

loop but that are reinitialised on every iteration. The state variables are updated exactly once on

every iteration. The values that they are updated to are deferred until the end of the loop iteration,

and they are changed between iterations of the loop (similar to single assignment languages).

The state variables must be annotated with their desired precision. This is necessary to ensure

that we can construct a conservative approximation. Without a pre-determined solution for the

state variables, most programs will tend to increase the precision required on each cycle. This

clearly tends to infinite precision and has no conservative approximation that we can use. The

state variables are also a natural place to clamp the precision as the designer knows how much

memory is available to hold the state between iterations. Only the algorithm designer can decide

to what precision the state variables should be maintained. The temporary variables can be

annotated if people wish to, and if no annotation is given, the precision interpreter will infer

precision for those variables and all other (unnamed) intermediate results.

Apart from the state variables, the algorithm designer has to specify the precision of the input

and output streams. Inputs on a pervasive system often come from hardware components, such

as an A/D converter or a timer. All those components have a well defined precision. (Note that

the precision of a A/D converter is hardware dependent, and that one may have to re-run the

precision interpreter if the program is ported to a device with an A/D converter with different

precision.) The designer decides what precision outputs they are interested in. For example, one

may want to measure a location with 10cm resolution, as opposed to 2mm.

An example program is shown in Figure 4. This is a Kalman filter operating on one input and

one state. It is easily extended to multiple inputs and multiple states, in which case one would

definex to be a vector with each element having a specified precision. These precisions may be

different because the elements of the vector can represent qualities in different units, or because

our scale is different on each axis. We would assume that arbitrary expressions defining vector
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input<0:-7> z;

output<0:-7> zpred;

state<7:-7> k = 1 / 2;

state<3,-4> h = 1;

state<0,-7> q = 1 / 64, residual = 0, xbar = 1 / 64,

pbar = 0, x = 1 / 64, r = 1 / 32;

state<1,0> a = 1;

state<-4,-6> p = 1 / 32;

forever

{

xbar = a * x;

pbar = a * a * p + q;

zpred = h * xbar;

residual = z - zpred;

k = pbar * h * inv(h * h * pbar);

x = xbar + k * residual;

p = (1 - k * h) * pbar;

}

Figure 4: Kalman filter example code

indices were not possible, and hence any program using vectors could be translated to one in

the scalar language that we work with. One interesting feature of the program is that the output

statement is in the middle of the loop. This highlights the order independence of evaluation that

occurs because of the semantics of the stateful variables. It is worth noting that introducing a

temporary variable into the program (other than those that exist implicitly within the expressions)

would remove this order independence, as temporary variables do not hold a dual state.

Once the program has been parsed it is represented as a set of predicates that describe the

control data flow graph (CDFG). We show a graphical representation of this form in Figure 5.

2.3.3 Interpreter and staging

In this section we describe the interpreter of the DSL that the user of the system must construct.

The interpreter must fulfil three functions;

Precision definition The predicates of the interpreter are an executable definition of the seman-
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tics of each operator in the DSL, and how the precision of values is propagated through

those operators.

Hull refinement If the current operation in the interpreter provides more information about the

program hull than is currently known, then the hull must be refined with the extra informa-

tion to produce a tighter analysis of the variable ranges in the program.

Operator definition Each operator in the DSL is implemented in the interpreter, thus it gives a

concrete semantics for each operator.

As an example, consider an add operation in the DSL. Suppose one operand is known to

be a number between -8 and 8 with a resolution of 0.25. We will represent this interval as

[−8, 8, 0.25). This interval is closed beneath (contains the value -8), and open above (does not

contain the value 8). This operand can be represented in six-bits. The second operand is in

the interval[−2, 2, 1). The interpreter fulfil the three functions above as follows. The output

precision of the operation is the interval[−10, 9, 0.25). This is a seven-bit value. The semantics

of the operations is that bit 0 of the second operand should be added to bit 2 of the second

operand, and the other bits with the same relation. The final function of the interpreter is the hull

refinement, this is the most difficult to encode. The seven-bit result for the add operation may be

overly conservative, but in order to find this we need to propagate the precision that is actually

used at a later point in the program back to this point. This is a global analysis problem (in the

general case, although there are some specific cases that can be analysed locally), and it is very

hard to encode this cleanly in a pure interpreter.

Our first experiment tried to perform the hull refinement within the interpreter. If this could be

performed then all of the hull refinements are static computations that the specialiser will reduce

out. This experiment was less than successful. The resulting interpreter was very complex. In

general, an interpreter will handle state lookup and modification at the outermost level. The parts

of the state being used for each function within the interpreter will be passed directly as values.

This design creates an outermost loop isolating the complexity of maintaining the state, the rest

of the interpreter can be seen as predicates modelling the operations in the language as relations

between values. If we perform hull refinement as the interpreter is executing then we cannot

maintain this clean separation between value mapping, and state modification. The precision of

each value is passed into each predicate, and the resulting precision has to be integrated with the

global store of precision ranges. This is unavoidable as the analysis required for hull annotation

is a global problem. This annotation is encapsulated at each program point, and so we now have

two global states to be manipulated. Unlike the value state, this precision state is bidirectional

and so cannot be restricted to one outer loop.

19



The main result of the first experiment was that the resultant interpreter was too complex

to perform an automatic BTA upon. The implicit mixture of global analysis code and local

interpretation is beyond the current state-of-the-art. We did not consider it feasible to manually

annotate thousands of lines of Prolog. This version of the interpreter failed to meet the research

goals of simplicity and clarity. Instead we performed a second experiment, in which we wrote

the interpreter as a multi-stage program. A stage is a partition of the computation based on the

availability of data. Two normal stages within specialisation are compile-time and run-time. We

have introduced a third stage; analysis-time. We separate the hull-annotation functionality from

the semantic definitions within the interpreter and place them in a pre-phase. This stage of the

code is executed before the specialisation of the interpreter. The result of this separation is that

the entire precision hull is now a static parameter for the specialiser.

Staging is not a syntactic construct within Prolog. Examples of staging as language con-

structs are C++ templates and the language MetaML[52]. C++ templates are an example of

embedding a compile-time computation within a language using staging. They are a syntactic

construct within the language that has a defined stage (compile-time). MetaML offers syntactic

support for the programmer to define arbitrary nesting of stages (delayed computations). Without

this direct support in Prolog we have manually split the interpreter into two parts, and we then

explicitly sequence them. A staging construct that was recognised by the tool-set (in particular

as a hint to the BTA that one entire computation would conclude and produce static data) would

allow this manual partitioning of the interpreter to be reversed, and give better localisation of the

functionality. This approach is not feasible within the scope of this task, but could be considered

in a later task (8.2).

Our manual staging of the interpreter has resulted in three phases. The initial input to the

interpreter is the DSL program and its associated partial hull. This is provided to the analyser,

which builds a complete hull. We describe the operation of this in Section 2.3.4. The output of

the analyser (which can be seen as a stage within the interpreter that has been partitioned by hand)

is a program with a complete precision specification for each variable. This program is executed

by the domain interpreter. In Section 2.3.5 we describe how this interpreter is specialised to

produce an executable program. In Section 2.3.6 we conclude this description of our approach

by describing the generation of target code through the specialisation of the second interpreter.

Given a fully annotated program we then have an interpretative problem. For each point in

the program there is enough local knowledge to execute the point. This problem has a natural

expression as a program interpreter. We can then use the ASAP tools to specialise this interpreter.

We are specialising with respect to the interpreter inputs: the program, and the ranges of each

variable. The output of this specialisation is a Prolog program that operates on a stream of values.

This residual program efficiently executes the target program at the specified precision. This
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result is still too heavy weight for our target architecture. For more heavyweight architectures

(such as microprocessors) it would be feasible to compile this Prolog code into C, and then

into a binary for the system. The high-level Prolog control-flows in the interpreter have been

eliminated, leaving only the simple control-flows within the DSL which can be easily scheduled

and converted to native code. The overhead of the interpreter, and of having an arbitrary precision

algorithm are both reduced away.

2.3.4 Analysis Stage

The analysis stage can be seen be in two ways. In it an integral part of the interpreter, defining

the semantics of the precision of values and how they propagate through the values in the lan-

guage. But it is also a global analysis problem executed in a pre-phase. We have performed this

separation manually, to create a stage that is an explicit module separate from the interpreter.

Throughout this description it should be noted that with language support in the tools for explicit

staging, this analyser could be an integral part of the interpreter, with the corresponding ease of

use for the interpreter writer.

Representations The ease of use that we gain by developing the interpreter in a logic language

can be seen when we define the analysis. In order to perform analysis of the values within the

DSL we have to define a representation. This representation is isolated from the rest of the

interpreter as we consider the output of this stage to be a static value. We have been able to easily

experiment with two different representations for the analysis. Each representation defines the

bounds of a variable, and the precision (or number of steps between values).

Interval Representation This domain uses a direct projection from the interval representation

to the bounds. So an interval of[−3, 4, 0.5) would allow the representation of the values

-4,-3.5,-3 ... 3,3.5. Given the interval[L, U, S) we can represent the valuex whereL ≤
x < U , andx1, x2 ∈ [L, U, S) : x1 6= x2 → |x1 − x2| ≥ S.

Logarithmic Representation This domain uses a representation of the exponents which are

projected onto the value bounds using the base 2. So the same interval as above would be

[−2, 2,−1). Given the interval[L, U, S) we can represent the valuex where2L ≤ x < 2U

andx1, x2 ∈ [L, U, S) : x1 6= x2 → |x1 − x2| ≥ 2S.

Given the representations of the operands for an operator in the DSL we can now define the

representation of the resultant value. We now show the definitions for both representations, and

show the result on a simple chain of addition statements in order to demonstrate the widening
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Operation RU RL RS

R = A add B AU + BU AL + BL min(AS, BS)

R = A sub B max(AU , BU)−min(AL, BL) min(AL, BL)−max(AU , BU) min(AS, BS)

R = A mul B AU ·BU AL ·BL AS ·BS

R = A div B undefined undefined undefined

Table 3: Precision semantics of interval representation

that one representation imposes. The simple chain is shown in Equation 1.

x = y1 + y2 + y3 + ... + yn (1)

Each operation that we consider is a binary operator, and so we use the same form for

eachR = A · B whereA, B andR are all intervals with upper, lower and step elements, e.g.

A = [AU , AL, AS). Firstly we consider the interval representation, which we show the precision

semantics of in Table 3.

The result of the expression in Equation 1 then depends on the intervals ofy. For simplicity

we shall assume that ally have the same interval and that it is the simplest possible interval

[1, 0, 1), that is, eachy is a single bit. We can now see that the resultant interval forx is [n, 0, 1)

and the bounds onx are0 ≤ x < n. There has been no widening in the result.

If we consider the same expression in the logarithmic representation (Table 4) then we can

see that for each of then add expressions we will add at least 1 to theU of the sum so far. This

will produce almost the same result[n+1, 0, 1) but now this represents bounds of20 ≤ x < 2n+1.

An exponential increase over the interval representation. This widening occurs because the worst

case is that each of the sums overflows, but we can see that it is not possible for all of them to

have sufficient value to overflow at each step. It is necessary to utilise some other information to

restrict the intervals and produce a more efficient result.

Analysis techniques to compute the hull Previous research into the analysis has used the

logarithmic representation. The advantage of choosing the logarithmic representation is that

the operators in the language domain (addition, subtraction, multiplication, and division) all

become linear in the analysis domain. Addition and subtraction map to successor and prede-

cessor functions in the analysis domain. Whereas multiplication and division map to addition

and subtraction. Analysis directly on the interval representation is difficult, as the propagation

of multiplication operations is non-linear. It should be noted that all analysis operations on the

logarithmic representation are linear.
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Operation RU RL RS

R = A add B max(AU , BU) + 1 max(AL, BL) min(AS, BS)

R = A sub B max(AU , BU) + 1 max(AL, BL) min(AS, BS)

R = A mul B AU + BU AL + BL AS + BS

R = A div B undefined undefined undefined

Table 4: Precision semantics of logarithmic representation

The flexibility and ease that our approach gives us, allows us to experiment with different

varieties of representation, and different techniques upon them. One possible solution to the

difficulties that we have found is apiecewiseanalysis of the program. In areas of the code

where the more accurate analysis can be performed, it can be used to propagate information to

other program points. Where we are restricted in our choice of analysis we can use the other

representation, and the techniques that apply to it. This combination produces a more accurate

hull than either technique alone (as one widens results and the other is not applicable to the entire

program).

Usage of CLP One analysis technique that we can easily experiment with is CLP. There is an

interface to a CLP solver integrated into the tool-set. Our construction of the DSL means that

all programs are forests of operations. Each tree is the expression for a single variable being

assigned within the loop. The lack of dependencies between expressions means that we can treat

each tree in the forest individually.

In each tree, all of the exterior nodes are either stateful variables, inputs, or outputs. This

constraint is guaranteed by the language. (This guarantee holds in the case where all assignments

in the language are to stateful variables or outputs. If arbitrary temporary variables are introduced

then the number of unknowns increases, and this guarantee of correctness may no longer hold.)

The root node of the tree must be either an output or a stateful variable. The leaves of the tree

are variables referenced in the expression, and so must be either inputs or stateful variables.

The precision of all of these types of variables is known by the analysis. All interior nodes are

temporary variables which are to be annotated. As we have noted above, each operation produces

three constraints in the form of linear equations. A range hull for the program must satisfy all of

these equations. So we can formulate this as a CLP problem. We have a set of linear equations

to satisfy, a set of known values, and a set of unknown values.

This CLP problem must always be satisfied. The number of unknown values is the number of

temporary values. This is the number of interior nodes in the tree. The number of known values
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is the number of roots + leafs of the trees. These trees are binary. Hence there must always be

more known than unknown values and the CLP problem is satisfiable.

We have investigated the use of a CLP solver upon the logarithmic representation successfully

This experiment used the CLP(fd) module in Ciao, which is a CLP solver on finite domains.

Direct specialisation of this code is not possible, and was one of the reasons that the analysis was

moved to an earlier stage in the computation. We have also tried CLP(fd) and CLP(r) — a solver

over the rationals — on the interval representation. We found that it does not produce a usable

solution which is likely to be due to the non-linearity in the constraints.

Backwards propagation of precision The final analysis method that we have considered is

backward propagation of precision constraints. The propagation that we have described in the

forward direction in Tables 3 and 4 can be seen as theproducedprecision. An analogue would

be to reverse the program and consider the precision that isrequiredby each operation. For

example, if the use of an add operation produced a result of 15 bits, but the use of that result only

considered 6 of those bits, then we could more efficiently reduce the first computation.

The backwards analysis is also a global analysis problem, the interaction between the for-

wards and backwards analyses is that each reduction of the precision at a point in the hull re-

quires that new range to be propagated via the other analysis until a fixed-point is reached. This

analysis also requires an analysis stage in the computation prior to the interpreter. There is how-

ever a large number of solutions. In particular, it is often impossible to guess to which precision

one needs to keep the answer of a multiplication or division, and when to round numbers. For

example, consider the operationA = (B +C +D+E) whereB, C, D andE are all[4, 0, 0) and

A is [6, 2, 0) in a logarithmic representation. In this case, we create two intermediate results, as

in X = B + C, Y = X + D, A = Y + E. One can either perform all additions in full precision

and then round the number in the final operation, or perform the roundings at an intermediate

stage, when calculatingX or Y .

Interestingly, because we are considering a program tree rather than graph, and because all of

the precision inputs are known, it may be possible to specify the whole problem as an interpreter,

and allow the specialiser to unroll the control flow for us. The backward analysis can be seen as

a special case of the CLP problem where each part of the problem is locally over-specified, this

allows information to be propagated using local knowledge. In the more general case the problem

might be globally over-specified, but with local under-specification. This can be seen in any

program that performs an operation on two variables which are being automatically annotated.

In some cases the entire program is locally over-specified. This is true of any program that

we can reorder the operations in so that one of the two operands always has a known precision,

in either direction. Note, this does not have to be the same operand. In these cases it is not
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necessary to converge to a fixed-point as there is a unique solution to the backwards analysis. We

have found that the motivating example for our case-study — the Kalman Filter — can be written

in this form, when applied to a single variable. In Figure 6 we show the results of the precision

analysis on the example Kalman filter code using a backwards analysis. Each node in the graph

shows a variable in the program. These are colour-coded according to their type, orange nodes

are temporary variables, green nodes are state variables, red nodes are input streams and the blue

nodes are output streams. Each node is annotated with the precision determined by the forward

propagation, the backward propagation, and the hull that is obtained by taking the intersection of

the two.

2.3.5 Specialisation of interpreter

Our approach uses four languages. We are constructing a DSL (domain specific language) which

we will term D. There is a target language, in this case theinstruction set architectureISA of

the PIC microcontroller, which we will termT . The tool-set is written in Prolog which forms

our meta-languageM . Lastly there is a restricted subset of the meta-language that we will write

the interpreter in, we will term thisM ′.

The goal is to transform a program written inD (PD) into T (PT ). In order to reach this

goal, two interpreters are written. The first is an interpreter ofD, written in T . We will term

this interpreterintDT . This interpreter can be defined in the target languageT , but it will be

able to execute on the target system as it is very constrained in resources, and will lack both

the program and data storage to implement the interpreter. We explain this point below. The

second interpreter is an interpreter of the target instruction set architecture (ISA). This could be

considered an emulator of the target system. This interpreter (intTM ) is written in Prolog, and

interprets the target ISA.

The key technique that we use, is a specialisation of one interpreter with respect to the other.

We want to translatePD into PT only using the tools that we can construct, and as noted above

intDT is not constructible. To perform this translation consider the specialisation ofintTM with

respect tointDT shown in Equation 2.

JspecMK(intTM , intDT ) = intDM ′ (2)

The interpreter generated in Equation 2 is implemented in our meta-language Prolog, and exe-

cutes programs in the DSL, but retains part of the structure of the target ISA. The structure of

this interpreter will be specialised predicates, which map onto the instructions of the ISA that

we want to target. This syntactic isomorphism means that the interpreter fulfils the property in

Equation 3. For each program inD we can construct a translation of that program inT such that
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Figure 6: Precision Hull for Kalman Filter
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it performs the same function, and has a syntactic isomorphism such that there is a one-to-one

mapping between predicate calls and instructions in the target ISA (T ).

∀progD : progD(I) = progT (I) ∧ progD ↔ progT

whereprogT is JspecM ′K(intDM ′ , progD) (3)

The important aspect of this approach is that we candirectlyconstructintDM ′. For our experiment

we have followed this approach, effectively performing the first specialisation by hand. This

corresponds to writing the DSL interpreter in an extension ofT . This extension is actually a

subset of Prolog (M ′), and so we can use Prolog control-flows and data representations, as long

as they are specialised out of the final program. The other point of note, is that we have a tool

to execute, and to specialise,M ′ directly as it is a subset of Prologand hence we can use the

normal tool-set.

This interpreter will be used during program development. We can execute the program under

development on this interpreter, directly within the tool-set of the project as shown in Equation 4.

For an improvement in performance we can also use the tool-set and the interpreter to compile

the program into Prolog, as shown in Equation 5. This would allow the use of a Prolog-to-

C compiler, and then a C compiler to automatically generate code for a targeted architecture.

Whilst this technique is not efficient enough for our target micro-controller, it may be sufficient

for targeting a workstation.

JPDK(I) = JintDM ′KM(PD, I) (4)

= J JspecM
MK(intDM ′ , PD) K(I) (5)

In order to extend this work into a full compilation, fromD to T , we need to further study the

specialised program of Equation 5. At present we have merely experimented with a proof-of-

concept. We need to run further experiments to scale this approach to the point where it can be

performed upon our motivating example. This will be a demonstration of compiling a program

that could not be done without specialisation — and in an easy and clearer manner than the

conventional approach to compiler writing. We cover future work more fully in Section 2.5.

The use of three languages is quite a burden of knowledge, but we will note that the user

of the generated compiler need only knowD. Other systems require some knowledge of the

underlying representation in order to debug programs. Our approach is based on source-to-

source transformations and thus the intermediate representations are in forms ofD. We assume

that the constructor of the domain is familiar withM , or willing to learn — indeed the authors of

the report learnt the meta-language during this project, and there is previous evidence [3] of the

ease of developing interpreters in Prolog. This lowers the burden to achieving familiarity with

the new source languageD, and the target languageT , which is true of any compiler.
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2.3.6 Code Generation

The technical details of code generation have been covered in the previous section. Most of the

technique used to ensure code generation is in the design of the interpreters that we specialise.

In this section we present some of the details that are not related to specialisation.

The conversation from a specialised program into PIC code has been described as a syntactic

isomorphism. There is a simple syntactic translation from predicate calls to instructions. All

residual predicates contain straight-line code where each call is a predicate interpreting a single

PIC instruction. This mirrors the syntax of PIC assembly language, and the predicates are simply

rewritten without the surrounding Prolog syntax (e.g. commas between clauses).

There will be some post-processing necessary upon the PIC code, in particular we may need

to perform register scheduling. In Section 2.5 we will describe methods to perform this work

automatically. These methods will be the target of research in the second cycle of case-studies.

2.4 Results

Our approach is to provide functionality through a smalldomain specific languagewhich is spe-

cialised for the target application. This approach contrasts with providing functionality through

a library. Both approaches provide semantic checking of the usage of the functionality. In the

case of the library this is performed syntactically through the definition of the API, and semanti-

cally through runtime checks and return codes, or exceptions to the control flow. In the case of

a language we can perform both syntactic and semantic usage checks at compile time. We can

also compile the functionality we are providingwith explicit knowledge of calling patterns and

usage. This extra information offers more optimisation potential than providing a static binary.

In this first cycle of case studies we have demonstrated the viability of constructing an inter-

preter that contains a syntactic isomorphism to the PIC instruction set. We have constructed a

non-trivial example of a program in our chosen DSL, and have implemented it upon the inter-

preter. We have tested that our compilation approach works on a trivial proof-of-concept. These

strong results show that we are capable of writing systems that could not be implemented directly

because of the tight constraints of the target device. We have performed some preliminary tests

with both LOGEN and CiaoPP, and we are positive that the tools can deal with the interpreter in

its current form.

2.5 Future Work

In the second cycle we will continue to develop this case-study. Our first goal is to finish the

code generation using the techniques that we have developed. This will demonstrate a qual-
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itative success in the project byautomaticallygenerating a compiler for a domain that could

not be implemented directly on the target device. The DSL that we have constructed allows

arbitrary precision arithmetic to be specified by the user. This is not possible directly, as the mi-

crocontroller does not have enough resources to implement arbitrary precision code, and would

be difficult to write by hand. This demonstrates a significant improvement in the development

process.

We will then perform a qualitative comparison between this technique and hand-written code

for the domain. We will compare the results of our compilation of simple arithmetic operations

against a hand-written library provided by the vendor of the chip. We will consider the library

to be written by a domain expert. This comparison will provide data on the performance of

programs compiled through our automatic technique.

We can also compare the results with a standard C compiler for the domain. Once this definite

goal has been achieved there are a number of interesting problems that we may pursue.

Sub-graph removal One intriguing line of research is suggested by the CDFG in Figure5. In

this graph we can see that the bottom-left region is clearly a separate sub-graph. There are only

control and data flows into this region from the rest of the filter, not out of this region. As this

region contains both the input stream and the output stream this means that the rest of the filter

is not dependent upon the run-time data, but only on the initial values of the state variables.

If the majority of the filter is not-dependent on dynamic data, but only on static data, then

there are opportunities for specialisation to improve performance. There are two possible cases

for the residual part of this computation. One case is that the data-flows from this sub-graph to

the other sub-graph stabilise to a constant value. In this case, the entire graph could be replaced

by a constant, giving a large increase in performance. The other case is that the values from this

sub-graph form a cycle of a fixed-period. In this case, the computation could be replaced by

a generator of that cycle. An increase in performance would result if the cost of executing the

generating expression was lower than the cost of executing that part of the filter.

Executing this level of optimisation automatically though the tool-set may not be feasible. It

would require the ability to identify and remove static computations many levels of interpretation

deep, across the outermost loop in a deep nest.

Backwards analysis through specialisation Our work so far, suggests that it would be feasi-

ble to write a precision analysis that converged to result by applying the forward and backwards

propagation rules in succession. An interesting area of study would be to use the specialiser upon

this code to automatically generate a fast, efficient analyser.
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Staging Prolog offers an extensible syntax and semantics. One interesting line of work would

be to develop staging constructions and rewrite the analyser and interpreter as a single computa-

tion. The interesting research goal would then be to develop a BTA based on these stages.

Automatic determinisation During the development of the interpreter we had problems with

there being too many choice points in the code for the tool-set to work with. This highlighted

some bugs in the tools which have been fixed. One suggestion at the time was to use the determi-

nacy analysis along with grounding patterns for the calls to each module to automatically insert

green-cuts into the code and reduce the number of choice points.
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3 Timing analyser

In this case study we investigate the techniques used to construct a tool that analyses the timing

behaviour of pervasive systems. During the implementation of this tool we have not used the

standard tool-set and techniques of ASAP. Rather, this case-study forms an initial theoretical

study of the problem, and the tool implemented so far is a proof-of-concept. This case-study

will be further developed in the second round of the project where we will apply the knowledge

that we have learnt to implementing the tool on the Ciao Prolog system, and using the rest of the

tool-set for the ASAP project.

3.1 Problem

In describing the class of systems applicable to our analysis, we use Pnueli’s [43] categorisation

of systems into two types; reactive systems that are non-terminating and must hold an ongoing

dialogue with their environment, and transformational programs that take an initial input, execute

for a (hopefully) finite amount of time and produce an output. Within this dichotomy we are

concerned with reactive systems. We further divide this class into systems that are time-triggered

— interacting with their environment at specific points in time — and those that are event-

triggered — interacting with their environment at non-specific times but with specific types of

interaction. Our analysis is applicable to time-triggered reactive systems.

The motivation for our analysis is a simple domain of reactive systems; sensor components

from a wearable computer [47]. These sensors are composed of a microcontroller and an in-

terface to a hardware sensor that samples the environment at precise moments in time. This

combination of a programmable processor executing a well defined instruction set and an exter-

nal interface with exactly defined timing characteristics is quite common in real time systems and

so our analysis has wide applicability. Our concern is the verification of the timing behaviour of

the components, not their logical functionality. In particular, we will note that in distributed sys-

tems where an embedded component has to communicate with other embedded components at

precise times, we may consider the other components to be simpler sensors and actuators with-

out a loss of generality. By considering interactions with other components to be of the same

nature as interactions with sensors we can analyse any system composed of processor and sensor

components within our domain of time-triggered reactive systems.

The systems that we analyse are repetitive, but not strictly periodic. Each is constructed

from repetitions of a terminating procedure, but the procedure may not execute in a uniform

amount of time, leading to a varying period for the system. Each statement within the program

has a set of periods between successive executions. These periods are important because certain
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statements within the procedure cause side-effects that are externally visible. These statements

are modifications and the reading of bits within control registers in the microcontroller. Setting

bits in these registers drives pins on the microcontroller that control external hardware. Reading

these bits polls the current state of external pins. By analysing the set of periods that each

statement has, we are analysing the set of periods of these visible interactions. The set of all sets

of statement periods forms a model of the programs timing behaviour that can be used to verify

its temporal properties.

We are generating a model of the times at which each instruction in the program can be ex-

ecuted. This model consists of a set of timing configurations. Each configuration is a location

within the program and a clock counter measuring discrete time since the program started exe-

cution. This model allows verification that the externally observable events within the program

can only occur within a valid set of times.

For the program under analysis, we model the flow of control as a sequence of non-determi-

nistic choices. In the instruction set that we are analysing all of these choices are binary. We

will assume that either branch can be taken by the program. If we make this assumption for

all branches in the program then the number of timing states is infinite. This follows from the

observation that the looping branch can always be chosen, and that as each loop takes a positive

non-zero number of cycles, new states are being generated for each iteration of the loop. The key

transformation in our analysis is to partition the set of branches into those that form loops and

those that do not. For looping branches we will only make a non-deterministic choice on the first

execution. After they have been executed once we will deterministically choose the non-looping

branch. As the program is of finite length, and each part can only be repeated a finite number of

times, this ensures that the space of timing-states that we compute is finite.

It is only necessary to consider the first execution of a looping branch as a non-deterministic

choice. This is because we are constructing the set of timing traces for all possible executions of

that iteration. This set of traces therefore contains the possible executions of all iterations of the

loop.

We have taken the problem of constructing the space of possible timing states and partitioned

it into several smaller problems. We have the problem of deciding which branches in the control

flow graph form cycles; this is decidable. We then construct a finite representation of the timing

paths through this graph without executing each cycle more than once. In order to use these paths

to construct the set of timing-states we would have to decide when each loop is taken, which is

an undecidable problem. If we could decide analytically whether or not looping conditions were

taken then we could decide if the program halted. This restriction means that our analysis is

limited to programs only containing loop expressions that we can analyse. There is a wealth of

material [25, 24, 53, 2] in the literature devoted to analysing the bounds of different type of loop
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expression, we shall not repeat this material here but simply assume that the programs we are

interested in only contain loop expressions amenable to existing analyses.

This leaves the last problem of deciding which branches are taken within decisions. We

contend that in order for the program to be correct, if there is a decision to be taken, then the

timing behaviour of both branches must be correct otherwise the program can fail. If only one

branch is meant to be taken then it should be a piece of straight-line code and not a logical

decision. So the over-approximation that we make is one that a correct program should satisfy

within the context of embedded systems.

The program under consideration may decide its actions on the basis of the information that

is communicated from the sensors, but by considering the entire set of possible timings between

observable events we may safely discard the process which selects one of these timings through

some form of logical decision on the data contained within these communications. This set of

possible timings is not as precise as one that also analyses the logic that the device performs, but

it is a conservative over-approximation of the set. For verification purposes we wish to ensure

that it is not possible for the device to operate outside of some specification of the times between

observable events, thus the logical behaviour of the device is irrelevant for our purposes as the

over-approximation of its behaviour must lie within the bounds defined by the specification.

3.2 Background

The problem of constructing a model of the execution times of a program’s statements is gener-

ally undecidable. In order to form a decidable problem it is necessary to make assumptions about

the type of program being analysed, and to place appropriate restrictions on what the program

can do within the context of these assumptions. The set of assumptions that are made will define

not just the restrictions on what the program can do, but also the form that the result of analysis

will take.

If we assume that the program we are analysing is transformational, rather than reactive, then

we will assume that correct programs terminate in order to produce a result. In this case we are

less interested in the structure of the timing model, and more interested in analysing whether the

extreme bounds of the model fit within a set of constraints. The more common case is checking

that the upper-bound of execution time is within a constraint. This case is known as WCET

(Worst Case Execution Time).
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3.2.1 Major results in WCET

The initial results [31, 51, 41, 42, 45] in the field of WCET, follow this assumption of termination

in order to guarantee a finite length worst case path. The restrictions placed on programs under

analysis are that loop bounds are known a priori, there are no dynamic data-structures, unbounded

recursion or dynamic references to functions.

WCET analysis is now a mature field [46] with the above model of program analysis refined

to consider many architectural features such as RISC, pipelines and caches. Loop bounds can

be automatically annotated in a wide range of cases. The precision of results has been increased

through the elimination of infeasible code paths and a tighter mapping from source annotations

to the underlying assembly language.

3.2.2 Differences from WCET

Our method offers an improvement over WCET analysis in several ways; WCET produces an

upper bound on the execution of a piece of code - we are interesting in the exact set of possible

times between events rather than an upper-bound upon them. This allows verification of the

correct variances in times between events. This exact set is required in some scheduling problems

that are encountered in embedded systems [16]. As WCET analysis considers the total execution

time of a software component it is not capable of providing event to event timings across loop

iteration boundaries within the same component. We are interested in the periodicities of non-

terminating systems where-as WCET assumes that systems are terminating.

Our results are strictly more conservative than WCET in the context of how much of the

potential state-space they consider to be reachable. They provide a more finely structured result

in the context of how they represent that state-space which provides the answers to more precise

questions such as event to event timings.

3.2.3 Applicability of WCET results to model generation

WCET analysis is split into three phases that perform different transformation upon the source

program. The names of the three phases can vary between researchers although the purpose of

each phase is generally the same:

Low-Level Analysis extracts the cycle accurate timing information from the low-level code rep-

resentation, usually either machine code or an intermediate form within a compiler.

Flow Analysis is concerned with defining flow-facts for the program. These are infeasible paths

which exist in the code but cannot be taken because of logical effects, variable bounds and

hence loop bounds.
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Calculation combines these two sets of information about the program into an estimate of the

worst case execution time.

The analysis that we describe in this section is analogous to a low-level analysis, but based

on a different set of assumption than those used in WCET. We are concerned with the extraction

of cycle accurate path times from a program. Within the context of embedded systems these

are sufficient to answer some useful questions about the system’s simple temporal properties. In

order to answer more complex questions about the temporal properties of reactive components

we need to implement a similar flow analysis, and then construct equations to describe the pe-

riodic behaviour of the component. The extraction of flow facts can use existing source-level

techniques from the field of WCET. The final generation of equations to describe the periodic

behaviour is substantially different. The description of these two phases, as they apply to reactive

components, is beyond the scope of this case study and will be the subject of future work.

3.3 Approach

Our approach in this case-study is an investigation of how to design such a timing-analyser for

a specific architecture. This investigation was performed in Haskell using a standard compiler.

The motivation behind this approach was to study both the theory and practice in a language

familiar to the authors before rewriting the tool using the ASAP tool-set. The rewriting would

increase the generality of the tool as the goal is to be able to specialise with respect to a given

architecture. The tool that we describe within this section is tied to the PIC architecture.

3.3.1 Example code

The microcontroller that we use as an example is the PIC-16F84 [40]. This microcontroller is of

interest because it offers a good ratio of MIPS to power usage, which makes it a common choice

of controller within the wearable and robotics communities. The instruction set of the PIC gives

a low code density as all operations have to be performed on a single working register rather

than in any register as with RISC instruction sets. This simplicity gives the PIC ultra-low power

consumption, using just 2 mW of power when active.

The code that we use as an example for our analysis performs the transmission of a byte on a

serial interface. This code is shown in Figure 7. The serial interface is a simple teletype protocol

with a start bit, 8 bits of data, and a stop bit. This simple protocol is useful for a system made up

of distributed components as it doesn’t require a synchronised clock at both end points. Instead,

the start bit is used to synchronise the sender and receiver and then as long as the drift between
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the transmission and receiver clocks is within a small tolerance (5% of the transmission time) the

data will be communicated correctly.

The sample code relies on fine-grained timing synchronisation to operate the serial line at the

correct rate. The sample shown is for a serial line operating at 115200 baud. The microcontroller

uses a 10MHz crystal to operate at 2.5MIPS. This requires the line state to be changed every 21.7

clock cycles, the closest we can manage on a discrete clock is every 22 cycles which is within

the error tolerance.

To achieve this cycle accurate timing the sample code uses NOP instructions to pad the length

of time required to iterate the main loop. The main loop is XMITC which executes 10 times,

once for each bit. The initialisation code jumps into the middle of this loop, rather than entering

through the head in order to produce the right period between the instructions that control the

hardware interface. The commented out sections are evidence of the trial and error required in

order to produce the correct temporal execution.

3.3.2 Abstract Instruction Set

Each instruction within an ISA modifies the state of the processor. These changes in state can be

broadly divided into three categories, and each instruction will then have effects in each of these

categories:

Functional effects, such as modifying the contents of registers or flags.

Temporal effects which are the difference in the processors cycle counter from the beginning to

the end of the instruction.

Control flow effects which modify the program counter (pc).

For the purposes of this analysis we are interested solely in the temporal and control effects

that each instruction causes. By ignoring the functional effects of the instruction set we reduce

the complexity of the analysis significantly, both in the technical sense that we reduce the size of

the fixed-point that we compute, and also in the informal sense that it makes our analysis easier

to understand and implement.

The PIC ISA contains 35 instructions, which provide data movement, bit manipulation, log-

ical testing and control-flow manipulation. The instruction set does not contain the usual pred-

icated jump instructions. The only jumps used are unconditional, instead there are bit-testing

instructions which will test the status of a bit in a register and conditionally skip the next instruc-

tion if it is set/unset. These skip instructions can be combined with jumps to construct the normal

predicated branches by testing the processor flags which are contained within a control register.
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XMIT
MOVWF SER_TX
MOVLW NUMBIT+1
MOVWF BITCNT ; Preset data bit counter

; Send the start bit

BCF PORTB,TXD ; Set start bit level
GOTO XMITC ; Wait for start element

; to go
; Set the transmit data level from the carry and
; wait for an element

XMITA RRF SER_TX,1 ; Clock shift register RIGHT
; through carry

BTFSC 3,0 ; If data (carry) is ’0’,
; skip

GOTO XMITB
BCF PORTB,TXD ; Data is ’0’
GOTO XMITC

XMITB
BSF PORTB,TXD ; Data is ’1’

XMITC
; call WAITEM ; Wait for the element to go
NOP
;NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

; Count the elements as they are sent

MOVF BITCNT,1 ; Zero if just sent the stop
; bit

BTFSC 3,2 ; Skip next if bit count is
; not zero

RETURN ; Exit from XMIT

DECFSZ BITCNT,1 ; Dec. bit count, skip if zero
GOTO XMITA ; Loop until all bits are sent

; Bit count has zeroed, send the stop bit

BSF PORTB,TXD ; Set stop bit
GOTO XMITC ; Wait for the stop bit to go

Figure 7: Sample serial transmission code
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(pc, t) ⇒ (pc + 1, t + 1) whenP (pc) = SINGLE

(pc, t) ⇒ (−1, t + 2) whenP (pc) = RETURN

(pc, t) ⇒ (pc + 1, t + 1), (pc + 2, t + 2) whenP (pc) = SKIP

(pc, t) ⇒ (tar, t + 2) whenP (pc) = JUMP(tar)

(pc, t) ⇒ (−1, t + 2) whenP (pc) = CALL (tar)

Figure 8: Abstract Instruction Semantics

When we ignore the functional effects of the ISA then these 35 instructions form 5 classes of

equivalent control and temporal effects. Our analysis operates directly upon these equivalence

classes which we term the abstract instruction set. For the PIC these equivalence classes are:

SINGLE Takes 1 cycle and pass control to the next address (pc+1)

RETURN Takes 2 cycles and return to the top address on the stack

SKIP Takes either 1 or two cycles and pass control to either pc+1 or pc+2

JUMP(n) Takes 2 cycles and pass control to the addressn encoded within the instruction

CALL (n) Takes 2 cycles, passes control to addressn and pushes the pc onto the stack

The operational semantics of these abstract instructions are shown in Figure 8. These transi-

tions are between configurations composed of(a, b) wherea is the program location andb is the

number of clock-cycles since the program started execution.

In order to measure the length of program traces we must firstly construct a model of the tim-

ing characteristics of the ISA. In the case of the PIC micro-controller this model can be derived

entirely from local effects within the code for the majority of the instruction set. Abstracting the

functional characteristics of the instruction set we are left with the length of time to execute an

instruction, and the locations that control is transferred to by the execution of that instruction.

We do not consider the selection of which transition occurs in a given state which folds the in-

struction set into a simpler non-deterministic model. Each instruction in the abstract instruction

set is a representation of a set of concrete instructions. Each transition is labelled with an integer

number of clock-cycles, but there are no guards on the transitions.

The Call and Return instructions form transitions that are dependent upon a state (in this

case the stack of return addresses). We do not represent this state within the timing states of the

program. Instead we consider each locally reachable region of the program graph (subroutine)

within an independent analysis and then use a call-graph to propagate information between them.

We only cover the computation of a single reachable region within this case study. The reason
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for this is that to completely characterise the timing properties of a reachable region and then

substitute it back into the calling region we need to use a flow analysis to deduce loop bounds

and then generate equations that describe the complete timing behaviour of the region. This is

beyond the scope of this case study. The consequence of this choice is that the analysis cannot

determine the number of clock cycles that calls to subroutines will require and so is not suitable

for code containing calls.

Conversion from PIC assembly code into the abstract instruction set is a simple many-to-

one mapping for each location. Locations and therefore code-lengths are preserved when the

program is represented in the abstract instruction format. The mapping of the sample program

into the abstract instruction set is shown in Figure 10.

3.3.3 Timing Configurations

The configurations within an abstract interpretation are compositions of the state and the location

that the state is valid at. In our analysis these states are the temporal state. The concrete temporal

state is an integer, representing the number of clock cycles since program instantiation. The set

of configurations with a common location then give the times that a statement can be executed

at. This is potentially infinite for a repeating component.

We abstract these temporal states by using a relative clock. Instead of the number of clock

cycles since the program started execution we use the number of clock cycles since the program

passed a recording point. This gives a state that is a tuple of two integers;(a, b) wherea is the

number of clock cycles andb is the location of the recording point.

If we chose our recording points arbitrarily then we will not reduce the cardinality of the state

space within the analysis. If there is a loop between the recording point and the current point of

execution then arbitrarily large time values can be recorded by continuing to chose the branch

that iterates the loop. Our solution is to make the recording points the backward edges of loops

within the program control flow graph. This ensures thateveryloop that could be taken between

the recording point and the current point causes a new recording point to be set. Therefore it is

no longer possible to construct arbitrarily large lengths of time in the state-space and the size of

the state-space must be finite. This follows from the observation that there are only finitely many

locations within the program, and the distance from a recording point to another location without

iterating a loop is bounded by the length of the program. Intuitively, our abstraction folds all

iterations of a loop onto the first iteration.

This is not a strict abstraction. We are folding the states associated with all iterations of every

loop, in the program, onto the first iteration of the relevant loop. However we are also recording

more information about the path taken to reach the current location than exists in the concrete
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(pc, t, l) ⇒ (pc + 1, t + 1, l) whenP (pc) = SINGLE

(pc, t, l) ⇒ (−1, t + 2, l) whenP (pc) = RETURN

(pc, t, l) ⇒ (pc + 1, t + 1, l), (pc + 2, t + 2, l) whenP (pc) = SKIP

(pc, t, l) ⇒ (tar, 2, pc) whenP (pc) = JUMP(tar)∧ L(pc)

(pc, t, l) ⇒ (tar, t + 2, l) whenP (pc) = JUMP(tar)∧ ¬ L(pc)

(pc, t, l) ⇒ (−1, t + 2, l) whenP (pc) = CALL (tar)

Figure 9: Abstract Instruction Semantics On Abstract Time

state, as each state contains the last loop back-edge traversed. This means that states that were

equal in the concrete domain are now differentiated in the abstract domain. This increases the

size of the fixed-point generated slightly but the extra information recorded is useful for the

determination of flow-facts in a later separate analysis.

If we represent our program by a pair of functionsP , andL, such thatP maps locations to

an element of the set of abstract instructions, andL decides whether a location is a loop back-

edge then we can define a parameterised transition system that gives the semantics of the abstract

instructions when applied to abstract configurations. This is shown in Figure 9.

The SKIP instruction class is a set of instructions that tests logical decisions and passes con-

trol along one of two transitions. It implements a guarded choice of next instruction in the

program that is used to build more complex control-flow structures such as guarded jumps. The

non-determinism in our transition system is contained in the transition from the location of a

Skip instruction to both the following instruction, and the instruction after it.

Given this definition of a transition system parameterised by a program functionP and a

program function, we can generate the configuration transition system for the timing of the pro-

gram. We demonstrate this in Figure 10 which shows theP function for our sample program and

the application of the parameterised transition system to this instance ofP . This combination

produces the transition system shown.

3.3.4 Computing Reachability Distance

The transition system that we construct for a program consists of tuples of the form(f, t, l).

These give transitions in the program control flow graph and a distance in clock cycles of making

these transitions. Given the set of locations that are loop-edges we can now compute the set of

temporal configurations for the program.

For each configuration of(a, c, a′) we apply the relevant transitions from the transition system

to produce a set of new configurations. These are the transitions wheref = a. When the location

that control is being transferred from,f , is a loop back-edge we reset the recording pointa′ to a
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P (Sample Program) Transitions applied toP (Sample Program)

n F (n) (from, to, len)

0 Single (0,1,1)

1 Single (1,2,1)

2 Single (2,3,1)

3 Single (3,4,1)

4 Jump(11) (4,11,2)

5 Single (5,6,1)

6 Skip (6,7,1),(6,8,2)

7 Jump(10) (7,10,2)

8 Single (8,9,1)

9 Jump(11) (9,11,2)

10 Single (10,11,1)

11 Single (11,12,1)

12 Single (12,13,1)

13 Single (13,14,1)

14 Single (14,15,1)

15 Single (15,16,1)

16 Single (16,17,1)

17 Single (17,18,1)

18 Single (18,19,1)

19 Single (19,20,1)

20 Single (20,21,1)

21 Single (21,22,1)

22 Skip (22,23,1),(22,24,2)

23 Return (23,-1,0)

24 Skip (24,25,1),(24,26,2)

25 Jump(5) (25,5,2)

26 Single (26,27,1)

27 Jump(11) (27,11,2)

Figure 10: Creation of Temporal Transition System
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((-1),14,9) ((-1),14,27) ((-1),18,0) ((-1),19,25)

(0,0,0) (1,1,0) (2,2,0) (3,3,0)

(4,4,0) (5,2,25) (6,3,25) (7,4,25)

(8,5,25) (9,6,25) (10,6,25) (11,2,9)

(11,2,27) (11,6,0) (11,7,25) (12,3,9)

(12,3,27) (12,7,0) (12,8,25) (13,4,9)

(13,4,27) (13,8,0) (13,9,25) (14,5,9)

(14,5,27) (14,9,0) (14,10,25) (15,6,9)

(15,6,27) (15,10,0) (15,11,25) (16,7,9)

(16,7,27) (16,11,0) (16,12,25) (17,8,9)

(17,8,27) (17,12,0) (17,13,25) (18,9,9)

(18,9,27) (18,13,0) (18,14,25) (19,10,9)

(19,10,27) (19,14,0) (19,15,25) (20,11,9)

(20,11,27) (20,15,0) (20,16,25) (21,12,9)

(21,12,27) (21,16,0) (21,17,25) (22,13,9)

(22,13,27) (22,17,0) (22,18,25) (23,14,9)

(23,14,27) (23,18,0) (23,19,25) (24,15,9)

(24,15,27) (24,19,0) (24,20,25) (25,16,9)

(25,16,27) (25,20,0) (25,21,25) (26,17,9)

(26,17,27) (26,21,0) (26,22,25) (27,18,9)

(27,18,27) (27,22,0) (27,23,25)

Figure 11: Fixed-point for sample program

and reset the time to 0. Each new configuration is therefore(t, c + l, a′) when not reseting the

recording point, and(t, l, a) when reseting the recording point.

The union is calculated of the current set of configurations and the set of unique new con-

figurations, created by applying the transitions to the current set. This union is computed until

a fixed-point is reached. The existence of this fixed-point is guaranteed by the finite number of

locations and possible states.

This fixed-point contains the set of all time distances from recording points (the program

start point and the set of loop back-edges) to program locations. This result can be seen as a

reachability distance, showing not only which locations are reachable, but also the distance in

time to reach that location.
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3.4 Results

Applying the analysis to our sample program gives several useful timings which we can use to

verify the correctness of its execution. These are the period of the main loop executed for each

bit, and the phase of the bit setting operations within this loop.

The fixed-point of configurations for the sample program is shown in Figure 11. We have

highlighted the relevant configurations within this set to illustrate the correctness of the program

with respect to the timing criteria that we now set out. The actions that we wish to verify the

temporal properties of, are carried out by the target instructions within the program. The con-

figurations that are relevant show the time distances between the back-edge of the transmission

loop back-edge and the target instructions.

There are three temporal properties of the bit transmission loop that we verified. These

properties all concern the main transmission loop, we wish to ensure that it has a uniform period,

that the period is correct, and that the phase of the observable actions within this loop are correct

and constant.

3.4.1 Uniform Loop Period

The main transmission loop (with back-edge at location 25) should have the same period upon

each iteration. The set of configurations that form the fixpoint of the timing behaviour for the

program contains the periods of each loop within the program. These periods are encoded as

timings from the back-edge of a loop to the same back-edge node. We can extract this set through

a filtering operation upon the fixpoint set. This filtering operation maps one set of configurations

onto a second set of configurations according to a boolean operator on configurations. Filtering

sets in this way using a higher-order function is a common idiom within functional languages

and so we present the pseudo code for this operation in the syntax of Haskell. If this set of

loop periods is a singleton set then we have verified that the loop has a uniform period across all

executions of the program.

loopTimes :: Set Configurations -> Int ->

Set Configurations

loopTimes fp loop = filterSet cond fp

where cond (l,f,t) = (l==loop && f==loop)

uniform :: Int -> Set Configurations -> Boolean

uniform loop fp = 1==setSize (loopTimes loop fp)
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Upon the fixpoint of the example program, the filtering expression (filterSet cond fp )

yields the result{(25, 21, 25)} which is a singleton set. Hence the expression for the example

program (uniform 25 progfp ) is true proving that the main transmission loop has a uni-

form period.

3.4.2 Correct Loop Period

It is a common requirement of time-triggered reactive programs that we must verify the period

of their loops which contain interactions with the environment. In order to perform this verifi-

cation we perform the same filtering of the fixpoint as the previous section, and then map the

configurations into the set of integer periods.

periods :: Set Configurations -> Int -> Set Int

periods fp loop = mapSet extr (loopTimes loop fp)

where extr (l,f,t) = t

Performing this operation (periods 25 fp ) on the example program yields the set{21}
which gives the period in processor cycles of the main transmission loop. This deviates from the

target of 21.7 cycles and executing the program over 10 bits will take 3 cycles too few. This is

within the specified tolerance and so the length of the loop period has been proven correct.

3.4.3 Constant Operation Phase

The bit manipulation instructions at locations 8 and 10 in the example program form an operation

that interacts with the environment. These two instructions are on mutually exclusive program

branches, so that exactly one of the two will execute on each iteration of the loop.

The distance in time from the execution of the back-edge of the loop to the visible operation

is the phase of the operation within the loop. For some operations, such as the one shown in

the example program, this phase should be constant in each iteration. In the example program a

change in phase of the bus actuating operation would introduce a bias into the sampling of the

line state.

In order to verify that an operation has constant phase we must ensure that the set of loca-

tions forming that operation all have constant distances from the loop back-edge in the program

fixpoint. This is a similar filtering operation to the check for constant loop period. For a given

set of instruction locations and a loop location we must compare the set of matching distances

within the fixpoint.

phaseInst :: Set Configurations -> Int -> Int ->
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Set Int

phaseInst fp loop inst = mapSet mop

(filterSet cond fp)

where cond (l,f,t) = (l==inst && f==loop)

mop (l,f,t) = t

phaseOp :: Set Configurations -> Int -> Int ->

Set Int

phaseOp fp ins loop = unionSets (mapSet phaseInst

ins)

constantPh :: Set Configurations -> Set Int ->

Int -> Boolean

constantPh fp ins loop = 1 == setSize (phaseOp

fp ins loop)

The expressionconstantPh fp {8,10} 25 evaluates to false, proving that the phase

of the instructions differs causing a bias in the width of the pulses that is dependent upon the data

being transmitted.

3.4.4 Correct Operation Phase

The last type of verification that we shall show is checking the actual phase of operations within

the loop. In the example that we have presented this would be necessary in order to determine

how much bias is introduced into the width of the pulses being transmitted. In other programs

it may be necessary to check the phase of separate operations in order to verify a relationship

between them, e.g. when polling sensors that transmit data encoded into the width of pulses

modulated to some duty cycle.

The code already presented is sufficient to determine the set of phases that an operation can

occur at. The expressionphaseOp fp {8,10} 25 evaluates on the example program fix-

point to{5, 6} showing that the phase of the operation differs by up to one cycle. This determines

the amount of bias that this error in the program introduces.

The analysis that we have presented can be seen as the first of three states in a full timing

analyser. The second stage will detect structural properties of the program, such as loop bounds

and infeasible paths through the program. The third stage will combine this structural informa-

tion with the low-level timing distances to create generating expressions for the execution times

of locations within the program.
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The problem of establishing loop bounds is orthogonal to the problem that we have solved,

of deriving timing distances across program code. However, both need to be combined in or-

der to generate precise accurate expressions for the temporal behaviour of instructions within a

program. We have not fully explained the integration of the call and return instructions in this

work as in order to propagate timing information through the program call-graph this complete

description of timing behaviour is required. The problem of fully analysing calls and returns in

source programs will be the focus of future work. This future work will integrate all three stages

described above.

3.5 Future Work

We have a working timing analyser written in Haskell which can be applied to programs for the

PIC micro-controller. If this case-study is extended in the second cycle then the goal will be to

generalise the work to arbitrary architectures. There are two methods that could achieve this.

Low Risk The simpler approach is to translate the timing analyser into Prolog, and design a

data-structure defining the timing characteristics of the target architecture. The timing

analyser could be specialised with respect to this structure, generating a timing analyser

for a specific architecture.

High Risk The more interesting approach is to write a timing analyser that deduces the timing

behaviour of an architecture by generating and executing programs on an emulator. This

analyser could then be specialised with respect to a specific emulator, all of the generated

programs would be static and thus the generation and testing would reduce to constant

values representing the specific architecture.
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4 PIC Emulator

In this section we describe a method of analysing embedded software. We have modelled the

functionality of a PIC processor, commonly used in applications such as wearable computing,

as an emulator written in Prolog. The PIC emulator can be specialised using one of the partial

evaluator that we developed in the other workpackages. We specialise the emulator with respect

to a given program and given input characteristics of the environment, such as regular patterns

on communication channels. Analysis techniques can now be applied to the specialised emulator

in an attempt to discover properties of the PIC program, such as constant or undefined regis-

ter values, timing and synchronisation when connecting more than one PIC processor running

concurrently and communicating - and detection of dead code and other forms of redundancy.

4.1 Problem

The problem that we are trying to address is to write a general tool that can be used to reason

about programs that execute on simple embedded processors. We would like to establish whether

an embedded program contains programming errors, can be executed faster, can execute using a

smaller program, or can be executed using less dynamic memory.

Programming errors. Low level coding is an error prone process, and it is quite easy to acci-

dentally use a memory cell before it is initialised.

Smaller program. It is not unusual for programs to be larger than necessary. Usually the pro-

gram will link to a library with standard functions to, for example, perform input/output

on an RS-232 channel, multiply two numbers, or write data to a USB bus. However, those

operations are usually more general then required, and will contain code that will not be

executed in the particular program.

Faster execution.Apart from removing dead code, it is not unusual that certain operations are

redundant because their data values can be predicted by analysing the program statically.

This will save execution time and hence processing power.

Fewer registers. Various parts of the program may use memory variables that are used only

in a specific subroutine. For example, two or more subroutines may each use their own

temporary variable, rather than share one temporary variable.
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4.2 Background

A PIC processor is a small micro-controller used in, amongst others, wearable computer systems.

It is small and has a low power consumption. The particular model number we emulate, the

PIC16F84, has 35 single word instructions, 1024 words of program memory, 68 bytes of data

memory, en eight-level deep hardware stack and two I/O ports.

The program memory of the PIC is flash memory that is programmed over two of the I/O pins

of the PIC. When the PIC is powered up, it will start executing instructions starting at the first

instruction in flash. PICs are extremely simple, in particular, they have no support for memory

management, kernel-mode, etc.

Most approaches to this problem will attempt static dead code elimination, and register allo-

cation. However, one of our interests is that we want to be able to analyse legacy code, rather

than compiling new programs. In addition, the method that we have chosen is relatively proces-

sor independent.

4.3 Approach

The approach is to model the PIC processor as a Prolog program; in other words we construct

an emulator for the processor in Prolog. The design of the emulator emphasises semantic clarity

rather than efficiency. Once we have created an emulator, we apply a partial evaluator to the em-

ulator with respect to a particular PIC program, producing a specialised version of the emulator.

The key characteristic of the specialised emulator is that it has a systematic relation to the PIC

program. Each program point in the specialised emulator corresponds to a program point in the

PIC program. Hence the results of analysing the specialised emulator (a Prolog program) can be

related directly to the PIC code. General purpose analysis tools based on abstract interpretation

are then used to analyse the specialised emulator.

The processor is emulated as a state transition system. The state contains the values of reg-

isters, program counter, stack, accumulator, etc. Each machine instruction will, when executed

on a given state, produce a new state. The emulator is given an initial state and a program to

emulate. The emulator then works by executing machine instructions from the program one at a

time, each time altering the state according to the current instruction.

The emulator is implemented in Prolog, and a predicate calledexecute contains the main

loop that executes each instruction.

execute(Prog,State,Env) :-

fetchInstruction(Prog,State,Instr,Arg1,Arg2),

execInst(Instr,Arg1,Arg2,State,State1),
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simulateEnv(State1,StateOut,Env),

execute(Prog,StateOut,Env).

A state is a grouping of lists and values of the formstate(Regs,PC,Acc,Stack) . The

environment can be used to simulate external input to the processor.

We implemented anexecInst for each machine instruction in the PIC instruction set. As

an example themovwf instruction that stores the value of the accumulator in a data register, is

implemented as shown below:

execInst(movwf,Arg1,_,state(RegIn,PC,Acc,X),

state(RegOut,PCOut,Acc,X)) :-

PCOut is PC+1,

updateZeroBit(RegIn,RegTemp,Acc),

updateData(RegTemp,RegOut,Arg1,Acc).

The implementation is not efficient but it is generic. The data stored in a state and the in-

struction set can easily be changed to emulate other processors or micro-controllers.

In the state information, the data registers are stored in a list of tuples. Each tuple is of

the formRegNr-(Vlist, RWlist) where Vlist is a list of values that has been assigned

to the register. The head of the list is the current value. RWlist is a list ofr(PCw,PCr) ’s

and w(PCw) ’s signifying that the register has been read or written.PCwis the value of the

program counter at the instruction that wrote to the register, and similarlyPCr is the value

of the program counter a the instruction that read the register. For instance, if register 10

had been written a value, say 20 at instruction 35, that had again been read 3 times (at in-

struction 41,45 and 48) before it were overwritten at instruction 55, it would look like this

10-([30,20],[w(55),r(35,48),r(35,45),r(35,41),w(35)]) . We keep track

of the access pattern of the individual registers to allow more detailed analysis of the PIC pro-

grams; this is discussed in detail Section 4.3.3.

The state of the processor is technically only the current values of the registers, but keeping

a record of previous values and an access pattern, will allow for analysis of a wider range of

properties. A few examples of properties that can be extracted from the register state information

could be, locating a register that are read before a value is written to it and thereby reading an

undefined value, locate a register that is written a value to but the value is not read again, locating

registers containing a constant value and detecting at which program points a register contains

live or dead values.
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4.3.1 Interaction with environment

A global clock is part of the environment and can be used to e.g. synchronise the emulation of

two processors connected to each other. The processor itself has no knowledge of a global clock,

only an 8-bit timer. Registers 5 and 6 of the PIC processor are the processor’s I/O ports. These

registers form the processor’s window to the environment.

Given a stream of data on the processor’s input port (for example a stream of transitions from

0 to 1 and vice versa modelling a serial port having a specific data rate), the analysis can also tell

whether there would be a read operation to the input port register in the time period that the data

was available on the port.

Given a list of instructionsP representing a PIC program, the emulator described in Sec-

tion 4.2 is specialised with respect to a call toexecute with first argumentP , initial state

values and program counter 0. Specialisation is performed using an on-line partial evaluator for

Prolog, based on the approach described in [19]. The local control of the partial evaluator is

tailored to handle the emulator, in the following way. All predicates are unfolded with the excep-

tion of execute and built-ins that are insufficiently instantiated. The effect of this is to produce

a program containing only calls to versions of theexecute predicate and arithmetic operations

on the state. This effect could also be produced by an off-line specialiser such as LOGEN [33]

by annotating the emulator program appropriately.

Furthermore, a different version ofexecute is generated for each call with a different

program point (the fifth argument ofexecute ) and set of registers that have been used. The

effect of this is to produce at least one version ofexecute for each (reachable) program point.

For example, the following two clauses both arise from executing an instruction at the same

program point.execute_32 represents execution of the instruction when registers1, 3, 4, 5

and6 have been used.execute_84 represents execution of the same instruction when register

16 has also been used. This approach generates more compact and precise representations of the

state (only those registers actually used are shown) at the cost of producing larger specialised

programs with possibly more than one version of each program point.

execute_32(B,[1-([0|C],D),3-([E|F],G),4-(H,I),

5-(J,K),6-([L|M],N)],

O, P, Q) :-

R is E/4, S is Q+1, T is S mod 64,

T==0, U is L+1,

execute_33(B, [1-([1,0|C],[w,r,r|D]),

3-([R,E|F],[w,r|G]),4-(H,I),

5-(J,K),6-([U,L|M],[w,r|N])],
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O, 0, S).

execute_84(B, [1-([0|C],D),3-([E|F],G),

4-(H,I),5-(J,K),6-([L|M],N),16-(O,P)],

Q, R, S) :-

T is E/4,U is S+1,V is U mod 64,

V==0,W is L+1,

execute_86(B, [1-([1,0|C],[w,r,r|D]),

3-([T,E|F],[w,r|G]),4-(H,I),

5-(J,K),6-([W,L|M],[w,r|N]),16-(O,P)],

Q, 0, U).

The specialisation ofreturn instructions needs special attention. When a subroutine is invoked

by acall instruction, the program point following thecall is pushed onto a stack. Upon exit

from the subroutine by areturn instruction, the stack is popped and control is returned to

the program point at the top of the stack. There may be several calls to the same subroutine at

different program points. Hence the next instruction to be executed after areturn is not in

general known at specialisation time. This can result in total loss of specialisation following a

return instruction.

The problem was handled in a general way by regular approximation of the stack [23].

Here we obtain the desired result by pre-computing, for eachreturn instruction in the pro-

gram, the set of possible program points to which control might be returned. This is com-

putable simply by searching the program for thecall and correspondingreturn instruc-

tions. For instance, suppose that some subroutine is called at program points 108 and 113,

and that the subroutinereturn instruction is at program point 58. Then we record a fact

returnpoint(58,[109,114]) , and similarly for all the other subroutines in the program.

The emulator code forreturn is modified to enumerate the possible program points, so that in

this example the version ofexecute for program point 58 will contain two clauses, whose bod-

ies call the procedures corresponding to program points 109 and 114 respectively. At run-time,

the top-of-stack value when executing instruction 58 must be either 109 or 114 and the correct

version is chosen accordingly.

4.3.2 Analysis

Having obtained a specialised version of the emulator for a given PIC program, we apply pro-

gram analysis tools in order to check properties of interest. The tools are based on abstract

interpretation [13] and incorporated in the Ciao Prolog pre-processor.
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The aim of analysis is to arrive at an abstract description of the program state at each program

point. Various possible abstractions of the register states are considered. These include (1)

abstracting the list of values by a constraint or interval; (2) abstracting the list of read-write

operations by a regular description; (3) abstracting the list of read-write operations by one of a

finite number of possible kinds, defined by types. These abstractions are discussed in more detail

below.

A particular analysis consists of anabstraction mappingand anabstract execution. The ab-

straction mapping is a systematic transformation (based on the chosen state abstraction) applied

to the specialised emulator, so that the transformed program operates on abstract states rather

than concrete states. Abstract execution returns the model of the abstracted program (usually a

fixpoint computation).

Abstraction mapping: Let us first consider the registers, which are represented as a list of

terms of the formNumber-(VList,RWList) whereNumber is the number of the regis-

ter, VList is the sequence of values stored in that register andRWList is the history of read

and write operations (represented asr(PCw,PCr) andw(PCw) respectively). In a concrete

program executionVList andRWList might be unbounded in length since a register can be

accessed an unbounded number of times.

To enable analysis of the specialised emulator it is necessary to abstract some of the infor-

mation in the register list, so that it has a finite model. And to do this, a concrete regular type

definition for the registers can be specified. One example of such a type definition is shown

below:

RegList = []; [RegInfo|RegList]

RegInfo = Number − (V List, RWList)

V Listα = []; [Number|V List]

RWListα = []; [RW |RWList]

RW = r(Number,Number); w(Number)

In general it is the programmer’s responsibility to identify the unbounded components. The

unbounded components can be identified by hand, by annotating the corresponding types. In

this case, the unbounded components are theV List and theRWList, which are recursive. The

RegList might look unbounded but is in fact always bounded, since there is a fixed number of

registers of the processor. The above type definition can then be annotated to identifyV List and

RWList. We use the superscriptα to indicate that a component is unbounded.

It is the infinite components that must be abstracted; so the structure down to theα-level must

be maintained and the structure below theα-level is abstracted away. The abstraction is therefore
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a selective one; we make sure that just enough is abstracted to ensure finiteness of the analysis.

An outline of a step by step procedure to ensure finiteness looks like this:

1. Declare type of the State (the register list in this case).

2. Identify possible infinite components of the type.

3. Annotate the type; that is marking infinite components withα

4. Transform the program by introducing the abstraction below theα-level. The procedure

for this is: Traverse all the arguments in the program, where the arguments are considered

as a tree, from the root to the leaves. Replace any subtermτ whose type is annotated asα,

by a fresh variableU and addτ = U .

Example 1 Suppose the register list at some program point looked like this:

[3-([21,22],[r(33)|A]),4-([1,10|B],[w(30),w(30)|C])]

The possibly unbounded parts are substituted with a fresh variable, and the following is obtained:

[3-(U1,U2),4-(U3,U4)]

where

[21,22] = U1

[r(33)|A] = U2

[1,10|B] = U3

[w(30),w(30)|C] = U4

The left hand sides of the introduced equations are themselves broken down, until all function ar-

guments on the left of equations are variables. For instanceU4would be abstracted the following

way:

[U6|U7] = U4

w(30) = U6

[U8|C] = U7

w(30) = U8

The component ‘C’ is already a variable and it is therefore not replaced by another variable.

The abstraction is then performed by replacing the ‘=’ with a new symbol ‘→’, where ‘→’

is defined by a pre-interpretation[22]. See Section 4.3.3 for an example of an abstraction of the

RWList.

The process of Abstract execution is the topic of the next subsections; for instanceU4 could

be assigned the abstract valueWriteOnly- one of a finite number of possible types.
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4.3.3 Abstraction of the Read-Write History

As mentioned above, each register is represented by a pair consisting of a sequence of values and

the history of read-write operations.

We wish to check relevant properties of the structure of the read-write history. For instance, a

history with a single write followed by any number of reads represents a constant register value.

A history containing only writes indicates redundancy - the register value is written but never

read, hence the instructions that write to that register can be omitted. A history in which the first

operation is a read (assuming the register is a “normal” register, not a hardware register) indicates

an error since the value that was read is undefined.

Two different approaches are being followed: computing an abstract interpretation overnon-

deterministic finite tree automata[20], and abstraction based on a pre-interpretation based on

given types [22]. In the latter approach we model properties of interest (such as write-only, read-

before-write, and so on) using regular type rules. A read-before-write listrbw, for example, is

described by the following type rule:rbw = [r( , )]; [rw|rbw] whererw = r( , ); w( ). A

history denotedsw with a single write (which should be first operation) is defined bysw =

[w( )]; [r( , )|rlist] whererlist = []; [r( , )|rlist]. An analysis domain that models precisely

the defined properties can then be constructed.

4.3.4 Liveness properties of registers

Keeping track of which instructions write to a given register, and which instructions subsequently

reads the written value, enables us to determine at which program points the written value is live

(meaning the value in the register will be used later on) and we can determine where the written

value is dead (the written value will not be used again before a new value is written to the

register). Since the PIC processor only has a limited number of register to store data, wasteful

use of registers can limit the functionality that can be implemented on the chip. Remapping of

the registers might free some of these register for more important use.

In a series of read and write operations on a register, beginning with a write (at program point

w) followed by a number of reads ending with a final read (at program pointr), a register is

live at a pointp, if p is reachable fromw (that is, the execution of a number of instructions in

the program will bring you fromw to p) andr is reachable fromp. Bothw andr are available

at the head of theRWList, if the head is a read operation. And the reachability criteria can

be determined by constructing a directed graph of the program, where there is a vertex for each

instruction and and edge between instructions that can follow each other. A branch instruction

would for instance have two outgoing edges, and an instruction that is called from more than one

place in the program, would have more than one incoming edge. This graph can be constructed
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from the specialised emulator. Reachability is then a search operation on the graph.

Registers that are live at disjoint parts of the program, can then be remapped to free up

registers.

4.3.5 Abstraction of the Value List

The value list for a register is unbounded in length, as an unbounded number of write operations

are possible. The tools for abstracting values and lists of values include intervals and convex

hulls [14, 7]. For example, the list[34,45,21] could be abstracted by the closed interval

[21, 45] or by the linear constraintX where21 ≤ X ≤ 45. For a single register the two ab-

stractions are identical, but convex hulls are more expressive and could represent, for instance, a

constraint holding between several registers.

4.3.6 Constant Propagation

Some cases of constant values of registers may be discovered by approximation of the read-write

history, as discussed above (write-once history). However this does not cover the cases in which

the same value is repeatedly written to the register. Approximation of the set of values in the

value history using intervals or convex hulls can be used to detect further cases. Specifically, a

register is constant if its history of values is described by the interval[n, n] for some valuen.

4.3.7 Timing

The state of the processor includes a clock, and number of clock ticks taken to execute each

instruction is built in to the emulator. This allows the emulator to record the clock value at each

program point. For some applications, it is required that execution of some instruction (such as

placing a value on an output port) takes place at defined intervals. Approximation of the clock

value using convex hulls can check for such regularities.

4.3.8 Code Specialisation

Opportunities for code specialisation arise in various ways. Unreachable code might simply

be detected by the specialiser; no versions ofexecute are generated for unreachable pro-

gram points. Such code can simply be eliminated. Other unreachable code can be detected by

analysing the register values at branch points in the program. Constant values detected for values

controlling branch instructions can lead to elimination of some code branches.
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4.4 Results

We tested the analysis tool on an accelerometer program. The program contains 320 instructions.

The read/write history detected no use of uninitialised registers, and no dead computations.

Using the flow analysis method described in [20] on the specialised program, we found 266

instructions that could actually be executed. The remaining instructions belongs to a set of

subroutines that are never called in the program.

4.5 Future Work

The results so far indicate that simple properties such as those described above can be obtained

by general purpose analysis methods applied to the specialised emulator.

Current and further work aims to improve the scalability of the methods, and to examine anal-

yses based on communication between the PIC program and its environment as well as possibly

other PIC programs, via its input and output ports. We also plan to apply the “backwards analy-

sis” method [21] in order to detect sufficient conditions on the external environment to guarantee

lack of certain run-time errors.
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5 Access Control Verifier

In this case-study we investigate the use of ASAP tools on an existing Prolog system. By quan-

tifying the improvement in efficiency that we can produce on this system, we gain an insight

into scope of programs that we can target at pervasive devices. This case-study relates to the

specialisation of a meta-interpreter, which is an approach that will have uses in other areas of the

project. We show a number of performance measures for our implementation, and we discuss

the implications of using this approach. In particular, for this example, we show virtually zero

overhead.

5.1 Problem

The issue of controlling a user’s ability to exercise access privileges (e.g., is this person allowed

to use this colour printer, or allowed to send a fax) on a system’s resources has long been an

important issue in Computer Science. In recent years, there has been considerable interest in

access control, both in research and in practice. All aspects of security have been given particular

prominence with the advent of pervasive systems and the Web. In a number of surveys, security

issues have been reported by enterprises as being of paramount concern when deciding policies

on the publication of Web data, and the availability of Web resources [10], and we expect that

pervasive systems will raise many more concerns. The advent of Bluetooth and 802.11 devices

has meant that mobile devices can use static infrastructure (such as Printers, SMTP servers, or

coffee machines), but only if they have the right to do so.

In recent years, a number of researchers have developed some sophisticated access control

models in which access control requirements may be expressed by using rules that are employed

to reason about authorised forms of access [26, 9, 6]. In these approaches, access to resources are

expressed by using rules that define the conditions that must be satisfied in order for a permission,

denial or authorisation to hold. Expressing access control policies by using rules is natural,

and enables many implicit permissions, denials and authorisations to be expressed in a succinct

manner. However, an important practical issue that arises with the rule-based approach to access

control is the problem of efficiently evaluating access requests when access control requirements

are implicitly specified. This is especially a problem if the device that performs access control is

not very powerful, and if access control policies are complex.

In many approaches proposals are made for attempting to ensure that access requests are

evaluated efficiently when access control requirements are specified implicitly [26, 9, 6]. Jajo-

dia [26], and Bertino [9] describeview materialisation approachesfor attempting to optimise ac-

cess control checks. The motivation for the view materialisation approach is to make explicit the
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access control information that is implicitly defined in rule form. Making explicit the implicitly

specified access control information, means that access requests can be evaluated by considering

explicitly recorded facts rather than these facts having to be derived at query evaluation time.

Unfortunately, view materialisation is not so efficient to use when large numbers ofparametric

derivation rules[8] are used to express access control requirements and when the specification

of access control requirements changes dynamically e.g., whenuser session information[6] is

used in the course of deciding whether an access request is authorised.

Rather than using view materialisation techniques, the approach described by Barker and

Stuckey [6] enables access requests to be efficiently evaluated by utilisingconstraint logic pro-

grammingtechniques [38]. This approach makes use of specialised constraint solvers, rather than

view materialisation techniques, for the efficient evaluation of access requests in situations where

large numbers of parametric derivation rules (e.g., rules that express temporal constraints on user

access) would be expensive to compute, and when changes to an access policy are performed

dynamically as a consequence of a user’s session management. Nevertheless, the potential opti-

misation of access requests by using program specialisation techniques is not considered in [6].

Furthermore, each of the approaches described in [26, 9, 6] assumes that access control is ex-

pressed with respect to coarse-grained data objects (e.g., files and directories), and that an answer

to an access request on a data item is simply whether access is allowed or not. In contrast, work

by Barker [4] has the significant computational attraction of exploiting request modification tech-

niques to combine the decision on allowing access with the actual generation of authorised data

that may be released to answer a user’s access request. However, this last approach does not

exploit specific access request optimisation methods.

In contrast to [26, 9, 6], we describe an approach to the problem of access request evaluation

where large numbers of parametric derivation rules are required in order to specify access policy

requirements; where fine-grained access to data items is required (e.g., access to atomic formu-

lae); where the answer to a user access request generates the set of logical consequences that the

user is permitted to see; and where access control information is to be exploited for performance

gains.

In overview, we describe an access control checker that is implemented by using a meta-

program that is written as a logic program. The meta-program takes as input an access control

program and a database of facts to which access needs to be restricted. We use a database as an

example because there is a large volume of literature available in that area[26, 9, 6, 5, 15, 50]. We

stress that our approach is not specific to databases and works on other applications of rule-based

access control.

The approach that we describe enables the access control program to be specialised, in order

to reduce the amount of run-time information that needs to be considered when deciding whether
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an access request is authorised. In effect, the approach ensures that a minimal amount of infor-

mation is considered at access request evaluation time. Specifically, the user session information

that applies at the time of an access request is used with a form of access control program that

is specialised by using the relatively static information explicitly specified in the access control

program.

In practice, the rules defining an access control policy are not subject to frequent changes. As

such, this relatively static information may be exploited for program specialisation. Moreover,

an access control request is a request that is made by a specific (authenticated) user to perform

a specific operation (i.e., read, write, execute, etc.) on a specific database item. Exploiting

the information about a user’s identity and the access privilege the user wishes to exercise on

a database object can be exploited to specialise a program for access control and hence can be

exploited for computational advantage.

Although meta-interpreters have previously been developed for efficient constraint checking

on databases [35], to the best of our knowledge, no approach has yet been proposed in the

literature for generating specialised access requests via a meta-interpreter that manipulates access

requests, access control policies and databases as object level expressions, and that pre-compiles

access checking for certain access requests. In this paper, we describe a technique to obtain a

specialised access control checker that is more efficient to use than using a database and access

control program directly because some of the propagation, simplification and evaluation process

is pre-compiled.

We consider the use ofrole-based access control (RBAC)policies [6] for specifying autho-

rised forms of access to database objects. InRBAC, the most fundamental notion is that of

a role. A role is defined in terms of a job function in an organisation (e.g., adoctor role in a

medical environment), and users and access privileges on objects are assigned to roles. More-

over, access privileges on objects (i.e.,permissions) are assigned to roles (e.g., a doctor has the

permission to change a patient’s prescriptions).RBAC policies have a number of well docu-

mented attractions [50], and are widely used in practice [17]. Although we restrict our attention

to RBAC policies in this paper, it should be noted thatRBAC is a more general form of access

control model than thediscretionary access controlandmandatory access controlapproaches

that predateRBAC [15], and the approach that we describe can be used with more powerful

access control methods thanRBAC (e.g., thestatus-based access controlmodel [5]). It follows

that our approach is widely applicable.

We represent anRBAC policy by using a logic program. The use of logic programs for

representing access control policies has been recognised in a number of recent works (see, for

example, [26] and [6]). Logic programs enable access policies to be expressed by using high-

level declarative languages for which formally well defined semantics and operational methods
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with attractive theoretical properties (e.g., termination) are known to exist.

In the rest of this case-study, we discuss some preliminary logic and partial evaluation back-

ground in Section 5.2. Our approach is covered in Section 5.3, which covers using anRBAC

model and the formulation ofRBAC policies by using logic programs, and then we describe

the meta-program that we use for the evaluation of access requests on databases with respect to

a formulation of anRBAC policy. In Section 5.4 we present a set of performance measures for

the implementation of our approach, and we discuss these results. Finally, in Section 5.5, some

conclusions are drawn and we make suggestions for further work within the project.

5.2 Background

In this section, we briefly describe the basic notations, and a brief overview of partial evaluation

usingLOGEN.

5.2.1 Syntax and Semantics

TheRBAC model and theRBAC policies that we describe in later sections are expressed in the

language of (function-free) normal clause form logic (Datalog¬), with certain predicates in the

alphabetΣ of the language having a fixed intended interpretation. As we only admit function-

free clauses, the only terms of relevance toΣ will be constants and variables. Hereafter, we

denote variables that appear in clauses by using symbols that appear in upper case (at least the

first character), and constants will be denoted by lower case symbols.

A normal clause is a formula of the form:

C ← A1, . . . , Am,¬B1, . . . ,¬Bn (m ≥ 0, n ≥ 0).

Thehead, C, of the clause above is a singleatom. Thebodyof the clause (i.e.,A1, . . . , Am,

¬B1, . . . ,¬Bn) is a conjunction of literals. EachAi literal (1 ≤ i ≤ m) is apositive literal; each

¬Bj literal (1 ≤ j ≤ n) is anegative literal. In the case of a negative literal, the relevant type

of negation isnegation as failure[11]. A clause with an empty body is anassertionor a fact.

A clause with a non-empty head and a non-empty body is arule. A relational databaseis a set

of facts; a normaldeductive databaseis a set of normal clauses. The set of facts in a deductive

database∆ is referred to as theextensionalpart of∆, (the EDB of∆), and the set of rules in∆

is referred to as theintensionalpart of∆ (the IDB of∆).

In our representation of a database, a fact of the formp(c1, . . . , cn) (where each subscriptedp

is an arbitraryn-place predicate andci,∀i ∈ {1, . . . , n}, are constants) is represented as an atom

of the following form:
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fact(p(c1, . . . , cn)).

A clause of the following form (where each subscriptedp is an arbitraryn-place predicate and

each subscriptedt is a term)

p1(t1, . . . , tn)← p2(ti, . . . , tj), . . . , pm(tk, . . . , tl).

is represented in our databases by using an atom of the following form:

rule(p1(t1, . . . , tn), [p2(ti, . . . , tj), . . . , pm(tk, . . . , tl)]).

The access control programs that we consider are alwayslocally stratified(a realistic assumption

for most practical policies) and hence have a uniqueperfect model[44]. Having a 2-valued model

theoretic semantics is important for ensuring that authorised forms of access are unambiguously

specified.

5.2.2 Partial Evaluation and theLOGEN System

Partial evaluation [28] is a source-to-source program transformation technique that specialises

programs by fixing part of the input of some source programP and then pre-computing those

parts ofP that only depend on the known part of the input. The so-obtained transformed pro-

grams are less general than the original, but can be much more efficient. The part of the input that

is fixed is referred to as thestatic input, while the remainder of the input is called thedynamic

input.

Partial evaluation is especially useful when applied to interpreters. In that setting, the static

input is typically the object program being interpreted, while the actual call to the object pro-

gram is dynamic. Partial evaluation can then produce a more efficient, specialised version of the

interpreter, which is sometimes akin to a compiled version of the object program [18].

The LOGEN system [34] is a so-calledofflinepartial evaluator for Prolog, i.e., specialisation

is divided into two phases, as depicted in Figure 12:

• First abinding-time analysis(BTA for short) is performed which, given a program and an

approximation of the input available for specialisation, approximates all values within the

program and generates annotations that steer (or control) the specialisation process.

• A (simplified)specialisation phase, which is guided by the result of theBTA.

Because of the preliminary BTA, the specialisation process itself can be performed very effi-

ciently, with predictable results. Also, as shown in [36], theLOGEN system is well suited to

specialise interpreters, something that we will aim to exploit in our approach.
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Figure 12: Offline Partial Evaluation

5.3 Approach

Our approach consists of implementing an access control checker as RBAC policies within a

meta-interpreter, and using a specialiser to remove the interpretative overhead. This offers both

the simplicity of a interpretative approach, and the efficiency of a direct access control method.

We describe the representation of our programs in Section 5.3.1, and the meta-interpreter for

these programs in Section 5.3.2.

5.3.1 RBAC Policies as Logic Programs

In this section, we describe a simple type ofRBAC policy that may be used to protect the in-

formation in databases. More specifically, the one type of policy that we describe here is based

on theRBACP
H2A model that is formally defined in [6]. We only consider one type of access

control policy in this paper because our principal concern is to describe the generalities of using

a meta-programming approach for access request checking, access policy program specialisation

by LOGEN, and performance evaluation. It should be noted, however, that any of the policies

from [6] may be represented by using our meta-programming approach to access control check-

ing, with minor modifications.

We call an access control program that is defined in terms of theRBACP
H2A model, an

RBACP
H2A program. This type of program is a finite set of normal clauses specified with re-

spect to a domain of discourse that includes:

• A setU of users.
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• A setO of objects.

• A setA of access privileges.

• A setR of roles.

In an RBACP
H2A program, a user is specified as being assigned to a role by using definitions

of a 2-placeura predicate, and the assignment of an access privilege on an object to a role

is expressed by using definitions of a 3-placepra predicate in theRBACP
H2A program. The

semantics of these predicates in an arbitraryRBACP
H2A programΠ may be expressed thus:

• Π |= ura(u, r) iff useru ∈ U is assigned to roler ∈ R;

• Π |= pra(a, o, r) iff the access privilegea ∈ A on objecto ∈ O is assigned to the role

r ∈ R.

By separating the assignment of users to roles from the assignment of permissions to roles it

is possible for user-role and permission-role assignments to be changed independently of each

other in implementations ofRBACP
H2A policies. Thus, access policy maintenance is simplified

(relative to the discretionary access control policies that were, until recently, used as a matter of

course to help to protect the information in databases).

In theRBACP
H2A model, specified in [6], anRBACP

H2A role hierarchyis defined as a (par-

tially) ordered set of roles. The ordering relation is a role seniority relation. In anRBACP
H2A

programΠ, a 2-place predicatesenior to(ri, rj) is used to define the seniority ordering between

pairs of roles. That is, the roleri ∈ R is a more senior role (or more powerful role) than role

rj ∈ R. If ri is senior torj then any user assigned to the roleri has at least the permissions that

users assigned to rulerj have. More formally, the semantics of thesenior to relation may be

expressed thus:

• Π |= senior to(ri, rj) iff the roleri ∈ R is senior to the rolerj ∈ R in anRBACP
H2A role

hierarchy.

Thesenior to relation may be defined as the reflexive-transitive closure of an irreflexive-intransitive

binary relationds. The semantics ofds may be expressed, in terms of anRBACP
H2A program

Π, thus:

• Π |= ds(ri, rj) iff the role ri ∈ R is senior to the rolerj ∈ R in an RBACP
H2A role

hierarchy defined inΠ and¬∃rk ∈ R [ds(rk, rj) ∧ ds(ri, rk)] whererk 6= ri andrk 6= rj.
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Assuming the lattice of role hierarchies to be complete, anRBACP
H2A role hierarchy is defined

by the following set of clauses (in which ‘’ is an anonymous variable):

senior to(R1, R1) ← ds(R1, ).

senior to(R1, R1) ← ds( , R1).

senior to(R1, R2) ← ds(R1, R2).

senior to(R1, R2) ← ds(R1, R3), senior to(R3, R2).

In RBAC models generally, senior roles are assumed to inherit the access privileges on objects

that are assigned to junior roles in anRBACP
H2A role hierarchy. AnRBACP

H2A role hierarchy

enables many authorisations to be implicitly defined, thus simplifying the expression of access

control policies.

In RBAC, users activate and deactivate roles in the course ofsession management[6] as

required to perform the tasks associated with a job function. In [6], the notion of a userui ∈ U
activating a rolerj ∈ R in a session is represented by using a set of rules of the following form:

active(U,R) ← activate(U,R), C.

In this context, a userui requests to be active in a rolerj by appending anactivate(ui, rj) fact

to anRBACP
H2A program via a GUI. Anactive(ui, rj) fact will be implicitly appended to an

RBACP
H2A program wheneverui has requested to be active in a rolerj and the set of conditions

C, on ui’s activation of the rolerj is satisfied. Anyactivate assertion that enables the userui

to be active in rolerj may be retracted byui whenui no longer wishes to be active inrj, and

all of theactivate assertions for a user are automatically retracted when the user logs off of the

system.

An authorisations clause[6] is used to define that a userui ∈ U has theak ∈ A access

privilege on objectol ∈ O. In the case ofRBACP
H2A programs, the authorisations clause is

defined thus:
permitted(U,A, O) ← ura(U,R1),

active(U,R1),

senior to(R1, R2),

pra(A, O, R2).

The rule that definespermitted is used to express that a userU may exercise theA access

privilege on objectO if: U is assigned to the roleR1, U is active inR1, R1 is senior to a roleR2

in anRBACP
H2A role hierarchy, andR2 has been assigned theA access privilege onO.

In the context of specialising anRBACP
H2A programΠ, we note that the definitions ofura,

pra, senior to andds are part of the object level information that is used to protect the object

level database in our approach. Moreover, the sets of clauses defining the extensions of theura,
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pra, ds andsenior to relations are static relative to the set ofactive atoms that are implicit in

Π. That is, the set ofactive facts will change dynamically as users activate and deactivate roles.

The aim of our approach is to specialiseRBACP
H2A programs to enable efficient access control

checks to be performed by only considering user session information expressed via the set of

active facts that is current at the time of a user’s access control request.

5.3.2 The Meta-interpreter

In this section, we describe the meta-interpreter that we propose for efficient access request

evaluation on deductive databases that are protected byRBACP
H2A programs. We restrict our

attention to a consideration of read access.

The full Prolog code is part of the meta-interpreter that is used to execute theRBACP
H2A

programs that we have described for access control is shown in Figure 13. We use the following
definition ofpermitted , as described in Section 5.3.1.

permitted(User,Op,Obj) :- ura(User,Role),

active(User,Role),

senior_to(Role,R2),

pra(R2,Op,Obj).

This paper only considers the definition of authorisations bypermitted/3 , as its goal is to

applyRBACP
H2A policies. Any number of alternative definitions ofpermitted may be used

to implement different access policies (see [6] for other definitions of authorisation clauses that

may be used), and do not require any modifications to our meta-interpreter in order to process

those access requests.

Example 2 Consider anRBACP
H2A programΠ with the following sets of facts:

DS = {ds(r1, r2)}.

ACTIV E = {active(u1, r1), active(u2, r2)}.

URA = {ura(u1, r1), ura(u1, r2), ura(u2, r2)}.

PRA = {pra(r1, read, s( )), pra(r2, read, p( )),

pra(r2, read, q( , )), pra(r1, read, r( , ))}.
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ura(steve,r1).

active(steve,r1).

pra(r53,read,p(_,_)).

pra(r53,read,cycle(_,_)).

pra(r53,read,tcp(_,_)).

pra(r53,read,q(_)).

:- table holds_read/2.

holds_read(User,not(Object)) :-

\+(holds_read(User,Object)).

holds_read(_User,Object) :-

built_in(Object).

holds_read(User,Object) :-

permitted(User,read,Object),

fact(Object),

call(Object).

holds_read(User,Object) :-

permitted(User,read,Object),

derived(Object),

holds_read_rule(User,Object).

holds_read_rule(User,Object) :-

rule(Object,Body),

l_holds_read(User,Body).

built_in(’=’(X,X)).

built_in(’is’(X,Y)) :- X is Y.

l_holds_read(_U,[]).

l_holds_read(U,[H|T]) :-

holds_read(U,H),

l_holds_read(U,T).

holds(U,O):- holds_read(U,O).

permitted(User,Op,Obj) :-

ura(User,Role), active(User,Role),

seniorto(Role,R2), pra(R2,Op,Obj).

fact(p(_X,_Y)).

derived(cycle(_,_)).

derived(tcp(_,_)).

derived(q(_)).

rule(cycle(X1,X2),[p(X1,X2)]).

rule(cycle(X1,X2),[cycle(X1,X3),p(X3,X2)]).

rule(tcp(X1,X2),[p(X1,X2)]).

rule(tcp(X1,X2),[p(X1,X3),tcp(X3,X2)]).

rule(q(X),[p(X,Y),not(q(Y))]).

% For benchmarking query Q3:

b2 :- holds_read(steve,cycle(_,_)),fail.

b2.

bench :- ensure_loaded(’database_cycle’),

abolish_all_tables, cputime(T1),

b2,

cputime(T2), R is T2-T1, print(R),nl.

Figure 13: The full code of the access control interpreter, including a predicatebench used

for benchmarking our queryQ3. The predicates for queriesQ1, Q2, andQ4 are very similar.

The code above is intended for XSB Prolog, minor modifications were done for SICStus (e.g.,

replacingcputime/1 by statistics/2 ).
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Moreover, suppose thatΠ is used to protect the following database∆ in whichp ands are

EDB predicates andp andq are IDB predicates:

fact(p(X)).

fact(s(X)).

rule(q(X, Y ), [p(X), p(Y )]).

rule(r(X, Y ), [q(X, Y ), s(X)]).

The access requestholds_read(u1,q(A,B)) by useru1 to read all instances ofq from

∆, can be specialised byLOGEN into:

holds_read(u1,q(A,B)) :- holds_read__0(A,B).

permitted__1(B,C) :- active(u1,r1).

permitted__1(D,E) :- active(u1,r2).

permitted__4(B) :- active(u1,r1).

permitted__4(C) :- active(u1,r2).

holds_read__3(B) :- permitted__4(B), p(B).

holds_read__0(B,C) :- permitted__1(B,C),

holds_read__3(B),

holds_read__3(C).

By inspection, it is possible to see that the effect of such a specialisation is to reduce a

predicate likepermitted , which is defined in terms of the relatively static predicatesura,

pra, ds andsenior to, to tests on the run-time information that is generated in the course of

session management, i.e.,active facts.

5.4 Results

In this section, we show some results for the meta-programming approach that we propose for

evaluating access requests on deductive databases that are protected by using anRBACP
H2A pro-

gram. Our testing involved comparing the evaluation of access requests on (i) a non-specialised,

and (ii) aLOGEN specialisedRBACP
H2A meta-programs. For comparison’s sake, we also mea-

sured versions of theRBACP
H2A that have no access control. These versions are implemented

directly as Prolog clauses and hence needed no meta-interpreter to run.
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Figure 14: Snapshot of aLOGEN session

The purpose of this section is more of an illustrative nature rather than actually presenting

any theoretical nor empirical result. In this section we show the actual phase of specialising the

RBACP
H2A program by means of theLOGEN system. As shown in Figure 14,LOGEN is built

with a Graphical User Interface (GUI) which facilitates the specialisation of logic programs. This

snapshot illustrates howRBACP
H2A program were annotated and specialised in the context of

this framework. On the one hand, thesource codeof the database meta-interpreter (left window)

is annotated by unrolling a list of options for each clause in a predicate. On the other,filter

declarationsare typed in the far right window, in order to guide the specialisation process. This

allows LOGEN to, after just pressing a button, specialise the program for which theRBACP
H2A

policy has been optimised towards a particular query (i.e., the program is specialised according

to the IDB of∆).

TheRBACP
H2A programs that we use in our tests have included a definition of thesenior to
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relation that represents anRBACP
H2A role hierarchy with 53 roles arranged as a complete lat-

tice, and with each node/role of outdegree 3 or indegree 3. Thesenior to relation has been

materialised into a set of 312 pairs of ground binary assertions. In this case, we use a partial

materialisation approach such that only the role hierarchy is materialised (but not the authorisa-

tions).

We have experimented with variants of theRBACP
H2A role hierarchy by increasing the depth

of the role lattice. The summation that follows describes the number of pairs of roles in the

senior to relation as defined by theRBACP
H2A role hierarchy that we use in testing:

N + 2
d−1/2∑
i=1

3i + (Nd ∗ P>1)

In the summation above,N is the total number of nodes in the role lattice,d is the depth of

the lattice,Nd is the number of nodes at depthd in the lattice, andP>1 is the number of paths of

length 2 or greater from a node at depthd.

The unique bottom element in all of theRBACP
H2A role hierarchies that we use in testing

is assigned the read permission on all of the logical consequences of the databases that we use

in testing. Moreover, our testing is based on a single user that is assigned to the most senior

role/unique top element in theRBACP
H2A role hierarchies/complete lattices that are used in our

testing. Access requests are evaluated for this user. Our choice of user-role assignment and

permission-role assignments imply that our tests are based on a worst-case scenario that involves

the maximum amount of inheritance of permissions whenever an access request is evaluated.

The queries that we use in testing involve computing two binary relationstcp andcycle, and

a unary relationq. The tcp relation is the transitive closure of a 2-place predicatep; the cycle

relation involves computing a transitive closure in order to determine elements in the reflexive

closure ofp; the definition ofq is a variant of the well-knownwin program. Thewin program

describes a two-player game in which a player wins if his or her opponent has no move to

make. The formalisation of this two-person game may be expressed by the clause:win(X) ←
move(X, Y ),¬win(Y ). The tcp program was chosen for inclusion in testing because of its

practical significance;cycle was chosen because it involves some expensive recursive processing;

theq program was chosen because it combines recursion and negation, and is a useful benchmark

test for performance studies.

The definitions of thetcp, cycle andq predicates are expressed in our database thus:

tcp(X, Y ) ← p(X, Y ).

tcp(X, Y ) ← p(X, Z), tcp(Z, Y ).
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cycle(X, Y ) ← p(X, Y ).

cycle(X, Y ) ← cycle(X, Z), p(Z, Y ).

q(X) ← p(X, Y ),¬q(Y ).

The 2-placep predicate is defined by a set of 2495 facts. A total of 499p facts are used to

represent the chain:

p(a1, a2), p(a2, a3), . . . , p(a498, a499), p(a499, a500).

An additional 1996p facts are used to achieve a fan-out factor of 5 [48]. That is, for eachp

fact with the first argumentai, where1 ≤ i ≤ 499, there are fourp facts with the second argument

of p equal to the valuebj, where1 ≤ j ≤ 4. For example,p(a1, b1), p(a1, b2), p(a1, b3), p(a1, b4).

For thecycle program, at thenth call to cycle, a chain of(n − 1) elements in the transitive

closure ofp is computed, and hence the goal clausep(an, an−1) is evaluated. An additional fact

p(a500, a1) is added to the 2495p facts used withtcp to represent the end of the cycle.

The successfultcp(a1, a500) query that we use in our testing involves computing a 500

element chain starting from the elementa1 and ending with the elementa500. To evaluate

the tcp query by using SLD-resolution, a search space comprising 499 SLD-trees with root

← tcp(an, a500), where1 ≤ n ≤ 499, was generated. Each of these 499 SLD-trees spawns 5

subtrees; 4 of which fail, and one that succeeds. The four failing cases have abj value (1 ≤ j ≤ 4)

as the second argument of ap fact; the succeeding subtree terminates with an answer clause of

the formp(as, at) wheret = s + 1, 1 ≤ s ≤ 499 and2 ≤ t ≤ 500. Thecycle(a1, a1) query

used involves computing every chain froma1 to aw (2 ≤ w ≤ 500) in the transitive closure of

p, until p(a500, a1) succeeds and hencep(a1, a1) succeeds. The failing query in our suite of tests

(tcp(a1, a501)) is an attempt to compute a 501 element chain that terminates at the elementa501.

The successfulq(a1) query involves generating 499 failing SLD-trees for the 499 evaluations of

the¬q(cm) subgoal, where1 ≤ m ≤ 499. The one successful SLD-derivation is generated from

the ground clause:q(a1)← r(a1, c500),¬q(c500).

The results of the testing of our example queries are summarised in Table 5 (for the non-

specialised case), and Tables 6 and 7 (for the specialised case). The queries denoted byQ1, Q2,

Q3 andQ4 in these tables have the following meanings:

• Q1 is the successfultcp(a1, a500) query run 10 times;

• Q2 is the failedtcp(a1, a501) query run 5 times;
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• Q3 is the successfulcycle(X, Y ) query (all 145,850 solutions);

• Q4 is the successfulq(X) query (all 1,170 solutions).

The query times are expressed in seconds, and are usually averaged over several runs. The

time needed to generate the compiler from the interpreter (i.e., performing the second Futamura

projection [18]) was0.040s. The prior binding-time analysis was performed (once and for all) by

hand usingLOGEN’s new graphical interface that allows easy annotation and provides colouring

feedback on static and dynamic parts.An automatic binding-time analysis is in the final stages

of implementation (as can be guessed from the screenshot in Section 5.4) and it will hopefully

be able to annotate our interpreter automatically. However, it is acceptable to perform the BTA

by hand, as the annotation only has to be generated once and it is independent of the database

as well as the access control policy. To achieve the good results it was essential to follow the

approach from [36]. Timings for Ciao Prolog were obtained using version 1.11 (patch 164) on a

Powermac G5 Dual 2.5 Ghz, 4.5GB of RAM. Timings were obtained on a Powerbook G4 1Ghz,

1GB SDRAM, with SICStus Prolog 3.11.0 and Mac OS X 10.3.2 (this machine is slower than

the one for Ciao; for example the queryQ4 runs in 3.4 s rather than 9.64 s on the Powermac G5

Dual). The reason for the initial program being slower in Ciao (Ciao is generally comparable to

SICStus) is that the source is missing a meta-predicate declaration that Ciao (which implements

higher-order in a different way from SICStus) requires. However, we have decided to use an

identical initial program because it allows to observe better the impact of the specialization,

which removes higher-orderness from the program. Runtimes for XSB were obtained on the

same machine using XSB Prolog 2.6. In our experiments, we make use of XSB’s distinctive

feature: it terminates for both recursive and non recursive datalog programs. This mechanism is

known astabling in XSB Prolog [49], and has been proved very useful in deductive databases.

Tabling allows, for instance, the evaluation of queryQ3, which only XSB Prolog can run ensuring

termination.

Table 5 shows how much overhead is introduced by the access control policy. For example,

queryQ3 that takes1.08 seconds to retrieve information takes an extra0.38 seconds when access

control is performed. Ideally, we want to minimise the overhead introduced by theRBACP
H2A

policy. By specialisation of the meta-interpreter, we achieve a speedup that considerably reduces

this overhead, as illustrated in Table 6. It can be observed that after applying theLOGEN tool,

the average retrieval time is improved by a factor of up to42. In all cases the retrieval time

after specialisation falls between the average times of the two previous approaches, i.e.,with and

withoutaccess control.

There is, of course, a penalty introduced by this approach: thespecialisation time, i.e., the

time it takeslogento figure out a specialised version of the meta-interpreter with anRBACP
H2A
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Query WithRBACP
H2A WithoutRBACP

H2A Overhead

Q1 (Ciao) 1.530 s 0.003 s 1.527 s

(SICStus) 0.135 s 0.003 s 0.132 s

(XSB) 0.100 s 0.000 s 0.100 s

Q2 (Ciao) 4.490 s 0.013 s 4.477 s

(SICStus) 1.372 s 0.004 s 1.368 s

(XSB) 0.100 s 0.000 s 0.100 s

Q3 (XSB) 1.460 s 1.080 s 0.380 s

Q4 (Ciao) 23.08 s 0.060 s 23.020 s

(SICStus) 9.640 s 0.060 s 9.580 s

(XSB) 0.109 s 0.010 s 0.099 s

Table 5: Average retrieval times for the non-specialised case.

Non-aggressive specialisation Aggressive specialisation

spec. average speedup spec. average speedup

Query time runtime time runtime

Q1 (Ciao) 0.010 s 0.040 s 38.3 0.010 s 0.003 s 510

(Sicstus) 0.010 s 0.007 s 19.3 0.010 s 0.003 s 45

Q2 (Ciao) 0.010 s 0.160 s 28.1 0.010 s 0.010 s 449

(Sicstus) 0.010 s 0.032 s 42.9 0.010 s 0.004 s 343

Q4 (Sicstus) 0.010 s 0.950 s 10.2 0.010 s 0.060 s 121

Table 6: Retrieval times (running in Ciao and SICStus) for the specialised case.

policy. However, Table 6 shows that adding together theaverage runtimeand thespecialisation

timedoes not exceed the original times. By adjusting the annotations (i.e., marking more calls

as unfoldable), a more aggressive specialisation can be obtained. This is shown in the right-hand

columns of the table, whereQ′
i is specialised; the same query asQi, but taking thesenior to

clause into account as well (which is likely to remain unchanged for a long time).

Table 7 shows how the previous results compares when the Prolog Engine includes tabling.

It can be observed that for the more aggressive criteria the time is reduced and even reaches, in

most cases, the ideal without-access-control figure aimed (i.e., overhead=0). For queryQ3 the

specialised interpreter (see Figure 15) is actually almost identical to the database without access

control. We believe the fact that our specialised interpreter runs slightly slower is probably due to
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Non-aggressive specialisation Aggressive specialisation

spec. average speedup spec. average speedup

Query time runtime time runtime

Q1 0.010 s 0.026 s 3.85 0.010 s 0.010 s 10

Q2 0.010 s 0.024 s 4.17 0.010 s 0.008 s 12.5

Q3 0.010 s 1.220 s 1.20 0.010 s 1.130 s 1.29

Q4 0.010 s 0.016 s 6.81 0.010 s 0.013 s 8.38

Table 7: Retrieval times (running in XSB) for the specialised case.

caching issues. We have thus actually achieved what is called “Jones optimality” [27, 28, 37, 36]

(called the “optimality criterion” in [28]). The only drawback of the aggressive specialisation is

that each timesenior to changes there is an overhead of10ms for specialisation (as well as the

time needed to load the new specialised interpreter, which was around10ms in our experiments).

Since this clause does not change very often, we are not paying a high price in terms of access

control flexibility.

Observe thatholds read rule 2 is isomorphic to thecycle predicate, hence Jones-

optimality [27, 28, 37, 36] has been achieved.

Our testing is based on the scenario where a user inherits all access privileges on all objects

(i.e., logical consequences) from the most junior role in theRBACP
H2A role hierarchy. In prac-

tice, access request evaluation will involve significantly less permission inheritance, and user

access to data objects will be far more constrained than we have considered in our testing. We

consider only this scenario because access control requirements will be highly application spe-

cific. The more specific access control restrictions that will apply in practice will enableLOGEN

to specialise access control programs to a much greater extent than we have considered, and

therefore more impressive speedup can be expected in practical applications.

5.5 Future Work

There are a number of additional issues to investigate in the context of optimising access requests

on policy information in P2P and B2B applications. It would also be interesting to apply our

approach to emerging access control models for controlling access to Web resources (see, for

example, [5]). We intend to investigate these issues in future work.
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bench__0 :-

ensure_loaded(database_cycle),

abolish_all_tables,

cputime(A),

b2__1,

cputime(B), C is B-A,

print(C), nl.

b2__1 :-

seniorto(r1, r53),

holds_read_rule__2(_, _),

fail.

b2__1.

:- table holds_read_rule__2/2.

holds_read_rule__2(A, B) :-

seniorto(r1, r53),

p(A, B).

holds_read_rule__2(A, B) :-

seniorto(r1, r53),

holds_read_rule__2(A, C),

seniorto(r1, r53),

p(C, B).

(a) The non-aggressive approach: annotating

thesenior to clause ofpermitted/3 as a

rescall, so that it is not evaluated in the spe-

cialisation process.

bench__0 :-

ensure_loaded(database_cycle),

abolish_all_tables,

cputime(A),

b2__1,

cputime(B), C is B-A,

print(C), nl.

b2__1 :-

holds_read_rule__2(_, _),

fail.

b2__1.

:- table holds_read_rule__2/2.

holds_read_rule__2(A, B) :-

p(A, B).

holds_read_rule__2(A, B) :-

holds_read_rule__2(A, C),

p(C, B).

(b) The aggressive approach: considering the

senior to clause asunfold, i.e., being com-

puted in the specialisation, the resulted pro-

gram may be more efficient.

Figure 15: Specialised interpreter forQ3. The actual code obtained from the specialiser, for both

non-aggressive(a) and aggressive(b) specialisation.
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6 Conclusions

In this deliverable we have presented our first cycle of experiments that explore the benefits of

specialisation and program analysis within a pervasive environment. This first cycle contained

four cases studies, two of which are complete and two of which are still in progress. The scope

and nature of our results has varied from case-study to case-study. In this section, we tie together

those results, make overall conclusions for the current generation of tools, and present the lessons

learnt in selection of experiments, and how they will be applied to our next round of case-studies.

6.1 Case-studies

The Timing Analysis case-study (Section 3) has not produced any direct results in the application

of specialisation tools, but it used specialisation techniques in order to build a stand-alone tool.

It has advanced our knowledge in the problem domain, and resulted in a tool that is directly

applicable to real-world problems in pervasive computing. This tool has already discovered

errors in existing pervasive systems, and allows us to verify the correctness of the fix. This

case-study gave us valuable initial experience in applying program transformations to a useful

problem in pervasive computing.

The Access Control Verifier case-study turned out to be a textbook example of how special-

isation (and the ASAP tools in particular) can be employed in order to speed up execution of a

program. We show that we can reduce execution time to acceptable levels. The overhead can

be reduced to close to zero. This case-study has been applied both to ASAP tools, and to exter-

nal tools for comparison. Tabling, as implemented in XSB reduces the gains of specialisation,

limiting speed-ups to single-digit figures.

The Timing Analysis and the Access Control Verifier case-studies have produced valuable

experience and direct results. They were both case-studies at the lower range of risk; producing

well understood results but not being too adventurous in how far they pushed the state of the art.

Both studies have contributed as much to the progress of the project as they will and we will

not be actively pursuing further results within them. The higher-risk case-studies were the PIC-

Emulator and the Precision Interpreter. Both of these case-studies have produced encouraging

initial results that show that we will progress the state of the art by continuing to develop them

in the later stage of the project.

The Precision Interpreter case-study (Section 2) targets a prevalent problem in pervasive

system design. We have shown promising initial results in this domain. Our analysis of the

problem is developed in the native language of the tool-set, and has shown more flexibility and

better results than the previous work in the field. Our use of an interpreter to model the problem
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is a novel approach within the domain. We expect there to be much more scope in that case-

study, in particular on the code generation side; preliminary experiments with CiaoPP show that

we should be able to specialise the Precision Interpreter.

The PIC Emulator case-study (Section 4) has so far suggested that it would be applicable to

a wide range of static analyses. Currently we have successfully specialised the PIC interpreter

with respect to real programs from the pervasive domain, including a program that detects steps

using an accelerometer. The residual programs that we have produced appear to be amenable

to liveness and deadness analysis, redundant code, unreachable code, and even to subsume the

timing analysis (Section 3) within a more general framework. We have manually identified these

analyses within the residual program, but we have yet to automate the analysis.

6.2 Results: Pervasive Requirements

There are three pervasive requirements that we set out in the introduction. Below we identify

how the case-studies have contributed to those goals.

Memory footprint The access control verifier has not yielded any improvements in memory

footprint that we measured.

The PIC emulator has shown that unused memory within a target program can be detected.

The first “real” PIC program to be analysed was a 321 instruction program which is a step

detector that uses an accelerometer. Specialisation followed by analysis showed that 56

instructions (17 percent of the code) were unreachable. Memory savings will mean that the

code can run on a smaller device. The memory savings will come both from unreachable

parts of the program as just mentioned, and unused variables/registers, and using liveness

analysis to use registers more efficiently. Preliminary results on liveness analysis for the

PIC are promising.

Additionally, the Precision Interpreter can reduce the memory requirements of its target

programs. Even though in absolute terms the savings are modest (bytes per variable),

since our target architecture has only 68 bytes of memory the savings are significant.

Correctness We have used the Timing Analyser to verify the behaviour of legacy code. The tool

identified errors within that legacy code that were traced to malfunctions in the system. We

were able to fix those errors and to verify the correctness of the fix.

Power consumption The Access Control Verifier case-study has managed to significantly re-

duce the time required for simple access control. Specialisation can speed up access con-

trol to a zero-overhead process, at a marginal specialisation cost.
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The Precision Interpreter successfully analyses code and identifies the precision at which

operations have to take place. We have not yetquantifiedhow few instructions will be

required, as this will result from the study of code generation that we will undertake in the

second round of case-studies.

The PIC emulator could identify redundant instructions, but has yet to do so in the first test

cases that we have tested it on.

6.3 Results: Tools and Methods

A common theme in the case studies is the use of Prolog to interpret and emulate classes of

pervasive applications and machines, followed by specialisation to obtain Prolog programs cor-

responding to specific applications and programs. The tool-set has successfully specialised the

interpreters that we have needed for the first stage of the project. In particular the offline partial

evaluatorLOGEN, with its Binding Time Analysis tool, proved able to handle sizable interpreters.

We got a very good result in the Access Control Verifier case-study usingLOGEN. Also, the tools

have been successful in specialising the PIC Emulator and the Precision Interpreter. We found

the development of the Precision Interpreter very easy, due to the use of Prolog and the speciali-

sation tools. In particular, we were able to focus on defining a correct and clear formulation of the

Precision Interpreter, rather than an efficient formulation, because we knew that the redundant

code is going to be specialised out. We expect this to be the case on other programs.

We found another problem whilst the pervasive systems developers were learning to use the

ASAP tool-set. It turns out that they tend to write Prolog code in a very different style to most

logic programmers. This naive style of programming resulted in very declarative code that was

highly inefficient to execute and specialise. The normal technique to increase the efficiency of

the code would be to reduce the number of choice-points through the introduction of (green)

cuts. It would be desirable for the tool-set to perform this task automatically; given a set of entry

points to a module the tool-set could determinise the code, and produce the less declarative but

more efficient implementation.

Finally, one of the lessons that we learnt whilst developing the Precision Interpreter was that

in order to express the problem clearly we were manually staging the code. In order to increase

the modularity of the code it would be desirable to place related functionality together. One

method of achieving this (and improving the clarity of the code) would be to to introduce manual

staging constructs into the language. If the BTA of the specialiser understood these syntactic

constructs then it would allow the programmer to “massage” the BTA and effectively specialise

more complex code.

The case-studies provided a genuine test of the scalability of the analysis and specialisation
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tools, since the interpreters and their specialisations are definitely not toy problems, but contain

in some cases thousands of lines of Prolog code, with high-arity predicates. The results were

generally encouraging though optimisation of analysis algorithms and data structures is a clear

requirement. For numeric domains, we plan to introduce an external polyhedron library (the

Parma Polyhedron Library) rather than CLP, while for symbolic domains, more efficient rep-

resentations of pre-interpretations, and the use of BDD representations are being investigated.

However in general the approach of usinggeneral purposeanalysis and specialisation tools looks

capable of achieving significant results.

The requirement for effective analysis tools over numerical domains such as intervals and

convex hulls was underlined in more than one case-study, including the Precision Interpreter,

Timing Analyser and PIC interpreter. This requirement will be followed up in the future work

on the analysis tool-set.

6.4 Future work

We do not plan to directly extend the Timing Analyser within the scope of the ASAP project,

as it has provided the experience and results that we feel are relevant and the effort to do so

would be better invested in a different case-study. However, the tool itself is scheduled to be

re-written in a language applicable to the tool-set and investigated with the ASAP tools, outside

the project. Also, we will be intrigued to see whether the functionality of the timing analyser can

be subsumed by the PIC Emulator.

We will conclude the research on the Precision Interpreter in the second round of case-studies.

Our focus will be on the generation of low-level executable code for the PIC micro-controller.

We believe that the strength of our approach will best be demonstrated by tackling such an am-

bitious compilation target. As this case-study is well suited for real-world problems in pervasive

computing we believe that such a result would have a very positive effect on research in perva-

sive computing. We will measure this result by a comparison of the output code against both

hand-written code and other compilers that do not translate from such a tightly defined domain-

specific-language.

While our main focus will be on the specialisation of the Precision Interpreter in order to pro-

duce the most efficient program that we can, there are other interesting areas of research within

the case-study that can be pursued if there is sufficient time. As we have stated in Section 2.5

there is a large scope for optimisation if we can deduce the static properties of the program run-

ning within the interpreter. This is a difficult analysis problem as it requires information from

separate calls at different levels of interpretation to be unified. Such an analysis may also have

an effect on the Stream Interpreter.
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We intend to continue the work undertaken in the PIC Emulator in the second round of case-

studies. One interesting area of research that we will undertake is the analysis of interactions

between the PIC micro-controller and its external environment. We will experiment with the

“backwards analysis” method [21] in this problem, and how it can be used to detect possible error

conditions at run-time. We will also try to analyse numerical properties, including looking for

constant values in registers, and relationships between the clock and frequency of input values.

The initial work on register liveness is promising and we aim to develop this further, as well as

the optimisations of register usage that become available following liveness analysis.

An interesting problem revealed itself with the Stream Interpreter case-study. Although from

the point of view of a pervasive designer this was quite a simple case-study, the depth of analysis

required in order to specialise an interpreter of this type was too ambitious for the tools at the

time. The difficulty in analysing the Stream Interpreter is that it provides a novel view of redun-

dancy in the code. Rather than an analysis that operates on a pure division between static and

dynamic data, this problem requires an analysis capable of detecting partially static data over

varying time frames. The straightforward method to attack this problem is to aggressively unfold

the entire program in order to make explicit the semi-constancy across loop iterations. But using

this approach requires us to retain enough information to refold the program into a form suitable

for execution.

However, since we first tried the stream interpreter, the tools have improved and we have a

better understanding of how to formulate the stream interpreter. We are currently investigating

ways of implementing this semi-constancy that are not specific to this particular case-study but

which will also have value when applied to other programs, and we plan to attempt the stream

interpreter in the second cycle of case studies. Another case study that we wish to study in the

second round is the specialisation of matrix operations used in the Kalman Filter.
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