
ASAP
IST-2001-38059

Advanced Analysis and Specialization for
Pervasive Systems

Specialization for Size Reduction

Deliverable number: D9
Workpackage: Resource-Oriented Specialization (WP4)
Preparation date: 1 May 2004
Due date: 1 May 2004
Classification: Public
Lead participant: Univ. of Southampton
Partners contributed: Tech. Univ. of Madrid (UPM), Univ. of Bristol, Univ. of

Southampton, Roskilde Univ

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998–2002).

Short description:

Very often, programs are built from general purpose components. This results in very large
programs: much of the code is not actually required for a particular application and can be
eliminated. This deliverable studies and develops several ways to reduce the size of programs
so as to enable their application in pervasive systems with limited memory resources. This
reduction can be performed both at the source and at the compiled code level, in which case it is
also important to take into account the size of the required libraries and of the run-time system.

The deliverable pursues both of these avenues and contains three main parts:

• A new, improved approach to program slicing, leveraging the tools developed in previous
work of the ASAP project to reduce the size of the source code of programs.

• An optimising compilation of Prolog to C, with a view to reducing the footprint for running
Prolog programs and enabling pervasive applications.

• An innovative application of program analysis and specialization to runtime system li-
braries which allows an important reduction of code size.

1 Program Slicing

Program slicing is a fundamental operation that has been successfully applied to solve many
software engineering tasks, like, e.g., program understanding, maintenance, specialization, de-
bugging, reuse, etc. Slicing was originally introduced by Weiser [Wei84]—in the context of
imperative programs—as a debugging technique. Despite its potential applications, we found
very few approaches to slicing in logic programming (some notable exceptions are, e.g., [GP95,
SD96, SGM02, Vas99, ZCU01]).

Informally, a program slice consists of those program statements which are (potentially)
related with the values computed at some program point and/or variable, referred to as a slicing
criterion. Program slices are usually computed from a program dependence graph [FOW87] that
makes explicit both the data and control dependences for each operation in a program. Program
dependences can be traversed backwards and forwards—from the slicing criterion—giving rise to
so-called backward and forward slicing. Additionally, slices can be static or dynamic, depending
on whether a concrete program’s input is provided or not. More detailed information on program
slicing can be found in [HH01, Tip95].

Recently, Vidal [Vid03] introduced a novel approach to forward slicing of lazy functional
logic programs. This work exploits the similarities between slicing and partial evaluation— already
noticed in [RT96]— to compute forward slices by a slight modification of an existing partial eval-
uation scheme [AV02]. The main requirement of [Vid03] is that the underlying partial evalua-
tion algorithm should be— in the terminology of [GS96]— both monovariant and monogenetic
in order to preserve the structure of the original program. Unfortunately, this requirement also
restricts the precision of the computed slices.

In this work, we extend the approach of [Vid03] in several ways. First, we adapt it to the
logic programming setting. Second, we consider a polyvariant and polygenetic partial evalua-
tion scheme: the conjunctive partial deduction algorithm of [DSGJ+99] with control based on
characteristic trees [GB91, LMDS98, LdS98]. Therefore, the computed slices are significantly
more precise than those of the previous approach. Furthermore, since the basic partial deduction
algorithm is kept unmodified, it can easily be implemented on top of an existing partial deduc-
tion system (in our case, ECCE [LMDS98]). Finally, we use the redundant argument filtering
transformation of [LS96] to slice out unnecessary arguments of predicates (in addition to slicing
out entire clauses).

The combination of these two approaches, [Vid03] and [LS96], together with a special-
purpose slicing code generator, gives rise to a simple but powerful forward slicing technique.
We also pay special attention to using slicing for code size reduction. Indeed, within the present
ASAP project we are looking at resource-aware specialization techniques, with the aim of adapt-
ing software for pervasive devices with limited resources. We hence also analyze to what extent
our approach can be used as an effective code size reduction technique, to reduce the memory
footprint of a program.

Our main contributions are the following. We introduce the first, semantics-preserving, for-
ward slicing technique for logic programs that produces executable slices. While traditional
approaches in the literature demand different techniques to deal with static and dynamic slic-
ing, our scheme is general enough to produce both static and dynamic slices. In contrast to
[Vid03], the restriction to adopt a monovariant/monogenetic partial evaluation algorithm is not
needed. Dropping this restriction is important as it allows us to use more powerful specialization
schemes and, moreover, we do not need to modify the basic algorithm, thus easing the imple-
mentation of a slicing tool (i.e., only the code generation phase should be changed). We illustrate
the usefulness of our approach on a series of benchmarks, and analyze its potential as a code-size
reduction technique.

This first part of the deliverable attached is an improved and extended version of a paper
accepted at a major conference (ESOP’05, part of ETAPS’05).

2

2 Improved Compilation

Several techniques for implementing Prolog have been devised since the original interpreter de-
veloped by Colmerauer and Roussel [Col93], many of them aimed at achieving more speed. An
excellent survey of a significant part of this work can be found in [Van94]. The following is
a rough classification of implementation techniques for Prolog (which is, in fact, extensible to
many other languages):

• Interpreters (such as C-Prolog [Per87] and others), where a slight preprocessing or transla-
tion might be done before program execution, but the bulk of the work is done at runtime
by the interpreter.

• Compilers to bytecode and their interpreters (often called emulators), where the compiler
produces relatively low level code in a special-purpose language. Most current emulators
for Prolog are based on the Warren Abstract Machine (WAM) [War83, AK91], but other
proposals exist [Tay91, KB95].

• Compilers to a lower-level language, often (“native”) machine code, which require little or
no additional support to be executed. One solution is for the compiler to generate machine
code directly. Examples of this are Aquarius [VD92], versions of SICStus Prolog [Swe99]
for some architectures, BIM-Prolog [Mar93], and Gnu Prolog [DC01]. Another alternative
is to generate code in a (lower-level) language, such as, e.g., C-- [JRR99] or C, for which
compilers are readily available; the latter is the approach taken by wamcc [CD95].

Each solution has its advantages and disadvantages.

We describe the current status of and provide performance results for a prototype compiler of
Prolog to C, termed ciaocc. Ciaocc is novel in that it is designed to accept different kinds of
high-level information, typically obtained via an automatic analysis of the initial Prolog program
and expressed in a standardized language of assertions. This information is used to optimize the
resulting C code, which is then processed by an off-the-shelf C compiler. The basic translation
process essentially mimics the unfolding of a bytecode emulator with respect to the particular
bytecode corresponding to the Prolog program. This is facilitated by a flexible design of the
instructions and their lower-level components. This approach allows reusing a sizable amount
of the machinery of the bytecode emulator: predicates already written in C, data definitions,
memory management routines and areas, etc., as well as mixing emulated bytecode with native
code in a relatively straightforward way.

3

We report on the execution improvement of programs compiled by the current version of
the system, both with and without analysis information, which can be divided into two different
classes:

• Improvements in execution time, of general importance (and in special for systems with
reduced resources), and

• Improvements in executable size, which are of concern in compilers for symbolic lan-
guages which generate lower-level, general-purpose code. In out case we report how in-
formation about type and determinism in the compiled programs affects the size of the
executables.

This second part of the deliverable attached is an improvement over the previously submitted
one. This version has been recently presented in a major conference on the field (PADL’05),
while an earlier version was presented at the CICLOPS workshop.

3 Generation of stripped-down runtime systems

Finally, some effort has been devoted to the generation of runtime systems for which useless code
has been removed, using abstract interpretation and program specialization techniques. Program
specialization has been successfully applied to user programs, but it has not been directly used
for system libraries yet. This approach is specially relevant for pervasive systems, as it allows the
use of generic libraries for developing applications on virtual machine runtime-based systems.
It presents important differences with respect to current runtime systems for pervasive devices
(like Java Micro Edition series of runtime environments), as they have a prefixed set of runtime
libraries specific for such systems.

Some results have been obtained, showing that an important reduction in runtime library size
has been achieved using a simple abstract domain. It is expected that the application of more
complex abstract domains will provide even better results. This work is described in the second
part of this deliverable.

4

References

[AK91] Hassan Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction. MIT
Press, 1991.

[AV02] E. Albert and G. Vidal. The Narrowing-Driven Approach to Functional Logic Pro-
gram Specialization. New Generation Computing, 20(1):3–26, 2002.

[CD95] Philippe Codognet and Daniel Diaz. WAMCC: Compiling Prolog to C. In Leon
Sterling, editor, International Conference on Logic Programming, pages 317–331.
MIT PRess, June 1995.

[Col93] A. Colmerauer. The Birth of Prolog. In Second History of Programming Languages
Conference, ACM SIGPLAN Notices, pages 37–52, March 1993.

[DC01] D. Diaz and P. Codognet. Design and Implementation of the GNU Prolog System.
Journal of Functional and Logic Programming, 2001(6), October 2001.

[DSGJ+99] Danny De Schreye, Robert Glück, Jesper Jørgensen, Michael Leuschel, Bern
Martens, and Morten Heine Sørensen. Conjunctive partial deduction: Foundations,
control, algorithms and experiments. The Journal of Logic Programming, 41(2 &
3):231–277, November 1999.

[FOW87] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The Program Dependence Graph
and Its Use in Optimization. ACM Transactions on Programming Languages and
Systems, 9(3):319–349, 1987.

[GB91] J. Gallagher and M. Bruynooghe. The Derivation of an Algorithm for Program
Specialisation. New Generation Computing, 9(3-4):305–333, 1991.

[GP95] T. Gyimóthy and J. Paakki. Static Slicing of Logic Programs. In Proc. of the 2nd
Int’l Workshop on Automated and Algorithmic Debugging (AADEBUG’95), pages
87–103. IRISA-CNRS, 1995.

[GS96] R. Glück and M.H. Sørensen. A Roadmap to Metacomputation by Supercompila-
tion. pages 137–160. Springer LNCS 1110, February 1996.

[HH01] M. Harman and R. Hierons. An Overview of Program Slicing. Software Focus,
2(3):85–92, 2001.

[JRR99] Simon L. Peyton Jones, Norman Ramsey, and Fermin Reig. C--: A Portable As-
sembly Language that Supports Garbage Collection. In Gopalan Nadathur, editor,
International Conference on Principles and Practice of Declarative Programming,
number 1702 in Lecture Notes in Computer Science, pages 1–28. Springer Verlag,
September 1999.

[KB95] Andreas Krall and Thomas Berger. The VAMAI - an abstract machine for incremen-
tal global dataflow analysis of Prolog. In Maria Garcia de la Banda, Gerda Janssens,
and Peter Stuckey, editors, ICLP’95 Post-Conference Workshop on Abstract Inter-
pretation of Logic Languages, pages 80–91, Tokyo, 1995. Science University of
Tokyo.

[LdS98] M. Leuschel and D. De Schreye. Constrained Partial Deduction and the Preservation
of Characteristic Trees. New Generation Computing, 16(3):283–342, 1998.

[LMDS98] Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalisa-
tion and polyvariance in partial deduction of normal logic programs. ACM Trans-
actions on Programming Languages and Systems, 20(1):208–258, January 1998.

[LS96] Michael Leuschel and Morten Heine Sørensen. Redundant argument filtering of
logic programs. In John Gallagher, editor, Logic Program Synthesis and Trans-
formation. Proceedings of LOPSTR’96, LNCS 1207, pages 83–103, Stockholm,
Sweden, August 1996. Springer-Verlag.

[Mar93] André Mariën. Improving the Compilation of Prolog in the Framework of the War-
ren Abstract Machine. PhD thesis, Katholieke Universiteit Leuven, September
1993.

[Per87] F. Pereira. C-Prolog User’s Manual, Version 1.5. University of Edinburgh, 1987.

[RT96] T. Reps and T. Turnidge. Program Specialization via Program Slicing. In O. Danvy,
R. Glück, and P. Thiemann, editors, Partial Evaluation. Dagstuhl Castle, Germany,
February 1996, pages 409–429. Springer LNCS 1110, 1996.

[SD96] S. Schoenig and M. Ducasse. A Backward Slicing Algorithm for Prolog. In Proc.
of the Int’l Static Analysis Symposium (SAS’96), pages 317–331. Springer LNCS
1145, 1996.

1

[SGM02] G. Szilagyi, T. Gyimothy, and J. Maluszynski. Static and Dynamic Slicing of Con-
straint Logic Programs. J. Automated Software Engineering, 9(1):41–65, 2002.

[Swe99] Swedish Institute for Computer Science, PO Box 1263, S-164 28 Kista, Sweden.
SICStus Prolog 3.8 User’s Manual, 3.8 edition, October 1999. Available from
http://www.sics.se/sicstus/.

[Tay91] A. Taylor. High-Performance Prolog Implementation. PhD thesis, Basser Depart-
ment of Computer Science, Unversity of Sidney, June 1991.

[Tip95] F. Tip. A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages, 3:121–189, 1995.

[Van94] P. Van Roy. 1983-1993: The Wonder Years of Sequential Prolog Implementation.
Journal of Logic Programming, 19/20:385–441, 1994.

[VD92] P. Van Roy and A.M. Despain. High-Performace Logic Programming with the
Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54–68, January 1992.

[Vas99] W. Vasconcelos. A Flexible Framework for Dynamic and Static Slicing of Logic
Programs. In Proc. of the First Int’l Workshop on Practical Aspects of Declarative
Languages (PADL’99), pages 259–274. Springer LNCS 1551, 1999.

[Vid03] G. Vidal. Forward Slicing of Multi-Paradigm Declarative Programs Based on Par-
tial Evaluation. In Logic-based Program Synthesis and Transformation (revised
and selected papers from the 12th Int’l Workshop LOPSTR 2002), pages 219–237.
Springer LNCS 2664, 2003.

[War83] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, Artifi-
cial Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park CA
94025, 1983.

[Wei84] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

[ZCU01] J. Zhao, J. Cheng, and K. Ushijima. A Program Dependence Model for Concurrent
Logic Programs and Its Applications. In Proc. of IEEE Int’l Conf. on Software
Maintenance (ICSM’01), pages 672–681. IEEE Press, 2001.

2

Forward Slicing b y C onjunctiv e P artial

D eduction and A rgum ent Filte ring?

Michae l Leu sche l1 and G erm án Vid al2

1 School of E lectronics and C om puter Sc ience, U niv ersity of Southam pton
& Institut für Inform atik , H einrich-H eine U niv ersität Düsseldorf

mal@ecs.soton.ac.uk
2 DSIC , T echnical U niv ersity of V alencia,

C am ino de V era S/N , E -46022 V alenc ia, Spain
gvidal@dsic.upv.es

Ab stra ct. P rogram slic ing is a w ell-k now n m ethodology that aim s at
identify ing the program statem ents that (potentially) aff ect the v alues
com puted at som e point of interest. W ithin im perativ e program m ing,
this techniq ue has been successfully applied to debugging, spec ialization,
reuse, m aintenance, etc . Due to its dec larativ e nature, adapting the slic -
ing notions and techniq ues to a logic program m ing setting is not an easy
task . In this w ork , w e define the first, sem antics-preserv ing, forw ard slic -
ing techniq ue for logic program s. O ur approach relies on the application
of a conjunctiv e partial deduction algorithm for a prec ise propagation of
inform ation betw een calls. W e do not distinguish betw een static and dy -
nam ic slic ing since partial deduction can naturally deal w ith both static
and dy nam ic data. A slic ing tool has been im plem ented in ecce, w here
a post-processing transform ation to rem ov e redundant argum ents has
been added. E x perim ents conducted on a w ide v ariety of program s are
encouraging and dem onstrate the usefulness of our approach, both as a
c lassical slic ing m ethod and as a techniq ue for code size reduction.

1 Introduction

P rogram slicing is a fu nd am ental op eration that has b e en su cce ssfu lly ap p lie d to
solv e m any softw are engine ering task s, lik e , e .g., p rogram u nd erstand ing, m ainte -
nance , sp ecialization, d e b u gging, re u se , e tc. S licing w as originally introd u ce d b y
W e ise r [34]—in the conte x t of im p e rativ e p rogram s—as a d e b u gging techniq u e .
Desp ite its p otential ap p lications, w e fou nd v ery fe w ap p roaches to slicing in
logic p rogram m ing (som e notab le e x ce p tions are , e .g., [10,28,29,31,35]).

Inform ally , a program slice consists of those p rogram state m ents w hich are
(p otentially) re late d w ith the v alu e s com p u te d at som e p rogram p oint and / or
v ariab le , re fe rre d to as a slicing criterion. P rogram slice s are u su ally com p u te d
from a program dependence graph [5] that m ak e s e x p licit b oth the d ata and
control d e p end ence s for each op eration in a p rogram . P rogram d e p end ence s can

? T his w ork w as partially funded by the IST program m e of the E uropean C om m ission,
F uture and E m erging T echnologies under the IST -2001-38059 A SA P project and by
the Spanish Ministerio d e E d ucació n y C iencia (ref. T IN 2004-00231).

be traversed backwards and forwards—from the slicing criterion—giving rise
to so-called backw ard and forw ard slicing. Additionally, slices can be static or
dynamic, depending on whether a concrete program’s input is provided or not.
More detailed information on program slicing can be found in the surveys of
Harman and Hierons [12] and T ip [30].

Recently, Vidal [33] introduced a novel approach to forward slicing of lazy
functional logic programs. T his work exploits the similarities between slicing and
partial evaluation—already noticed in [26]—to compute forward slices by a slight
modifi cation of an existing partial evaluation scheme [2]. T he main requirement
of [33] is that the underlying partial evaluation algorithm should be—in the
terminology of [27]—both monovariant and monogenetic in order to preserve the
structure of the original program. Unfortunately, this requirement also restricts
the precision of the computed slices.

In this work, we extend the approach of [33] in several ways. F irst, we adapt
it to the logic programming setting. Second, we consider a polyvariant and poly-
genetic partial evaluation scheme: the conju nctive partial deduction algorithm
of [3] with control based on characteristic trees [9, 19, 20]. T herefore, the com-
puted slices are signifi cantly more precise than those of the previous approach.
B asically, conjunctive partial deduction [3] extends the original framework of
partial deduction [24] by considering conjunctions of atoms for specialization
(hence allowing precise information propagation from one call to another), while
a characteristic tree [9] is a data structure which encapsulates the evaluation be-
havior of a goal, i.e., a trace of the unfolding process. T his provides a powerful
mechanism to guide generalization and polyvariance throughout the transforma-
tion process [14, 20]. Also, since each characteristic tree stores the clauses used
for the evaluation of a goal, they become very useful to identify the subset of the
original program that is reachable from the slicing criterion (i.e., a forward slice).
F urthermore, since the basic partial deduction algorithm is kept unmodifi ed, it
can easily be implemented on top of an existing partial deduction system (in
our case, ecce [20]). F inally, we use the redundant argument fi ltering transfor-
mation of [22] to slice out unnecessary arguments of predicates (in addition to
slicing out entire clauses).

T he combination of these two approaches, [33] and [22], together with a
special-purpose slicing code generator, gives rise to a simple but powerful forward
slicing technique. We also pay special attention to using slicing for code size
reduction. Indeed, within the ASAP project [1], we are looking at resource-aware
specialization techniques, with the aim of adapting software for pervasive devices
with limited resources. We hence also analyze to what extent our approach can
be used as an eff ective code size reduction technique, to reduce the memory
footprint of a program.

O ur main contributions are the following. We introduce the fi rst, semantics-
preserving, forward slicing technique for logic programs that produces executable
slices. While traditional approaches in the literature demand diff erent techniques
to deal with static and dynamic slicing, our scheme is general enough to produce
both static and dynamic slices. In contrast to [33], the restriction to adopt a

monovariant/monogenetic partial evaluation algorithm is not needed. Dropping
this restriction is important as it allows us to use more powerful specialization
schemes and, moreover, we do not need to modify the basic algorithm, thus
easing the implementation of a slicing tool (i.e., only the code generation phase
should be changed). We illustrate the usefulness of our approach on a series of
benchmarks, and analyze its potential as a code-size reduction technique.

The paper is organized as follows. After introducing some foundations in
the next section, Sect. 3 presents our basic approach to the computation of
forward slices. Then, Sect. 4 considers the inclusion of a post-processing phase
for argument filtering. Section 5 illustrates our technique by means of a detailed
example, while Sect. 6 presents an extensive set of benchmarks. Finally, Sect. 7
compares some related works and concludes.

2 Back ground

In order to keep the paper self-contained, in this section we briefl y recall the
methodologies involved in our approach to program slicing.

Partial evaluation [13] has been applied to many programming languages,
including functional, imperative, object-oriented, logic, and functional logic pro-
gramming languages. It aims at improving the overall performance of programs
by pre-evaluating parts of the program that depend solely on the static input.

In the context of logic programming, full input to a program P consists of a
goal G and evaluation corresponds to constructing a complete SLDNF-tree for
P ∪ {G}. For partial evaluation, the static input takes the form of a goal G′

which is more general (i.e., less instantiated) than a typical goal G at runtime.
In contrast to other programming languages, one can still execute P for G′ and
(try to) construct an SLDNF-tree for P ∪ {G′}. However, since G′ is not yet
fully instantiated, the SLDNF-tree for P ∪ {G′} is usually infinite and ordinary
evaluation will not terminate. A technique which solves this problem is known
under the name of partial deduction [24]. Its general idea is to construct a finite
number of finite, but possibly incomplete3 SLDNF-trees and to extract from
these trees a new program that allows any instance of the goal G′ to be executed.

C onjunctive partial deduction (C PD) [3] is an extension of partial deduction
that can achieve effects such as deforestation and tupling [25]. The essence of
C PD can be seen in Fig. 1. The so-called global control of C PD generates a set
C = {C1, . . . ,Cn} of conjunctions whereas the local control generates for each
conjunction a possibly incomplete SLDNF-tree τi (a process called unfolding).
The overall goal is to ensure that every leaf conjunction is either an instance of
some Ci or can be split up into sub-conjunctions, each of which is an instance of
some conjunction in C. This is called the closedness condition, and guarantees
correctness of the specialized program which is then extracted by:

– generating one specialized predicate per conjunction in C (and inventing a
new predicate name for it), and by producing

3 An SL DNF-tree is incom p lete if, in addition to success and failure leaves, it also
contains leaves where no literal has been selected for a further derivation step.

Conjunction 1 Conjunction 2

Intermediate
Goal

Leaf
Conjunction 2

Leaf
Conjunction 3

Leaf
Conjunction 1

Conjunction N

Intermediate
Goal

. . .

Leaf
Conjunction M

instance of unfold

Legend

global control

Fig. 1. The Essence of Conjunctive Partial Deduction

– one specialized clause—a resultant—per non-failing branch of τi.

A single resolution step with a specialized clause now corresponds to perform-
ing all the resolutions steps (using original program clauses) on the associated
branch. Closedness can be ensured by various algorithms [17]. Usually, one starts
off with an initial conjunction, unfolds it using some “unfolding rule” (a function
mapping a program P and a goal G to an SLDNF-tree for P ∪ {G}) and then
adds all uncovered4 leaf conjunctions to C, in turn unfolding them, and so forth.
As this process is usually non-terminating, various “generalization” operations
are applied, which, for example, can replace several conjunctions in C by a sin-
gle less instantiated one. One useful foundation for the global control is based
on so-called characteristic trees, used for example by the sp [7] and ecce [20]
specialization systems. We describe them in more detail below, as they turn out
to be important for slicing.

Characteristic trees were introduced in partial deduction in order to capture
all the relevant aspects of specialization. The following definitions are taken from
[20] (which in turn were derived from [9] and the SP system [7]).

Definition 1 (characteristic path). L et G0 be a goal, and let P be a normal

program whose clauses are numbered. L et G0, . . . , Gn be the goals of a fi nite,

possibly incomplete S L DN F -derivation D of P ∪ {G0}. T he characteristic path

of the derivation D is the sequence 〈l0 : c0, . . . , ln−1 : cn−1〉, where li is the

position of the selected literal in Gi, and ci is defi ned as follows:

4 I.e., those conjunctions which are not an instance of a conjunction in C.

�
��	

@
@@R

@
@@R

�
��	

← append([a], X, Y) ← append(X, [a], Y)

2 ← append(X ′, [a], Y ′)

(1) (2)

← append([], X, Y ′)

2

(1)

(2)

Fig. 2. SL D-trees τB and τC for E x am ple 1.

– if the selected literal is an atom , then ci is the nu m ber of the clau se chosen
to resolve w ith Gi;

– if the selected literal is ¬p(t̄), then ci is the predicate p.

E xam ple 1. Let P b e the append p rogram :

(1) append([], Z, Z)←
(2) append([H|X], Y , [H|Z])← append(X, Y , Z)

Note that w e hav e ad d ed c lau se nu m b ers, w hich w e w ill henceforth incorp orate
into illu strations of S LD-trees in ord er to c larify w hich c lau ses hav e b een resolv ed
w ith. T o av oid c lu ttering the fi gu res w e w ill also d rop the su b stitu tions in su ch
fi gu res. F or ex am p le, the characteristic p ath of the d eriv ation assoc iated w ith
the only b ranch of the S LD-tree τB in F igu re 2 is 〈1 : 2, 1 : 1〉.

Note that an S LDNF -d eriv ation D can b e either failed , incom p lete, su c cessfu l,
or infi nite. As w e w ill see b elow , characteristic p aths w ill only b e u sed to char-
acterize fi nite and nonfailing d eriv ations. O nce the top -lev el goal is k now n, the
characteristic p ath is su ffi c ient to reconstru c t all the interm ed iate goals as w ell
as the fi nal one.5

Now that w e hav e characterized d eriv ations, w e can characterize goals throu gh
the d eriv ations in their assoc iated S LDNF -trees.

Definition 2 (characteristic tree). L et G be a goal, P a norm al program ,
and τ a fi nite S L DN F -tree for P ∪ {G}. T hen the characteristic tree τ̂ of τ is
the set containing the characteristic paths of the nonfailing S L DN F -derivations
associated w ith the branches of τ . τ̂ is called a characteristic tree if and only if
it is the characteristic tree of som e fi nite S L DN F -tree.

L et U be an u nfolding ru le su ch that U(P, G) = τ . T hen τ̂ is also called the
characteristic tree of G (in P) via U . We introdu ce the notation chtree(G, P, U) =
τ̂ . We also say that τ̂ is a characteristic tree of G (in P) if it is the characteristic
tree of G (in P) via som e u nfolding ru le U .

5 T herefore, using p in the second point of Def. 1 instead of a uniq ue sy m b ol to signal
the selec tion of a negativ e literal is a m atter of conv ention rather than necessity .

When characteristic trees are used to control C P D, the basic algorithm returns
a set of characteristic conjunctions, C̃, that fulfills the conditions for the correct-
ness of the specialization process. A characteristic conjunction is a pair (C, τ̂),
where C is a conjunction of literals—a goal—and τ̂ = chtree(C, P, U) is a char-
acteristic tree for some program P and unfolding rule U . From this set of charac-
teristic conjunctions, the specialized program is basically obtained by unfolding
and renaming.

3 Extracting Executable F o rw ard Slice s

In this section, we introduce our approach to the computation of—both static
and dynamic—forward slices.

Within imperative programming, the definition of a slicing criterion depends
on whether one considers static or dynamic slicing. In the former case, a slicing
criterion is traditionally defined as a pair (p, v) where p is a program statement
and v is a subset of the program’s variables. Then, a forward slice consists
of those statements which are dependent on the slicing criterion (i.e., on the
values of the variables v that appear in p), a statement being dependent on the
slicing criterion if the values computed at that statement depend on the values
computed at the slicing criterion or if the values computed at the slicing criterion
determine if the statement under consideration is executed [30]. As for dynamic
slicing, a slicing criterion is often defined as a triple (d, i, v), where d is the input
data for the program, i denotes the i-th element of the execution history, and v

is a subset of the program’s variables.
Adapting these notions to the setting of logic programming is not immediate.

There are mainly two aspects that one should take into account:
– The execution of partially instantiated goals—thanks to the use of logic vari-

ables—makes it unclear the distinction between static and dynamic slicing.
– The lack of explicit control fl ow, together with the absence of side eff ects,

makes unnecessary to consider a particular trace of the program’s execution
for dynamic slicing.

Therefore, we define a slicing criterion simply as a goal.6 Typically, the goal will
appear in the code of the source program. However, we lift this req uirement for
simplicity since it does aff ect to the forthcoming developments. A forward slice
should thus contain a subset of the original program with those clauses that are
reachable from the slicing criterion. Similarly to [28], the notion of “subset” is
formalized in terms of an abstraction relation, to allow arguments to be removed,
or rather replaced by a special term:

Definition 3 (term abstraction). Let >t be the empty term (i.e., an unnamed
existentially quantified variable, like the anonymous variable of P rolog). A term
t is an abstraction of term t′, in symbols t � t′, iff t = >t or t = t′.

6 If w e fix an entry point to the program and restrict ourselves to a particular evalu-
ation strategy (as in P rolog), one can still consider a concrete trace of the program.
In this case, how ever, a standard tracer w ould suffi ce to identify the interesting goal.

Definition 4 (literal abstraction). An atom p(t1, . . . , tn) is an abstraction
of atom q(t′1, . . . , t

′

m
), in symbols p(t1, . . . , tn) � q(t′1, . . . , t

′

m
), iff p = q, n = m,

and ti � t′
i

for all i = 1, . . . , n. A negative literal ¬P is an abstraction of a
negative literal ¬Q iff P � Q.

Definition 5 (clau se abstraction). A clause c is an abstraction of a clause
c′ = L′

0 ← L′

1, . . . , L
′

n
, in symbols c � c′, iff c = L0 ← L1, . . . , Ln and Li � L′

i

for all i ∈ {1, . . . , n}.

Definition 6 (program abstraction). A normal program7 P = (c1, . . . , cn)
is an abstraction of normal program P ′ = (c′0, . . . , c

′

m
), in symbols P � P ′, iff

n ≤ m and there exists a subsequence (s1, . . . , sn) of (1, . . . , m) such that ci � c′
si

for all i ∈ {1, . . . , n}.

Informally, a program P is an abstraction of program P ′ if it can be obtained
from P ′ by clause deletion and by replacing some predicate arguments by the
empty term >t. In the following, P is a slice of program P ′ iff P � P ′. Trivially,
program slices are normal programs.

Now, we can formally define the notion of correct slice:

Definition 7 (correct slice). Let P be a program and G a slicing criterion. A
program P ′ is a correct slice of P w.r.t. G iff P ′ is a slice of P (i.e., P ′ � P)
and the following conditions hold:

– P ∪ {G} has an SLDNF-refutation with computed answer θ if and only if
P ′ ∪ {G} does, and

– P ∪ {G} has a finitely failed SLDNF-tree if and only if P ′ ∪ {G} does.

Traditional approaches to program slicing rely on the construction of some data
structure which reflects the data and control dependences in a program (like, e.g.,
the program dependence graphs of [5, 15]). The key contribution of this paper is
to show that CPD can actually play such a role.

Roughly speaking, our slicing technique proceeds as follows. Firstly, given
a program P and a goal G, a CPD algorithm based on characteristic trees is
applied. The use of characteristic trees is relevant in our context since they
record the clauses used during the unfolding of each conjunction. The complete
algorithm outputs a so-called global tree—where each node is a characteristic
conjunction—which represents an abstraction of the execution of the considered
goal. In fact, this global tree contains information which is similar to that in a
program dependence graph (e.g., dependences among predicate calls). In stan-
dard conjuntive partial deduction, the characteristic conjunctions, C̃, in the com-
puted global tree are unfolded—following the associated characteristic trees—to
produce a correct specialization of the original program (after renaming). In
order to compute a forward slice, only the code generation phase of the CPD
algorithm should be changed: now, we use the characteristic tree of each con-
junction in C̃ to determine which clauses of the original program have been used
and, thus, should appear in the slice.

7 We consider that programs are sequences of clauses in order to enforce the preser-
vation of the syntax of the original program.

Given a characteristic path δ, we define cl(δ) as the set of clause numbers
in this path, i.e., cl(δ) = {c | 〈l : c〉 appears in δ and c is a clause number}.
Program slices are then obtained from a set of characteristic trees as follows:

Definition 8 (forw ard slicing). Let P be a normal program and G be a slic-
ing criterion. Let C̃ be the output of the C PD algorithm (a set of characteristic
conjunctions) and T be the characteristic trees in C̃. A forward slice of P w.r.t.
G, denoted by sliceT (P), contains those clauses of P that appear in some char-
acteristic path of T . Formally, sliceT (P) = ∪τ̂∈T {cl(δ) | δ ∈ τ̂}.

The correctness of the forward slicing method is stated as follows:

Theorem 1. Let P be a normal program and G be a slicing criterion. Let P ′

be a forward slice according to Def. 8. Then, P ′ is a correct slice of P w.r.t. G.

Proof. First, since P ′ is obtained from P only by clause deletion, P ′ is trivially
a slice of P (i.e., P ′ � P).

Now, the proof proceeds as follows. Let P be a program and G a goal. As-
sume that a CPD of P w.r.t. G returns the specialized program P ′′ and that
the associated slice for P w.r.t. G is P ′. Then, we show that P ′′ can also be
obtained by CPD of the slice, P ′, w.r.t. G. Then, correctness of the slice follows
straightforwardly by the correctness of CPD. Let us now formalize this proof
scheme.

According to Def. 8, we consider a set of characteristic conjunctions, C̃, as
the output of the CPD algorithm, where T is the set of characteristic trees in C̃.
Assume that P ′′ is the specialized program produced by the code generator of
the standard CPD algorithm. B y the correctness of this algorithm [3], P ∪ {G}
has an SLDNF-refutation with computed answer θ if and only if P ′′ ∪{G} does,
and P ∪ {G} has a finitely failed SLDNF-tree if and only if P ′′ ∪ {G} does.

Let P ′ = sliceT (P) be the associated forward slice of P w.r.t. G. Now, we
only need to show that P ′′ can also be obtained by CPD of the slice P ′ w.r.t.
G. Actually, this is an immediate consequence of Def. 2 by considering the same
unfolding rule that was used in the CPD algorithm. Therefore, by the correctness
of this algorithm [3], P ′ ∪ {G} has an SLDNF-refutation with computed answer
θ if and only if P ′′ ∪ {G} does, and P ′ ∪ {G} has a finitely failed SLDNF-tree if
and only if P ′′ ∪ {G} does.

Trivially, we have that P ∪ {G} has an SLDNF-refutation with computed
answer θ if and only if P ′ ∪{G} does, and P ∪{G} has a finitely failed SLDNF-
tree if and only if P ′ ∪ {G} does, which proves the claim.

Our slicing technique produces correct forward slices and, moreover, is more
flexible than previous approaches in the literature. In particular, in can be used to
perform both dynamic and static forward slicing with a modest implementation
effort, since only the code generation phase of the CPD algorithm should be
changed. Furthermore, it also subsumes quasi static slicing, an attempt to define
a hybrid method ranging between static and dynamic slicing [32] (which becomes
useful when only the value of some parameters is known).

4 Im prov ing Forward Slices by A rgum ent Filtering

The method of Def. 8 has been fully implemented in ecce, an off -th e -sh e lf p artial
e v alu ator for logic p rogram s b ase d on C P D an d ch aracteristic tre e s. In p ractic e ,
h ow e v e r, w e fou n d th at com p u te d slic e s ofte n con tain re d u n d an t argu m e n ts th at
are n ot re le v an t for th e e x e c u tion of th e slic in g criterion . In ord er to fu rth e r re fi n e
th e com p u te d slic e s an d b e ab le to slic e ou t u n n e c e ssary argu m e n ts of p re d icates,
w e u se th e re d u n d an t argu m e n t fi lte rin g tran sform ation s (RAF) of [22].

RAF is a te ch n iq u e d e v e lop e d in [22] w h ich d e te c ts c e rtain re d u n d an t argu -
m e n ts (fi n d in g all re d u n d an t argu m e n ts is u n d e c id ab le in ge n e ral [22]). B asically ,
it d e te c ts th ose argu m e n ts w h ich are e x iste n tial an d w h ich can th u s b e safe ly
re m ov e d . RAF is v ery u se fu l w h e n p e rform e d after C P D. Red u n d an t argu m e n ts
also arise w h e n on e re -u se s ge n e ric p re d icates for m ore sp e c ifi c p u rp oses. For
in stan c e , le t u s d e fi n e a member/2 p re d icate b y re -u sin g a ge n e ric delete/3

p re d icate :

member(X,L) :- delete(X,L,DL).

delete(X,[X|T],T). delete(X,[Y|T],[Y|DT]) :- delete(X,T,DT).

Here , th e th ird argu m e n t of delete is re d u n d an t an d w ill b e re m ov e d b y th e
p artial e v alu ator ecce if RAF is e n ab le d :

member(X,L) :- delete(X,L).

delete(X,[X|T]). delete(X,[Y|T]) :- delete(X,T).

T h e ecce sy ste m also con tain s th e re v e rse argu m e n t fi lte rin g (FAR) of [22]
(“re v e rse ” b e cau se th e safe ty con d ition s are re v e rse d w .r.t. RAF). W h ile RAF
d ete c ts e x iste n tial argu m e n ts (w h ich m igh t retu rn a com p u te d an sw e r b in d in g),
FAR d ete c ts argu m e n ts w h ich can b e n on -e x iste n tial an d n on -grou n d b u t w h ose
v alu e is n e v e r u se d (an d for w h ich n o com p u te d an sw e r b in d in g w ill b e re tu rn e d).
C on sid e r, e .g., th e follow in g p rogram :

p(X) :- q(f(X)). q(Z).

Here , th e argu m e n t of q(f(X)) is n ot a v ariab le b u t th e v alu e is n e v e r u se d . T h e
ecce sy ste m w ill re m ov e th is argu m e n t if FAR is e n ab le d :

p(X) :- q. q.

T h e e lim in ation of re d u n d an t argu m e n ts tu rn s ou t to b e q u ite u se fu l to re m ov e
u n n e c e ssary argu m e n ts from p rogram slic e s (se e n e x t se c tion). O n ly on e e x te n -
sion is n e c e ssary in ou r con te x t: w h ile re d u n d an t argu m e n ts are d e le te d in [22],
w e re p lac e th e m b y th e sp e c ial sy m b ol >t so th at th e fi lte re d p rogram is still a
slic e—an ab straction —of th e origin al p rogram . T h e corre c tn e ss of th e e x te n d e d
slic in g algorith m th e n follow s from T h eore m 1 an d th e re su lts in [22].

int(cst(X),_,_,X).

int(var(X),Vars,Vals,R) :- lookup(X,Vars,Vals,R).

int(plus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX+RY.

int(minus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX-RY.

int(fun(X),Vars,Vals,Res) :-

def0(X,Def), int(Def,Vars,Vals,Res).

int(fun(X,Arg),Vars,Vals,Res) :-

def1(X,Var,Def), int(Arg,Vars,Vals,ResArg),

int(Def,[Var|Vars],[ResArg|Vals],Res).

def0(one,cst(1)).

def0(rec,fun(rec)).

def1(inc,xx,plus(var(xx),cst(1))).

def1(rec,xx,fun(rec,var(xx))).

lookup(X,[X|_],[Val|_],Val).

lookup(X,[Y|T],[_|ValT],Res) :- X \= Y, lookup(X,T,ValT,Res).

Fig. 3. A simple functional interpreter

5 Forward Slicing in P ractice

In this section, we illustrate our approach to the computation of forward slices
through some selected examples. Consider the program in Fig. 3 which defines an
interpreter for a simple language with constants, variables, and some predefined
functions. First, we consider the following slicing criterion:

slice1(X) :- int(minus(cst(4),plus(fun(one),cst(2))),[xx],[11],X).

The slice computed by ecce w.r.t. this slicing criterion is as follows:

int(cst(X),_,_,X).

int(plus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX+RY.

int(minus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX-RY.

int(fun(X),Vars,Vals,Res) :- def0(X,Def), int(Def,Vars,Vals,Res).

def0(one,cst(1)).

slice1(X) :- int(minus(cst(4),plus(fun(one),cst(2))),[xx],[11],X).

Here, some predicates have been completely removed from the slice (e.g., def1
or lookup), even though they are reachable in the predicate dependency graph.
Furthermore, unused clauses are also removed, cutting down further the size of
the slice. By applying the argument filtering post-processing, we get8

8 F or c larity , in the ex amples w e use “*” to denote the empty term >t. In prac tice,

empty terms can b e replaced b y any term since they play no role in the computation.

int(cst(X),*,*,X).

int(plus(X,Y),*,*,Res) :- int(X,*,*,RX), int(Y,*,*,RY), Res is RX+RY.

int(minus(X,Y),*,*,Res) :- int(X,*,*,RX), int(Y,*,*,RY), Res is RX-RY.

int(fun(X),*,*,Res) :- def0(X,Def), int(Def,*,*,Res).

def0(one,cst(1)).

slice1(X) :- int(minus(cst(4),plus(fun(one),cst(2))),*,*,X).

The resulting slice is executable and will produce the same result as the original
program:

| ?- slice1(X).

X = 1 ?

yes

Note that this example could have been tack led by a dy n am ic slicing method, as a
fully specified query was provided as the slicing criterion. It would be interesting
to k now how a dynamic slicer would compare against our technique, and whether
we have lost any precision. In order to test this, we have implemented a simple
dynamic slicer in S ICS tus Prolog using profiled code and extracting the used
clauses using the profile data/4 built-in. The so extracted slice corresponds
exactly to our result (without the argument filtering; see Fig. 4), and hence no
precision has been lost in this example.

In general, not only the code size of the slice is smaller but also the runtime
can be improved. Thus, our forward slicing algorithm can be seen as a—rather
conservative—partial evaluation method that guarantees that code size does not
increase. For instance, it can be useful for resource aware specialization, when
the (potential) code explosion of typical partial evaluators is unacceptable.

Our slicing tool can also be useful for program debugging. In particular,
it can help the programmer to locate the source of an incorrect answer (or an
unexpected loop; finite failure is preserved in Def. 7) since it identifies the clauses
that could affect the computed answer, thus easing the correction of the program.
Consider, e.g., that the definition of function plus contains a bug:

int(plus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX-RY.

i.e., the programmer wrote RX-RY instead of RX+RY. G iven the following goal:

slice2(X) :- int(plus(cst(1),cst(2)),[x],[1],X).

the execution returns the—incorrect—computed answer X = -1. By computing
a forward slice w.r.t. slice2(X), we get (after argument filtering) the following:

int(cst(X),*,*,X).

int(plus(X,Y),*,*,Res) :- int(X,*,*,RX), int(Y,*,*,RY), Res is RX-RY.

slice2(X) :- int(plus(cst(1),cst(2)),*,*,X).

Fig. 4. The D ynamic Slicer using P rofiled C ode (for comparing precision with our
approach)

This slice contains only 3 clauses and, thus, the user can easily detect that the
definition of plus is wrong.

The previous two slices can be extracted by a dynamic slicing technique,
since they do not involve a non-terminating goal. Now, we consider the following
slicing criterion:

slice3(X) :- int(fun(rec),[aa,bb,cc,dd],[0,1,2,3],X).

Despite the fact that this goal has an infinite search space, our slicing tool returns
the following slice (after argument filtering):

int(fun(X),*,*,*) :- def0(X,Def), int(Def,*,*,*).

def0(rec,fun(rec)).

slice3(X) :- int(fun(rec),*,*,*).

From this slice, the clauses which are responsible of the infinite computation can
easily be identified.

6 Experimental Results

In this section, we show a summary of the experiments conducted on an extensive
set of benchmarks. We used SICStus Prolog 3.11.1 (powerpc-darwin-7.2.0) and
Ciao-Prolog 1.11 # 221, running on a Powerbook G4, 1GHz, 1GByte of RAM .
The operating system was M ac OS 10.3. We also ran some experiments with
SWI Prolog 5.2.0. The runtime was obtained by special purpose benchmarker
files (generated automatically be ecce) which execute the original and special-
ized programs without loop overhead. The code size was obtained by using the
fcompile command of SICStus Prolog and then measuring the size of the com-
piled *.ql files. The total speedups were obtained by the formula n∑

n

i=1

sp eci
o r ig i

where n is the number of benchmarks, and s pe c i and o r igi are the absolute ex-
ecution times of the specialized/sliced and original programs respectively.9 The

total code size reduction was obtained by the formula 1 −

∑
n

i=1
spec szi∑

n

i=1
or ig szi

where n

is the number of benchmarks, and s pe cs zi and o r igs zi are the code sizes of the
specialized/sliced and original programs respectively.

DPPD. We first compared the slicing tool with the default conjunctive spe-
cialization of ecce on the DPPD library of specialization benchmarks [16]. In a
sense these are not typical slicing scenarios, but nonetheless give an indication
of the behavior of the slicing algorithm. The experiments also allow us to eval-
uate to what extent our technique is useful as an alternative way to specialize
programs, especially for code size reduction. Finally, the use of the DPPD li-
brary allows comparison with other reference implementations (see, e.g., [3, 14]
for comparisons with m ix tu s, sp and p a d d y).

Note that some of the benchmark programs contain negation and built-ins.
To handle negation, we actually had to extend our algorithm to generate fail-
ing declarations (p(,...,) :- fail.) for those predicates that are selected
negatively but for which no clauses otherwise appear in the slice. From the per-
spective of the SLDNF semantics this is not required, but it is important to avoid
generating runtime exceptions (calling undefined predicates). Finally, to handle
the built-ins nothing had to be added on top of ecce’s treatment of built-ins.1 0

9 Observ e that this is diff erent from the av erage of the speedups (which has the dis-
adv antage that big slowdowns are not penalized suffi ciently).

10 E v en higher-order predicates such as call/1 in map.rev and map.reduce are not a
problem as long as at specialization time they are suffi ciently instantiated. ecce will
print a warning if the original program has to be k ept (e.g., because of something
lik e call(X) in the specialized program) and in that case no clause can be sliced
away (as we hav e no information about X).

Table 1. Speedups obtained by Specialization and by Slicing

Prolog System SWI-Prolog SICStus Ciao

Techniq ue Specialized Sliced Specialized Sliced. Specialized Sliced

TOTAL 2.43 1.04 2.74 1.04 2.62 1.05
Average 5.23 1.07 6.27 1.09 11.26 1.09

Table 1 (summary of Table 4 in Appendix A) shows the speedup of the ecce

default specialization and of our slicing algorithm. Timings for SWI Prolog, SIC-
Stus Prolog, and Ciao Prolog are shown. It can be seen that the average speedup
of slicing is just 4% . This shows how effi cient modern Prolog implementations
are, and that little overhead has to be paid for adding extra clauses to a program.
(One can also see that SICStus runs roughly 4 times faster than SWI.) There
are, however, a few benchmarks where slicing does lead to a significant speedup
(e.g., for model-elim), probably due to the fact that the removal of clauses also
removes unnecessary backtracking. Anyway, the main purpose of slicing is not
speedup, but reducing code size. In this case, slicing has managed an overall
code size reduction of 26.2% whereas the standard specialization has increased
the code size by 56% . As can be seen in Table 7 of Appendix A, in the worst
case, the specialization has increased the code size by 493.5% (whereas slicing
never increases the code size). On the other hand, there are cases where spe-
cialization achieves much smaller code size than slicing, e.g., for ssuply where
the specializer has managed to (almost) fully unfold the specialized query, thus
producing basically a series of facts.

Slicing-Specifi c Benchm ark s. Let us now turn our attention to four, more
slicing-specific experiments. Table 2 contains the results of these experiments.
The inter medium benchmark is the simple interpreter of Sect. 5. The ctl trace

benchmark is the CTL model checker from [21], extended to compute witness
traces. It is sliced for a particular system and temporal logic formula to model
check. The lambdaint benchmark is an interpreter for a simple functional lan-
guage taken from [18]. It is sliced for a particular functional program (computing
the Fibonacci numbers). Finally, matlab is an interpreter for a subset of the Mat-
lab language (the code can be found in Appendix B). The overall results are very
good: the code size is reduced by 60.5% and runtime decreased by 16% .

C om paring the Infl uence of L ocal and G lobal C ontrol. In Table 3, we
compare the infl uence of the partial deduction control. Here, “Full slicing” is the
standard CPD that we have used so far; “Simple Std. PD” is a standard (non-
conjunctive) partial deduction with relatively simple control; and “Näıve PD” is
very simple standard partial deduction in the style of [33], i.e., with a one-step
unfolding and very simple generalization (although it is still more precise than
[33] as it can produce some polyvariance), where we have turned the redundant
argument filtering off.

Table 2. Slicing Specific Benchmarks

Slicing Time R untime Size

Original Sliced Original Sliced R eduction
Benchmark ms ms speedup Bytes Bytes %

inter medium 20 117 1.06 4798 1578 67.1%
lambdaint 390 177 1.29 7389 4769 35.5%
ctl trace 1940 427 1.35 8053 4214 47.7%
matlab 2390 1020 1.02 27496 8303 69.8%

Total 1.16 60.5%

Table 3. V arious Slicing Approaches

Full Slicing Simple Std. PD N äıve PD

Benchmark Time (ms) R eduction Time (ms) R eduction Time (ms) R eduction

inter medium 20 67.1% 50 67.1% 20 41.8%
lambdaint 390 35.5% 880 9.0% 30 9.0%
ctl trace 1940 47.7% 140 47.7% 40 1.3%
matlab 2390 69.8% 1170 69.8% 200 19.3%

Total 4740 60.5% 2240 56.4% 290 17.0%

Table 6 in Appendix A shows the clear difference between our slicing ap-
proach and one using a näıve PD on the DPPD benchmarks used earlier: our
approach manages a code size reduction of 26% whereas the näıve PD approach
manages just 9.4%. The table also shows that the filtering had an impact on
three benchmarks, but overall the impact of the filtering is quite small. This is
somewhat surprising, and may be due to the nature of the benchmarks. However,
it may also mean that in the future we have to look at more powerful filtering
approaches.

7 Discussion, Related and Future W ork

In this work, we have introduced the first, semantics-preserving, forward slicing
technique for logic programs. Traditional approaches to program slicing rely on
the construction of some data structure to store the data and control depen-
dences in a program. The key contribution of this paper has been to show that
CPD can actually play such a role. The main advantages of this approach are
the following: there is no need to distinguish between static and dynamic slicing
and, furthermore, a slicing tool can be fully implemented with a modest imple-
mentation effort, since only the final code generation phase should be changed
(i.e., the core algorithm of the partial deduction system remains untouched). A
slicing tool has been fully implemented in ecce, where a post-processing trans-
formation to remove redundant arguments has been added. Our experiments
demonstrate the usefulness of our approach, both as a classical slicing method
as well as a technique for code size reduction.

As mentioned before, we are not aware of any other approach to forward
slicing of logic programs. Previous approaches have only considered backw ard

slicing. For instance, Schoening and Ducassé [28] defined the first backward slic-
ing algorithm for Prolog which produces executable programs. Vasconcelos [31]
introduced a flexible framework to compute both static and dynamic backward
slices. Similar techniques have also been defined for constraint logic programs
[29] and concurrent logic programs [35]. Within imperative programming, Field,
Ramalingam, and Tip [6] introduced a constrained slicing scheme in which source
programs are translated to an intermediate graph representation. Similarly to
our approach, constrained slicing generalizes the traditional notions of static and
dynamic slicing since arbitrary constraints on the input data can be made.

The closest approaches are those of [33] and [22]. Vidal [33] introduced a
forward slicing method for lazy functional logic programs that exploits the sim-
ilarities between slicing and partial evaluation. However, only a restrictive form
of partial evaluation—i.e., monovariant and monogenetic partial evaluation—is
allowed, which also restricts the precision of the computed slices. Our new ap-
proach differs from that of [33] in several aspects: we consider logic programs;
we use a polyvariant and polygenetic partial evaluation scheme and, therefore,
the computed slices are significantly more precise; and, moreover, since the basic
partial deduction algorithm is kept unmodified, it can easily be implemented on
top of an existing partial deduction system. On the other hand, Leuschel and
Sø rensen [22] introduced the concept of correct erasu re in order to detect and
remove redundant arguments from logic programs. They present a constructive
algorithm for computing correct erasures which can be used to perform a simple
form of slicing. In our approach, we use this algorithm as a post-processing phase
to slice out unnecessary arguments of predicates in the computed slices. The com-
bination of these two approaches, [33] and [22], together with a special-purpose
slicing code generator, form the basis of a powerful forward slicing technique.

Since our work constitutes a first step towards the development of a for-
ward slicing technique for logic programs, there are many interesting topics for
future work. For instance, our slicing technique is syntax-preserving, i.e., the
computed slice is a fragment of the original program (which is useful for debug-
ging purposes). In contrast, amorphou s slicing [11] exploits different program
transformations in order to simplify the program while preserving its semantics
w.r.t. the slicing criterion. Thus, it would be interesting to extend our technique
along this line in order to obtain smaller program slices. Another possibility for
future work involves the computation of backw ard slices (a harder topic). In this
case, the information gathered by characteristic trees is not enough and some
extension is needed.

One should also investigate to what extent abstract interpretation can be
used to complement our slicing technique. On its own, abstract interpretation
will probably lack the precise propagation of concrete values, hence making it
less suitable for dynamic slicing. However, for static slicing it may be able to
remove certain clauses that a partial deduction approach cannot remove (see,
e.g., [4, 8] where useless clauses are removed to complement partial deduction)

and one should investigate this possibility further. One could also investigate
better global control, adapted for slicing (to avoid wasted specialisation effort in
case added polyvariance does not increase the precision of the slice). Finally, we
can use our slicing technique as a starting point for resource aware specialization,
i.e., finding a good tradeoff between code size and execution speed.

Acknowledgements. We would like to thank the anonymous referees of ESOP’05 for

their valuable feedback. We also would like to thank Dan Elphick, John G allagher,

G ermán Puebla, and all the other partners of the ASAP project for their considerable

help and input.

References

1. Advanced Specialization and Analysis for Pervasive Computing. EU IST FET Pro-
gramme Project Number IST-2001-38059. http://www.asap.ecs.soton.ac.uk/

2. E. Albert and G . Vidal. The Narrowing-Driven Approach to Functional Logic
Program Specialization. New Genera tio n C o m p uting, 2(1):3–26, 2002.

3. D. De Schrey e, R . G lück , J. Jørgensen, M. L euschel, B. Martens, and M. H .
Sørensen. C onjunctiv e partial deduction: F oundations, control, algorithm s and
ex perim ents. The Jo urna l o f Logic P rogra m m ing, 41(2 & 3):231–277, 1999.

4. D. A . de W aal and J. G allagher. T he applicability of logic program analy sis and
transform ation to theorem prov ing. In A . Bundy , editor, Auto m a ted Deductio n—
C ADE -1 2 , pages 207–221. Springer-V erlag, 1994.

5. J. F errante, K . O ttenstein, and J. W arren. T he P rogram Dependence G raph and Its
U se in O ptim ization. AC M Tra nsa ctio ns o n P rogra m m ing La ngua ges a nd Sy stem s,
9(3):319–349, 1987.

6. J. F ield, G . R am alingam , and F . T ip. P aram etric P rogram Slic ing In C o nference
R eco rd o f P OP L’9 5 : 2 2 nd AC M SIGP LAN-SIGAC T Sy m po sium o n P rincip les o f
P rogra m m ing La ngua ges, pages 379-392, A C M P ress, 1995.

7. J. G allagher. A sy stem for spec ialising logic program s. T echnical R eport T R -91-32,
U niv ersity of Bristol, N ov em ber 1991.

8. J. G allagher and D. A . de W aal. Deletion of redundant unary ty pe predicates from
logic program s. In K .-K . L au and T . C lem ent, editors, L ogic P rogram Sy nthesis
and T ransform ation. P roc . o f LOP STR ’9 2 , pages 151–167, Manchester, U K , 1992.

9. J. G allagher and M. Bruy nooghe. T he Deriv ation of an A lgorithm for P rogram
Spec ialisation. New Genera tio n C o m p uting, 9(3-4):305–333, 1991.

10. T . G y im óthy and J. P aak k i. Static Slic ing of L ogic P rogram s. In P roc . o f the 2 nd
Int’l W o rksho p o n Auto m a ted a nd Algo rithm ic Debugging (AADE B UG’9 5), pages
87–103. IR ISA -C N R S, 1995.

11. M. H arm an and S. Danic ic . A m orphous P rogram Slic ing. In P roc . o f the 5 th Int’l
W o rksho p o n P rogra m C o m p rehensio n. IE E E C om puter Society P ress, 1997.

12. M. H arm an and R . H ierons. A n O v erv iew of P rogram Slic ing. So ftwa re F ocus,
2(3):85–92, 2001.

13. N . Jones, C . G om ard, and P . Sestoft. P a rtia l E va lua tio n a nd Auto m a tic P rogra m
Genera tio n. P rentice H all, 1993.

14. J. Jørgensen, M. L euschel, and B. Martens. C onjunctiv e partial deduction in
prac tice. In J. G allagher, editor, Logic P rogra m Synthesis a nd Tra nsfo rm a tio n.
P roceedings o f LOP STR ’9 6 , L N C S 1207, pages 59–82. Springer-V erlag, 1996.

15. D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence Graphs and
Compiler Optimization. In Proc. of the 8 th Symp. on the Principles of Program-
ming Languages (POPL’8 1), SIGPLAN Notices, pages 207–218, 1981.

16. M. Leuschel. The DPPD Library of Benchmarks. Accessible from URL:
http://www.ecs.soton.ac.uk/~mal/systems/dppd.html

17. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial de-
duction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–
515, July & September 2002.

18. M. Leuschel, S. Craig, M. Bruynooghe, and W. Vanhoof. Specializing interpreters
using offl ine partial deduction. In M. Bruynooghe and K.-K. Lau, editors, Program
Development in Computational Logic, pages 341–376. Springer LNCS 3049, 2004.

19. M. Leuschel and D. De Schreye. Constrained Partial Deduction and the Preserva-
tion of Characteristic Trees. New Generation Computing, 16(3):283–342, 1998.

20. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and poly-
variance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems, 20(1):208–258, January 1998.

21. M. Leuschel and T. Massart. Infinite state model checking by abstract interpre-
tation and program specialisation. In A. Bossi, editor, Logic-Based Program Syn-
thesis and Transformation. Proceedings of LOPSTR’99, LNCS 1817, pages 63–82,
Venice, Italy, 2000.

22. M. Leuschel and M. H. Sørensen. Redundant argument filtering of logic programs.
In J. Gallagher, editor, Logic Program Synthesis and Transformation. Proceedings
of LOPSTR’96, LNCS 1207, pages 83–103. Springer-Verlag, 1996.

23. M. Leuschel and G. Vidal. Forward Slicing by Conjunctive Partial Deduction
and Argument Filtering. Technical Report, DSSE, University of Southamtpon,
December 2004.

24. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11(3& 4):217–242, 1991.

25. A. Pettorossi and M. Proietti. Transformation of Logic Programs: Foundations
and Techniq ues. The Journal of Logic Programming, 19,20:261–320, 1994.

26. T. Reps and T. Turnidge. Program Specialization via Program Slicing. In
O. Danvy, R. Glück, and P. Thiemann, editors, Partial Evaluation. Dagstuhl Cas-
tle, pages 409–429. Springer LNCS 1110, 1996.

27. R. Glück and M.H. Sørensen A Roadmap to Metacomputation by Supercompi-
lation. In O. Danvy, R. Glück, and P. Thiemann, editors, Partial Evaluation.
Dagstuhl Castle, pages 137–160. Springer LNCS 1110, 1996.

28. S. Schoenig and M. Ducassé. A Backward Slicing Algorithm for Prolog. In Proc.
of the Int’l Static Analysis Symposium (SAS’96), pages 317–331. Springer LNCS
1145, 1996.

29. G. Szilagyi, T. Gyimothy, and J. Maluszynski. Static and Dynamic Slicing of
Constraint Logic Programs. J. Automated Software Engineering, 9(1):41–65, 2002.

30. F. Tip. A Survey of Program Slicing Techniq ues. Journal of Programming Lan-
guages, 3:121–189, 1995.

31. W. Vasconcelos. A Flexible Framework for Dynamic and Static Slicing of Logic
Programs. In Proc. of the First Int’l Workshop on Practical Aspects of Declarative
Languages (PADL’99), pages 259–274. Springer LNCS 1551, 1999.

32. G. Venkatesh. The Semantic Approach to Program Slicing. SIGPLAN Notices,
26(6):107–119, 1991. Proc. of the ACM SIGPLAN Conf. on Programming Lan-
guage Design and Implementation (PLDI’91).

33. G. Vidal. Forward slicing of multi-paradigm declarative programs based on partial
evaluation. In M. Leuschel, editor, Proc. of Logic-based Program Synthesis and
Transformation (LOPSTR’0 2), LNCS 2664, pages 219–237. Springer-Verlag, 2003.

34. M. Weiser. Program Slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

35. J. Zhao, J. Cheng, and K. Ushijima. A Program Dependence Model for Concurrent
Logic Programs and Its Applications. In Proc. of IEEE Int’l Conf. on Software
Maintenance (ICSM’0 1), pages 672–681. IEEE Press, 2001.

A Additio nal T able s

Table 4. Speedups obtained by Specialization and by Slicing

SWI-Prolog SICStus Ciao

Benchmark Orig. Spec. Sliced Orig. Spec. Sliced Orig. Spec. Sliced
ms speed speed ms speed speed ms speed speed

advisor 697 4.02 0.99 250 3.95 1.03 247 2.96 1.03
applast 503 3.36 0.99 140 5.25 0.98 140 3.50 1.05
contains.kmp 757 8.73 1.00 277 9.22 1.01 250 7.50 0.84
depth.lam 337 6.73 1.01 117 8.75 1.00 123 6.17 1.06
doubleapp 353 1.66 0.98 63 1.46 0.86 83 1.47 1.09
ex depth 190 3.80 1.00 67 3.33 1.05 63 2.71 1.00
flip 150 1.61 1.05 30 1.13 0.75 43 1.30 1.00
groundunify.simple 543 7.09 1.22 193 9.67 1.38 200 4.62 1.36
groundunify.complex 360 4.15 0.97 123 3.70 0.97 140 3.23 1.05
imperative-solve 1160 2.32 1.02 430 2.87 1.02 13133 66.78 1.02
liftsolve.app 1710 34.20 1.00 620 37.20 1.04 593 22.25 0.99
liftsolve.lmkng 160 1.17 1.02 60 1.29 1.06 57 1.13 1.13
map.reduce 940 3.71 0.99 337 6.31 0.98 5520 92.00 1.02
map.rev 393 2.41 1.00 140 4.67 1.00 2013 43.14 1.05
matchapp 323 1.94 0.99 130 3.55 0.95 127 2.53 1.03
match.kmp 487 1.85 0.97 160 2.82 1.00 173 2.08 0.98
model elim 1120 3.82 2.40 443 7.82 2.96 440 6.29 2.49
regexp.r1 2010 4.71 1.02 623 5.67 1.04 600 4.39 1.00
regexp.r2 583 3.30 1.02 183 3.67 1.04 183 3.06 0.98
regexp.r3 1173 3.29 1.02 363 3.52 1.03 360 3.09 1.03
relative 2923 15.95 1.00 730 21.90 1.02 827 16.53 0.98
remove 467 1.43 1.02 157 1.62 1.00 197 1.59 1.09
remove2 667 1.33 1.00 193 1.57 1.02 227 1.36 1.05
rev 1280 0.87 1.00 220 0.88 0.97 247 0.93 0.95
rev acc type 3643 1.00 1.00 523 1.12 1.01 627 1.03 0.99
rotateprune 993 1.01 0.99 297 1.13 1.00 317 1.06 0.99
ssuply 1087 18.11 1.34 333 20.00 1.49 343 14.71 1.41
transpose 763 7.63 1.00 170 4.64 1.00 213 4.57 1.00
vanilla.doubleapp 877 3.42 1.01 247 6.73 1.01 273 4.56 1.00

TOTAL 2.43 1.04 2.74 1.04 2.62 1.05
Average 5.23 1.07 6.27 1.09 11.26 1.09

Table 5. Compiled Code Size in SICStus

Benchmark Original Specialized Sliced
Bytes Bytes % of original Bytes % of original

advisor 3850 1936 50.3% 2320 60.3%
applast 942 844 89.6% 942 100.0%
doubleapp 656 1264 192.7% 656 100.0%
ex depth 2295 1596 69.5% 1193 52.0%
flip 774 1628 210.3% 774 100.0%
groundunify.complex 5881 34901 593.5% 5881 100.0%
groundunify.simple 5881 894 15.2% 2537 43.1%
imperative-solve 7514 17417 231.8% 5424 72.2%
liftsolve.app 2919 1723 59.0% 2381 81.6%
liftsolve.lmkng 2919 3795 130.0% 1502 51.5%
map.reduce 2385 1489 62.4% 1459 61.2%
map.rev 2385 1266 53.1% 1088 45.6%
match.kmp 824 1772 215.0% 824 100.0%
matchapp 678 1587 234.1% 678 100.0%
model elim 3703 1615 43.6% 2199 59.4%
regexp.r1 1313 1621 123.5% 1204 91.7%
regexp.r2 1313 2486 189.3% 1204 91.7%
regexp.r3 1313 1989 151.5% 1204 91.7%
relative 2113 3947 186.8% 2113 100.0%
remove 965 4222 437.5% 965 100.0%
remove2 1244 2429 195.3% 1244 100.0%
rev 790 943 119.4% 790 100.0%
rev acc type 781 945 121.0% 783 100.3%
rotateprune 1622 2635 162.5% 1622 100.0%
ssuply 5391 768 14.2% 3583 66.5%
transpose 1091 2182 200.0% 1091 100.0%
vanilla.doubleapp 1896 1069 56.4% 1185 62.5%

TOTAL Bytes 156.0% 73.8%

Table 6. Code Size Reduction: Various Slicing approaches on DPPD

Benchmark Full Slicing Full Slicing Näıve PD
wo RAF/FAR

advisor 39.7% 39.7% 32.8%
applast 0.0% 0.0% 0.0%
doubleapp 0.0% 0.0% 0.0%
ex depth 48.0% 48.0% 0.0%
flip 0.0% 0.0% 0.0%
groundunify.complex 0.0% 0.0% 0.0%
groundunify.simple 56.9% 55.7 % 0.0%
imperative-solve 27.8% 27.8% 0.0%
liftsolve.app 18.4% 18.4% 18.4%
liftsolve.lmkng 48.5% 48.5% 48.5%
map.reduce 38.8% 38.8% 38.8%
map.rev 54.4% 54.4% 54.4%
match.kmp 0.0% 0.0% 0.0%
matchapp 0.0% 0.0% 0.0%
model elim 40.6% 3 8 .4% 5.2%
regexp.r1 8.3% 8.3% 0.0%
regexp.r2 8.3% 8.3% 0.0%
regexp.r3 8.3% 8.3% 0.0%
relative 0.0% 0.0% 0.0%
remove 0.0% 0.0% 0.0%
remove2 0.0% 0.0% 0.0%
rev 0.0% 0.0% 0.0%
rev acc type -0.3% -0.3% -0.3%
rotateprune 0.0% 0.0% 0.0%
ssuply 33.5% 3 2 .0 % 6.7%
transpose 0.0% 0.0% 0.0%
vanilla.doubleapp 37.5% 37.5% 0.0%

TOTAL 26.2% 25.8% 9.4%

B The Matlab Slicing Benchm ark

In th is ap p e n d ix w e p re se n t th e fu ll cod e for th e large st of ou r slic in g b e n ch m ark s:
an in te rp re te r for a su b se t of th e M atlab lan gu age . T h e in te rp re te r w as w ritte n
b y Dan ie l E lp h ick .

T h e sp e c ialisation /slic in g q u e ry is th e call run1(), w h e reas th e ru n tim e
q u e rie s arerun1([]), run1([1]).

% specialisation goals : run1([X]), run12([X]), run2([X]), run22([X])

% run1 is factorial using a while loop

% run2 is factorial using recursion

% run12 and run22 use the parser but should produce exactly the same results

% to run try run12([const(5)])

% should eventually print 120

eval_mfile(Text, Params, Nargout) :- load, parse(Text, MFile), !,

eval_matlab(MFile, Params, Nargout).

% NB: The following line should point to the absolute path of matlab_parser.pl

load :- use_module(’~/prolog/cogen2/examples/matlab/matlab_parser.pl’).

eval_matlab([F|Funcs], Pars, 1) :-

eval_function(F, Pars, 1, [R], [F|Funcs]).

eval_function(function(_, Rets, Pars, Vars, Comms), Params, Nargout, Values, Funcs) :-

bind_undef(env([], Funcs), Vars, NEnv3),

bind_params(NEnv3, NEnv, Pars, Params),

eval_commands(Comms, NEnv, NEnv2),

return_values(Nargout, Rets, Values, NEnv2).

bind_undef(Env, [], Env).

bind_undef(Env, [Var|Vars], NEnv) :-

store_var(Env, Var, undef, Env2),

bind_undef(Env2, Vars, NEnv).

bind_params(Vars, Vars, _, []).

bind_params(Vars, NVars, [Var|Pars], [Value|Values]) :-

store_var(Vars, Var, Value, Vars2),

bind_params(Vars2, NVars, Pars, Values).

return_values(0, _, [], _).

return_values(N, [Var|Rets], [V|Values], Env) :- M is N - 1,

return_values(M, Rets, Values, Env), lookup_var(Var, Env, V).

eval_commands([], Env, Env).

eval_commands([C|Program], Env, NEnv) :-

eval_comm(C, Env, N), eval_commands(Program, N, NEnv).

eval_comm(exp(E,false), Env, NEnv) :-

eval_exp(E, NE, Env, NEnv), print_exp(’ans’, NE).

eval_comm(exp(E,true), Env, NEnv) :- eval_exp(E, _NE, Env, NEnv).

eval_comm(assign(var(V), E, false), Env, NEnv) :-

eval_exp(E, NE, Env, N1), store_var(N1, V, NE, NEnv), print_exp(V, NE).

eval_comm(assign(var(V), E, true), Env, NEnv) :-

eval_exp(E, NE, Env, N1), store_var(N1, V, NE, NEnv).

eval_comm(while(Exp, Commands), Env, NEnv) :-

env_copy(Env, NEnv), eval_while(Exp, Commands, Env, NEnv).

eval_comm(for(Var, Range, Commands), Env, NEnv) :-

eval_exp(Range, R, Env, N), eval_for(Var, R, Commands, N, NEnv).

eval_comm(if(Exp, Commands, _), Env, NEnv) :-

eval_exp(Exp, N, Env, Env2), eval_if(N,Commands,Env,Env2,NEnv).

eval_if(N,Commands,_Env,Env2,NEnv) :- non_zero(N),

eval_commands(Commands, Env2, NEnv).

eval_if(N,Commands,Env,_Env2,NEnv) :- is_zero(N),

eval_commands(Commands, Env, NEnv).

eval_while(Exp, Commands, Env, NEnv) :-

eval_exp(Exp, N, Env, Env2), non_zero(N),

eval_commands(Commands, Env2, Env3),

env_copy(Env3, NEnv), eval_while(Exp, Commands, Env3, NEnv).

eval_while(_, _, Env, Env).

eval_for(var(Var), matrix([[]]), _, Env, NEnv) :- store(Env, Var, [], NEnv).

eval_for(var(Var), R, Commands, Env, NEnv) :-

get_elements(R, R1), eval_for2(Var, R1, Commands, Env, NEnv).

get_elements(const(X), [const(X)]).

get_elements(matrix([X]), X).

eval_for2(_, [], _, Env, Env).

eval_for2(Var, [R|Range], Commands, Env, NEnv) :-

store_var(Env, Var, R, N),

eval_commands(Commands, N, N2),

eval_for2(Var, Range, Commands, N2, NEnv).

env_copy(env(V, F), env(NV, F)) :- var_copy(V, NV).

var_copy([], []).

var_copy([X/_|T], [X/_|T1]) :- var_copy(T,T1).

eval_exp(const(C), const(C), Env, Env).

eval_exp(var(Var), Value, Env, Env) :- lookup_var(Var, Env, Value).

eval_exp(bin_op(Op, Exp1, Exp2), Res, Env, NEnv) :-

eval_exp(Exp1, R1, Env, E1), eval_exp(Exp2, R2, E1, NEnv),

apply_op(Op, R1, R2, Res).

eval_exp(func_call(Func, Params), Value, Env, NEnv) :-

eval_exps(Params, NParams, Env, NEnv),

lookup_func(Func, Env, Function),

get_funcs(Env, Funcs),

eval_function(Function, NParams, 1, [Value], Funcs).

eval_exp(matrix(Rows), Result, Env, Env) :-

eval_rows(Rows, NewRows, Env), convert(NewRows, Result).

eval_exp(colon(S, E), Result, Env, Env) :- eval_exp(S, const(S1), Env, Env),

eval_exp(E, const(E1), Env, Env), expand_colon(S1, 1, E1, Result). /* , !. */

eval_exp(colon(S, I, E), Result, Env, Env) :-

eval_exp(S, const(S1), Env, Env), eval_exp(I, const(I1), Env, Env),

eval_exp(E, const(E1), Env, Env),

expand_colon(S1, I1, E1, Result). /* , ! .*/

expand_colon(_, 0, _, matrix([[]])).

expand_colon(S, I, E, matrix([P])) :- I > 0, arith_prog_incr(S, I, E, P).

expand_colon(S, I, E, matrix([P])) :- I < 0, arith_prog_decr(S, I, E, P).

arith_prog_incr(S, _, E, []) :- S > E.

arith_prog_incr(S, I, E, [const(S)|T]) :- S1 is S + I, arith_prog_incr(S1, I, E, T).

arith_prog_decr(S, _, E, []) :- S < E.

% I is negative so addition will result in decreasing sequence

arith_prog_decr(S, I, E, [const(S)|T]) :- S1 is S + I, arith_prog_decr(S1, I, E, T).

convert([[const(R)]], const(R)).

convert(Rows, matrix(Rows)).

eval_rows([], [], _).

eval_rows([R|Rows], [N|NRows], Env) :-

eval_exps(R, N, Env, _), eval_rows(Rows, NRows, Env).

get_funcs(env(_, Funcs), Funcs).

eval_exps([], [], E, E).

eval_exps([P|Pars], [NP|NPars], Env, NEnv) :-

eval_exp(P, NP, Env, Env2), eval_exps(Pars, NPars, Env2, NEnv).

add(const(C1), const(C2), const(C3)) :- C3 is C1 + C2.

minus(const(C1), const(C2), const(C3)) :- C3 is C1 - C2.

mldivide(const(C1), const(C2), const(C3)) :- C3 is C2 / C1.

mrdivide(const(C1), const(C2), const(C3)) :- C3 is C1 / C2.

mtimes(const(C1), const(C2), const(C3)) :- C3 is C1 * C2.

gt(const(E1), const(E2), const(1)) :- E1 > E2.

gt(const(E1), const(E2), const(0)) :- E1 =< E2.

lt(const(E1), const(E2), const(1)) :- E1 < E2.

lt(const(E1), const(E2), const(0)) :- E1 >= E2.

ge(const(E1), const(E2), const(1)) :- E1 >= E2.

ge(const(E1), const(E2), const(0)) :- E1 < E2.

le(const(E1), const(E2), const(1)) :- E1 =< E2.

le(const(E1), const(E2), const(0)) :- E1 > E2.

eq(const(E1), const(E2), const(1)) :- E1 == E2.

eq(const(E1), const(E2), const(0)) :- E1 \== E2.

ne(const(E1), const(E2), const(1)) :- E1 \== E2.

ne(const(E1), const(E2), const(0)) :- E1 == E2.

is_zero(const(0)).

non_zero(const(N)) :- N \== 0.

apply_op(’+’, E1, E2, R) :- add(E1, E2, R).

apply_op(’-’, E1, E2, R) :- minus(E1, E2, R).

apply_op(’/’, E1, E2, R) :- mrdivide(E1, E2, R).

apply_op(’\\’, E1, E2, R) :- mldivide(E1, E2, R).

apply_op(’*’, E1, E2, R) :- mtimes(E1, E2, R).

apply_op(’>’, E1, E2, R) :- gt(E1, E2, R).

apply_op(’<’, E1, E2, R) :- lt(E1, E2, R).

apply_op(’>=’, E1, E2, R) :- ge(E1, E2, R).

apply_op(’<=’, E1, E2, R) :- le(E1, E2, R).

apply_op(’==’, E1, E2, R) :- eq(E1, E2, R).

apply_op(’~=’, E1, E2, R) :- ne(E1, E2, R).

print_exp(V, NE) :- write(V), write(’ =’), nl, print_value(NE).

print_element(const(NE)) :- write(’ ’), write(NE).

print_value(const(NE)) :- write(’ ’), write(NE), nl,nl.

print_value(undef) :- write(’ undefined!’), nl,nl.

print_value(matrix([[]])) :- write(’ []’), nl.

print_value(matrix(NE)) :- print_rows(NE), nl.

print_rows([]).

print_rows([R|Rows]) :- print_row(R), nl, print_rows(Rows).

print_row([]).

print_row([C|Cols]) :- print_element(C), print_row(Cols).

store_var(env(Vars, Funcs), Key, Value, env(NVars, Funcs)) :-

store(Vars, Key, Value, NVars).

lookup_var(Key, env(Vars, _Funcs), Value) :- lookup(Key, Vars, Value).

lookup_func(Key, env(_, Funcs), Func) :- lookupf(Key, Funcs, Func).

func_matches(Key, function(Key, _, _, _, _)).

lookupf(Key, [F|_x], F) :- func_matches(Key, F).

lookupf(Key, [_|T], Value) :- lookupf(Key, T, Value).

store([], Key, Value, [Key/Value]).

store([Key/_Value2|T], Key, Value, [Key/Value|T]).

store([Key2/Value2|T], Key, Value, [Key2/Value2|BT]) :-

Key\==Key2, store(T, Key, Value, BT).

lookup(Key, [Key/Value|_], Value).

lookup(Key, [Key2/_|T], Value) :- Key \== Key2, lookup(Key, T, Value).

run1(Pars) :- eval_matlab([

function(’fact’, [’y’], [’x’], [’x’, ’y’],

[assign(var(’y’), const(1), true),

while(bin_op(’>’, var(’x’), const(0)),

[assign(var(’y’), bin_op(’*’, var(’y’), var(’x’)), true),

assign(var(’x’), bin_op(’-’, var(’x’), const(1)), true)])])],Pars, 1).

run12(Pars) :- eval_mfile("function y = fact(x)

y = 1;

while x > 0

y = y * x;

x = x - 1;

end", Pars, 1).

run2(Pars) :- eval_matlab([

function(’fact’, [’y’], [’x’], [’x’, ’y’],

[if(bin_op(’>’, var(’x’), const(1)),

[assign(var(’y’), bin_op(’*’, var(’x’),

func_call(’fact’, [bin_op(’-’, var(’x’), const(1))])), true)],

[assign(var(’y’), const(1), true)])])],

Pars, 1).

run22(Pars) :- eval_mfile("function y = fact(x)

if x > 1

y = x * fact(x - 1);

else

y = 1;

end", Pars, 1).

run3(Pars) :- eval_mfile("function y = fact(x)

y = 1;

for n = 1:x

y = y * n;

end", Pars, 1).

C Comparing D iff erent P rologs

Table 7. Comparing the runtime of diff erent Prologs

SWI/SICS Ciao/SICS SWI/Ciao

Benchmark Original Spec Original Spec Original Spec

advisor 2.79 2.74 0.99 1.32 2.82 2.08
applast 3.60 5.63 1.00 1.50 3.60 3.75
contains.kmp 2.73 2.89 0.90 1.11 3.03 2.60
depth.lam 2.89 3.75 1.06 1.50 2.73 2.50
doubleapp 5.58 4.92 1.32 1.31 4.24 3.76
ex depth 2.85 2.50 0.95 1.17 3.00 2.14
flip 5.00 3.50 1.44 1.25 3.46 2.80
groundunify.simple 2.81 3.83 1.03 2.17 2.72 1.77
groundunify.complex 2.92 2.60 1.14 1.30 2.57 2.00
imperative-solve 2.70 3.33 30.54 1.31 0.09 2.54
liftsolve.app 2.76 3.00 0.96 1.60 2.88 1.88
liftsolve.lmkng 2.67 2.93 0.94 1.07 2.82 2.73
map.reduce 2.79 4.75 16.40 1.13 0.17 4.22
map.rev 2.81 5.44 14.38 1.56 0.20 3.50
matchapp 2.49 4.55 0.97 1.36 2.55 3.33
match.kmp 3.04 4.65 1.08 1.47 2.81 3.16
model elim 2.53 5.18 0.99 1.24 2.55 4.19
regexp.r1 3.22 3.88 0.96 1.24 3.35 3.12
regexp.r2 3.18 3.53 1.00 1.20 3.18 2.94
regexp.r3 3.23 3.45 0.99 1.13 3.26 3.06
relative 4.00 5.50 1.13 1.50 3.54 3.67
remove 2.98 3.38 1.26 1.28 2.37 2.65
remove2 3.45 4.05 1.17 1.35 2.94 3.00
rev 5.82 5.85 1.12 1.07 5.19 5.49
rev acc type 6.96 7.79 1.20 1.31 5.81 5.96
rotateprune 3.35 3.75 1.07 1.14 3.14 3.29
ssuply 3.26 3.60 1.03 1.40 3.17 2.57
transpose 4.49 2.73 1.25 1.27 3.58 2.14
vanilla.doubleapp 3.55 7.00 1.11 1.64 3.21 4.28

AVERAGE 3.46 4.16 3.08 1.34 2.93 3.14

Im p rove d Com p ilation of P rolog to C U sin g

Mod e d Ty p e s an d D e te rm in ism In form ation ?

J. M o rales1, M . C arro 1, and M . H erm eneg ild o 1,2

1 C. S. School, Technical U . of M adrid,
jfran@clip.dia.fi.upm.es and mcarro@fi.upm.es

2 D epts. of Com p. Sci. and E lec. and Com p. E ng., U . of N ew M ex ico (U N M)
herme@fi.upm.es and herme@unm.edu

Ab stra c t. We describe the current status of and provide perform ance
results for a prototype com piler of P rolog to C, ciaocc. ciaocc is novel
in that it is designed to accept diff erent kinds of high-level inform ation,
typically obtained via an autom atic analysis of the initial P rolog program
and ex pressed in a standardized language of assertions. This inform ation
is used to optim ize the resulting C code, which is then processed by an
off -the-shelf C com piler. The basic translation process essentially m im -
ics the unfolding of a bytecode em ulator with respect to the particular
bytecode corresponding to the P rolog program . This is facilitated by a
flex ible design of the instructions and their lower-level com ponents. This
approach allows reusing a sizable am ount of the m achinery of the byte-
code em ulator: predicates already written in C, data definitions, m em ory
m anagem ent routines and areas, etc., as well as m ix ing em ulated byte-
code with native code in a relatively straightforward way. We report
on the perform ance of program s com piled by the current version of the
system , both with and without analysis inform ation.
K ey w o rd s: P rolog, C, optim iz ing com pilation, global analysis.

1 Intro d u c tio n

S everal techniq u es fo r im p lem enting P ro lo g have been d evised since the o rig inal
interp reter d evelo p ed by C o lm erau er and Ro u ssel [1], m any o f them aim ed at
achieving m o re sp eed . A n ex cellent su rvey o f a sig nifi cant p art o f this wo rk can be
fo u nd in [2]. T he fo llowing is a ro u g h c lassifi catio n o f im p lem entatio n techniq u es
fo r P ro lo g (which is, in fact, ex tensible to m any o ther lang u ag es):

– Interp reters (su ch as C -P ro lo g [3] and o thers), where a slig ht p rep ro cessing
o r translatio n m ig ht be d o ne befo re p ro g ram ex ec u tio n, bu t the bu lk o f the
wo rk is d o ne at ru ntim e by the interp reter.

? This work is partially supported by Spanish M CY T P roject TIC 2 0 0 2 -0 0 5 5 CUBICO ,

a nd E U P rojec ts IST-2 0 0 1 -3 4 7 1 7 Amos a nd IST-2 0 0 1 -3 8 0 5 9 ASAP , a nd by the P rince

of A sturia s C ha ir in Inform a tion Science a nd Technolog y a t the U niv ersity of N ew

M ex ico. J . M ora les is a lso supported by a n M C Y T fellow ship co-fina nced by the

E uropea n Socia l Fund.

– Compilers to bytecode and their interpreters (often called emulators), where
the compiler produces relatively low level code in a special-purpose lang uag e.
M ost current emulators for P rolog are based on the Warren Abstract M a-
chine (WAM) [4 , 5], but other proposals ex ist [6 , 7].

– Compilers to a lower-level lang uag e, often (“ native”) machine code, which
req uire little or no additional support to be ex ecuted. O ne solution is for
the compiler to g enerate machine code directly. E x amples of this are Aq uar-
ius [8], versions of S ICS tus P rolog [9] for some architectures, B IM -P rolog [1 0],
and G nu P rolog [1 1]. Another alternative is to g enerate code in a (lower-
level) lang uag e, such as, e.g ., C-- [1 2] or C, for which compilers are readily
available; the latter is the approach tak en by wamcc [1 3].

E ach solution has its advantag es and disadvantag es:

E xecu table perform ance vs. execu table size and com pilation speed: Compila-
tion to lower-level code can achieve faster prog rams by eliminating interpretation
overhead and performing lower-level optimizations. This diff erence g ets larg er as
more sophisticated forms of code analysis are performed as part of the com-
pilation process. Interpreters in turn have potentially smaller load/ compilation
times and are often a g ood solution due to their simplicity when speed is not a
priority. E mulators occupy an intermediate point in complex ity and cost. H ig hly
optimized emulators [9 , 1 4 – 1 7] off er very g ood performance and reduced prog ram
size which may be a crucial issue for very larg e prog rams and symbolic data sets.

P ortability: Interpreters off er portability since ex ecuting the same P rolog
code in diff erent architectures boils down (in principle) to recompiling the in-
terpreter. E mulators usually retain the portability of interpreters, by recom-
piling the emulator (bytecode is usually architecture-independent), unless they
are written in machine code.3 Compilers to native code req uire architecture-
dependent back -ends which typically mak e porting and maintaining them a
non-trivial task . Developing these back -ends can be simplifi ed by using an in-
termediate RTL-level code [1 1], althoug h diff erent translations of this code are
needed for diff erent architectures.

O pportu nities for optim izations: Code optimization can be applied at the
P rolog level [1 8 , 1 9], to WAM code [2 0], to lower-level code [2 1], and/ or to na-
tive code [8 , 2 2]. At a hig her level it is typically possible to perform more g lobal
and structural optimizations, which are then implicitly carried over onto lower
levels. Lower-level optimizations can be introduced as the native code level is ap-
proached; performing these low-level optimizations is one of the motivations for
compiling to machine code. H owever, recent performance evaluations show that
well-tuned emulators can beat, at least in some cases, P rolog compilers which
g enerate machine code directly but which do not perform ex tensive optimiza-
tion [1 1]. Translating to a low-level lang uag e such as C is interesting because
it mak es portability easier, as C compilers ex ist for most architectures and C

3 This is the case for the Q uintus emulator, although it is coded in a generic RTL
language (“ PRO G O L ”) to simplify ports.

is low-level enough as to express a large class of optimizations which cannot be
captured solely by means of Prolog-to-Prolog transformations.

Given all the considerations above, it is safe to say that different approaches
are useful in different situations and perhaps even for different parts of the same
program. The emulator approach can be very useful during development, and
in any case for non-performance bound portions of large symbolic data sets and
programs. On the other hand, in order to generate the highest performance code
it seems appropriate to perform optimizations at all levels and to eventually
translate to machine code. The selection of a language such as C as an interme-
diate target can offer a good compromise between opportunity for optimization,
portability for native code, and interoperability in multi-language applications.

In ciaocc we have taken precisely such an approach: we implemented a
compilation from Prolog to native code via an intermediate translation to C
which optionally uses high-level information to generate optimized C code. Our
starting point is the standard version of Ciao Prolog [17], essentially an emulator-
based system of competitive performance. Its abstract machine is an evolution of
the & -Prolog abstract machine [23], itself a separate branch from early versions
(0.5–0.7) of the SICStus Prolog abstract machine.

ciaocc adopts the same scheme for memory areas, data tagging, etc. as the
original emulator. This facilitates mixing emulated and native code (as done also
by SICStus) and has also the important practical advantage that many complex
and already existing fragments of C code present in the components of the emu-
lator (builtins, low-level file and stream management, memory management and
garbage collection routines, etc.) can be reused by the new compiler. This is im-
portant because our intention is not to develop a prototype but a full compiler
that can be put into everyday use and developing all those parts again would be
unrealistic.

A practical advantage is the availability of high-quality C compilers for most
architectures. ciaocc differs from other systems which compile Prolog to C in
that that the translation includes a scheme to optionally optimize the code using
higher-level information available at compile-time regarding determinacy, types,
instantiation modes, etc. of the source program.

Maintainability and portability lead us also not to adopt other approaches
such as compiling to C--. The goal of C-- is to achieve portable high performance
without relinquishing control over low-level details, which is of course very desir-
able. However, the associated tools do not seem to be presently mature enough
as to be used for a compiler in production status within the near future, and not
even to be used as base for a research prototype in their present stage. Future
portability will also depend on the existence of back-ends for a range of architec-
tures. We, however, are quite confident that the backend which now generates
C code could be adapted to generate C-- (or other low-level languages) without
too many problems.

The high-level information, which is assumed expressed by means of the
powerful and well-defined assertion language of [24], is inferred by automatic
global analysis tools. In our system we take advantage of the availability of

relatively mature tools for this purpose within the Ciao environment, and, in
particular the preprocessor, CiaoPP [25]. Alternatively, such assertions can also
be simply provided by the programmer.

Our approach is thus different from, for example, wamcc, which also gener-
ated C, but which did not use extensive analysis information and used low-level
tricks which in practice tied it to a particular C compiler, gcc. Aquarius [8] and
Parma [22] used analysis information at several compilation stages, but they
generated directly machine code, and it has proved diffi cult to port and main-
tain them. N otwithstanding, they were landmark contributions that proved the
power of using global information in a Prolog compiler.

A drawback of putting more burden on the compiler is that compile times and
compiler complexity grow, specially in the global analysis phase. While this can
turn out to be a problem in extreme cases, incremental analysis in combination
with a suitable module system [26] can result in very reasonable analysis times
in practice.4 Moreover, global analysis is not mandatory in ciaocc and can
be reserved for the phase of generating the final, “production” executable. We
expect that, as the system matures, ciaocc itself (now in a prototype stage) will
not be slower than a Prolog-to-bytecode compiler.

2 T h e B a sic C o m p ila tio n S ch e m e

The compilation process starts with a preprocessing phase which normalizes
clauses (i.e., aliasing and structure unification is removed from the head), and
expands disjunctions, negations and if-then-else constructs. It also unfolds calls
to is/2 when possible into calls to simpler arithmetic predicates, replaces the cut
by calls to the lower-level predicates metachoice/1 (which stores in its argument
the address of the current choicepoint) and metacut/1 (which performs a cut
to the choicepoint whose address is passed in its argument), and performs a
simple, local analysis which gathers information about the type and freeness state
of variables.5 Having this analysis in the compiler (in addition to the analyses
performed by the preprocessor) improves the code even if no external information
is available. The compiler then translates this normalized version of Prolog to
WAM-based instructions (at this point the same ones used by the Ciao emulator),
and then it splits these WAM instructions into an intermediate low level code
and performs the final translation to C.

Typing WA M Instructions: WAM instructions dealing with data are handled
internally using an enriched representation which encodes the possible instanti-
ation state of their arguments.

4 See [25] and its references for reports on analysis times of CiaoPP.
5 In general, the types used throughout the paper are insta ntia tio n ty pes, i.e., they

have mode information built in (see [24] for a more complete discussion of this issue).
Freeness o f va ria bles distinguishes between free variables and the to p type, “term”,
which includes any term.

top

init uninit

first local unsafe

bottom

Fig. 1 . Lattice of WAM types.

This allows using original type information, and also generating and prop-
agating lower-level information regarding the type (i.e., from the point of view
of the tags of the abstract machine) and instantiation/initialization state of the
variables (which is not seen at a higher level). U nification instructions are rep-
resented as 〈TypeX, X 〉 = 〈TypeY, Y 〉, where TypeX and TypeY refer to the
classification of WAM-level types (see Figure 1), and X and Y refer to vari-
ables, which may be later stored as WAM X or Y registers or directly passed
on as C function arguments. init and uninit correspond to initialized (i.e., free)
and uninitialized variable cells. F irst, local, and unsafe classify the status of the
variables according to where they appear in a clause.

Table 1 summarizes the aforementioned representation for some selected
cases. The registers taken as arguments are the temporary registers x(I), the
stack variables y(I), and the register for structure arguments n(I). The last one
can be seen as the second argument, implicit in the unify * WAM instructions.
A number of other temporal registers are available, and used, for example, to
hold intermediate results from expression evaluation. * constant, * nil, * list and
* structure instructions are represented similarly. Only x(·) variables are created
in an uninitialized state, and they are initialized on demand (in particular, when
calling another predicate which may overwrite the registers and in the points
where garbage collection can start). This representation is more uniform than
the traditional WAM instructions, and as more information is known about the
variables, the associated (low level) types can be refined and more specific code
generated. U sing a richer lattice and initial information (Section 3), a more de-
scriptive intermediate code can be generated and used in the back-end.

put variable(I,J) 〈uninit,I〉 = 〈uninit,J〉
put value(I,J) 〈init,I〉 = 〈uninit,J〉

get variable(I,J) 〈uninit,I〉 = 〈init,J〉
get value(I,J) 〈init,I〉 = 〈init,J〉

unify variable(I[, J]) if (initialized(J)) then

〈uninit,I〉 = 〈init,J〉
else

〈uninit,I〉 = 〈uninit,J〉
unify value(I[, J]) if (initialized(J)) then

〈init,I〉 = 〈init,J〉
else

〈init,I〉 = 〈uninit,J〉
Ta b le 1 . Representation of some WAM unification instructions with types.

while (code != NULL)

code = ((Continuation (*)(State *))code)(state);

Continuation foo(State *state) {

...

state->cont = &foo_cont;

return &bar;

}

Continuation foo_cont(State *state) {

...

return state->cont;

}

Fig. 2 . The C execution loop and block s scheme.

Generation of the Intermediate Low Level Language: WAM-like control and data
instructions (Table 2) are then split into simpler ones (Table 3) (of a level similar
to that of the BAM [27]) which are more suitable for optimizations, and which
simplify the final code generation. The Type argument in the unification instruc-
tions refl ects the type of the their arguments: for example, in the instruction bind,
Type is used to specify if the arguments contain a variable or not. For the uni-
fication of structures, write and read modes are avoided by using a two-stream
scheme [2] which is implicit in the unification instructions in Table 1 and later
translated into the required series of assignments and jump instructions (jump,
cjump) in Table 2. The WAM instructions switch on term, switch on cons and
switch on functor are also included, although the C back-end does not exploit
them fully at the moment, resorting to a linear search in some cases. A more
efficient indexing mechanism will be implemented in the near future.

Builtins return an exit state which is used to decide whether to backtrack or
not. Determinism information, if available, is passed on through this stage and
used when compiling with optimizations (see Section 3).

C ompilation to C : The final C code conceptually corresponds to an unfolding of
the emulator loop with respect to the particular sequence(s) of WAM instruc-
tions corresponding to the Prolog program. Each basic block of bytecode (i.e.,
each sequence beginning in a label and ending in an instruction involving a pos-
sibly non-local jump) is translated to a separate C function, which receives (a
pointer to) the state of the abstract machine as input argument, and returns a
pointer to the continuation. This approach, chosen on purpose, does not build
functions which are too large for the C compiler to handle. For example, the code
corresponding to a head unification is a basic block, since it is guaranteed that
the labels corresponding to the two-stream algorithm will have local scope. A
failure during unification is implemented by (conditionally) jumping to a special
label, fail, which actually implements an exit protocol similar to that generated
by the general C translation. Figure 2 shows schematic versions of the execution
loop and templates of the functions that code blocks are compiled into.

This scheme does not require machine-dependent options of the C compiler
or extensions to ANSI C. One of the goals of our system –to study the impact of
optimizations based on high-level information on the program– can be achieved
with the proposed compilation scheme, and, as mentioned before, we give porta-
bility and code cleanliness a high priority. The option of producing more efficient
but non-portable code can always be added at a later stage.

Choice, stack and heap m anagem ent instru ctions

no ch oice Mark that there is no alternative
push ch oice(Arity) Create a choicepoint
recover ch oice(Arity) Restore the state stored in a choicepoint
last ch oice(Arity) Restore state and discard latest choice point
com plete ch oice(Arity) Complete the choice point
cut ch oice(C h p) Cut to a given choice point
push fram e Allocate a frame on top of the stack
com plete fram e(Fram eSize) Complete the stack frame
m odify fram e(N ewSize) Change the size of the frame
pop fram e D eallocate the last frame
recover fram e Recover after returning from a call
ensure h eap(Am ount, Arity) Ensure that enough heap is allocated.

U nifi cation

load(X, Type) Load X with a term
trail if conditional(A) Trail if A is a conditional variable
bind(TypeX, X, TypeY, Y) B ind X and Y
read(Type, X) B egin read of the structure arguments of X
deref(X, Y) D ereference X into Y
m ove(X, Y) Copy X to Y
globalize if unsafe(X, Y) Copy (safely) X to stack variable Y
globalize to arg(X, Y) Copy (safely) X to structure argument Y
jum p(Label) Jump to Label
cjum p(C ond, Label) Jump to Label if C ond is true
not(C ond) Negate the C ond condition
test(Type, X) True if X matches Type
equal(X, Y) True if X and Y are eq ual

Ind ex ing

switch on type(X, Var, Str, List, C ons) Jump to the label that matches the type of X
switch on functor(X, Table, E lse)
switch on cons(X, Table, E lse)

Table 2. Control and data instructions.

An Example — the fact/2 Predicate: We will illustrate briefly the different
compilation stages using the well-known factorial program (Figure 3). We have
chosen it due to its simplicity, even if the performance gain is not very high
in this case. The normalized code is shown in Figure 4, and the WAM code
corresponding to the recursive clause is listed in the leftmost column of Table 3,
while the internal representation of this code appears in the middle column of
the same table. Variables are annotated using information which can be deduced
from local clause inspection.

This WAM-like representation is translated to the low-level code as shown in
Figure 5 (ignore, for the moment, the framed instructions; they will be discussed
in Section 3). This code is what is finally translated to C.

For reference, executing fact(100, N) 20000 times took 0.65 seconds run-
ning emulated bytecode, and 0.63 seconds running the code compiled to C (a
speedup of 1.03). This did not use external information, used the emulator data

structures to store Prolog terms, and performed runtime checks to verify that
the arguments are of the right type, even when this is not strictly necessary.
Since the loop in Figure 2 is a bit more costly (by a few assembler instructions)
than the WAM emulator loop, the speedup brought about by the C translation
alone is, in many cases, not as relevant as one may think at first.

fact(0, 1).

fact(X, Y) :-

X > 0,

X0 is X - 1,

fact(X0, Y0),

Y is X * Y0.

Fig. 3 . Factorial, initial code.

fact(A, B) :-

0 = A,

1 = B.

fact(A, B) :-

A > 0,

builtin__sub1_1(A, C),

fact(C, D),

builtin__times_2(A, D, B).

Fig. 4 . Factorial, after normalizing.

WAM code Without Ty pes/Modes With Ty pes/Modes

put constant(0,2) 0 = 〈uninit,x(2)〉 0 = 〈uninit,x(2)〉
builtin 2(37,0,2) 〈init,x(0)〉 > 〈int(0),x(2)〉 〈int,x(0)〉 > 〈int(0),x(2)〉
allocate builtin push frame builtin push frame
get y variable(0,1) 〈uninit,y(0)〉 = 〈init,x(1)〉 〈uninit,y(0)〉 = 〈var,x(1)〉

get y variable(2,0) 〈uninit,y(2)〉 = 〈init,x(0)〉 〈uninit,y(2)〉 = 〈int,x(0)〉

init([1]) 〈uninit,y(1)〉 = 〈uninit,y(1)〉 〈uninit,y(1)〉 = 〈uninit,y(1)〉
true(3) builtin complete frame(3) builtin complete frame(3)
function 1(2,0,0) builtin sub1 1(builtin sub1 1(

〈init,x(0)〉, 〈uninit,x(0)〉) 〈int,x(0)〉, 〈uninit,x(0)〉)

put y value(1,1) 〈init,y(1)〉 = 〈uninit,x(1)〉 〈var,y(1)〉 = 〈uninit,x(1)〉
call(fac/ 2,3) builtin modify frame(3) builtin modify frame(3)

fact(〈init,x(0)〉, 〈init,x(1)〉) fact(〈init,x(0)〉, 〈var,x(1)〉)

put y value(2,0) 〈init,y(2)〉 = 〈uninit,x(0)〉 〈int,y(2)〉 = 〈uninit,x(0)〉
put y value(2,1) 〈init,y(1)〉 = 〈uninit,x(1)〉 〈number,y(1)〉 = 〈uninit,x(1)〉

function 2(9,0,0,1) builtin times 2(〈init,x(0)〉, builtin times 2(〈int,x(0)〉,
〈init,x(1)〉,〈uninit,x(0)〉) 〈number,x(1)〉, 〈uninit,x(0)〉)

get y value(0,0) 〈init,y(0)〉 = 〈init,x(0)〉 〈var,y(0)〉 = 〈init,x(0)〉

deallocate builtin pop frame builtin pop frame
execute(true/ 0) builtin proceed builtin proceed

Table 3 . WAM code and internal representation without and with external types
information. Underlined instruction changed due to additional information.

3 Improv ing Cod e G eneration

In order to improve the generated code using global information, the compiler
can take into account types, modes, determinism and non-failure properties [25]
coded as assertions [24] — a few such assertions can be seen in the example
which appears later in this section. Automatization of the compilation process is
achieved by using the CiaoPP analysis tool in connection with ciaocc. CiaoPP
implements several powerful analysis (for modes, types, and determinacy, besides
other relevant properties) which are able to generate (or check) these assertions.
The program information that CiaoPP is currently able to infer automatically is
actually enough for our purposes (with the single exception stated in Section 4).

fact(x(0), x(1)) :-

push choice(2)

ensure heap(callpad,2)

deref(x(0),x(0))

cjump(not(test(var,x(0))),V3)

load(temp2,int(0))

bind(var,x(0),nonvar,temp2)

jump(V4)

V3:

cjump(not(test(int(0),x(0))),fail)

V4:

deref(x(1),x(1))

cjump(not(test(var,x(1))),V5)

load(temp2,int(1))

bind(var,x(1),nonvar,temp2)

jump(V6)

V5:

cjump(not(test(int(1),x(1))),fail)

V6:

complete choice(2)

;

last choice(2)

load(x(2),int(0))

>(x(0),x(2))

push frame

move(x(1),y(0))

move(x(0),y(2))

init(y(1))

complete frame(3)

builtin sub1(x(0), x(0))

move(y(1),x(1))

modify frame(3)

fact(x(0), x(1))

recover frame

move(y(2),x(0))

move(y(1),x(1))

builtin times(x(0), x(1), x(0))

deref(y(0),temp)

deref(x(0),x(0))

=(temp,x(0))

pop frame

Fig. 5 . Low level code for the fact/2 example (see also Section 3).

The generation of low-level code using additional type information makes
use of a lattice of moded types obtained by extending the init element in the
lattice in Figure 1 with the type domain in Figure 6. str(N/A) corresponds
to (and expands to) each of the structures whose name and arity are known
at compile time. This information enriches the Type parameter of the low-level
code. Information about the determinacy / number of solutions of each call is
carried over into this stage and used to optimize the C code.

init

var

first local unsafe

nonvar

list str

str(N/A)

atomic

number

int

int(X)

large

large(X)

atom

atom(X)

bottom

Fig. 6 . Extended init subdomain.

In general, information about types and determinism makes it possible to
avoid some runtime tests. The standard WAM compilation also performs some
optimizations (e.g., classification of variables and indexing on the first argument),
but they are based on a per-clause (per-predicate, in the case of indexing) anal-
ysis, and in general it does not propagate the deduced information (e.g. from

arithmetic builtins). A number of further optimizations can be done by using
type, mode, and determinism information:

Unify Instructions: Calls to the general unify builtin are replaced by the more
specialized bind instruction if one or both arguments are known to store vari-
ables. When arguments are known to be constants, a simple comparison instruc-
tion is emitted instead.

Two-S tream Unifi cation: Unifying a register with a structure/constant requires
some tests to determine the unification mode (read or write). An additional test
is required to compare the register value with the structure/constant. These tests
can often be removed at compile-time if enough information is known about the
variable.

Indexing: Index trees are generated by selecting literals (mostly builtins and
unifications), which give type/mode information, to construct a decision tree on
the types of the first argument.6 When type information is available, the search
can be optimized by removing some of the tests in the nodes.

Avoiding Unnecessary Variable S afety Tests: Another optimization performed
in the low level code using type information is the replacement of globalizing
instructions for unsafe variables by explicit dereferences. When the type of a
variable is nonvar, its globalization is equivalent to a dereference, which is faster.

Uninitialized Output Arguments: When possible, letting the called predicate fill
in the contents of output arguments in pre-established registers avoids allocation,
initialization, and binding of free variables, which is slower.

S electing Optimized Predicate Versions: Calls to predicates can also be opti-
mized in the presence of type information. Specialized predicate versions (in the
sense of low level optimizations) can be generated and selected using call pat-
terns deduced from the type information. The current implementation does not
generate specialized versions of user predicates, since this can already be done
extensively by CiaoPP [18]. However it does optimize calls to internal builtin
predicates written in C (such as, e.g., arithmetic builtins), which results in rele-
vant speedups in many cases.

Determinism: These optimizations are based on two types of analysis. The first
one uses information regarding the number of solutions for a predicate call to
deduce, for each such call, if there is a known and fixed fail continuation. Then,
instructions to manage choicepoints are inserted. The resulting code is then
re-analyzed to remove these instructions when possible or to replace them by
simpler ones (e.g., to restore a choice point state without untrailing, if it is known
at compile time that the execution will not trail any value since the choice point
was created). The latter can take advantage of additional information regarding
register, heap, and trail usage of each predicate.7 In addition, the C back-end can

6 This is the WAM definition, which can of course be extended to other arguments.
7 This is currently known only for internal predicates written in C, and which are

available by default in the system, but the scheme is general and can be extended
to Prolog predicates.

generate different argument passing schemes based on determinism information:
predicates with zero or one solution can be translated to a function returning a
boolean, and predicates with exactly one solution to a function returning void.
This requires a somewhat different translation to C (which we do not have space
to describe in full) and which takes into account this possibility by bypassing
the emulator loop, in several senses similarly to what is presented in [28].

An Example — the fact/2 Predicate with program information: Let us assume
that it has been inferred that fact/2 (Figure 3) is always called with its first
argument instantiated to an integer and with a free variable in its second argu-
ment. This information is written in the assertion language for example as:8

:- true pred fact(X, Y) : int * var => int * int.

which reflects the types and modes of the calls and successes of the predicate.
That information is also propagated through the normalized predicate producing
the annotated program shown in Figure 7, where program-point information is
also shown.

fact(A, B) :-

true(int(A)),

0 = A,

true(var(B)),

1 = B.

fact(A, B) :-

true(int(A)),

A > 0,

true(int(A)), true(var(C)),

builtin__sub1_1(A, C),

true(any(C)), true(var(D)),

fact(C, D),

true(int(A)), true(int(D)),

true(var(B)),

builtin__times_2(A, D, B).

Fig. 7 . Annotated factorial (using type information).

The WAM code generated for this example is shown in the rightmost column
of Table 3. Underlined instructions were made more specific due to improved
information — but note that the representation is homogeneous with respect to
the “no information” case. The impact of type information in the generation of
low-level code can be seen in Figure 5. Instructions inside the dashed boxes are
removed when type information is available, and the (arithmetic) builtins en-
closed in rectangles are replaced by calls to specialized versions which work with
integers and which do not perform type/mode testing. The optimized fact/2

program took 0.54 seconds with the same call as in Section 2: a 20% speedup
with respect to the bytecode version and a 16% speedup over the compilation
to C without type information.

8 The true prefix implies that this information is to be trusted and used, rather than
to be checked by the compiler. Indeed, we require the stated properties to be cor-
rect, and ciaocc does not check them: this is a task delegated to CiaoPP. Wrong
true assertions can, therefore, lead to incorrect compilation. H owever, the assertions
generated by CiaoPP are guaranteed correct by the analysis process.

Program Bytecode N on opt. C Opt1. C Opt2. C
(S td. Ciao)

queens11 (1) 691 391 (1.76) 208 (3.32) 166 (4.16)
crypt (1000) 1525 976 (1.56) 598 (2.55) 597 (2.55)
primes (10000) 896 697 (1.28) 403 (2.22) 402 (2.22)
tak (1000) 9836 5625 (1.74) 5285 (1.86) 771 (12.75)
deriv (10000) 125 83 (1.50) 82 (1.52) 72 (1.74)
poly (100) 439 251 (1.74) 199 (2.20) 177 (2.48)
qsort (10000) 521 319 (1.63) 378 (1.37) 259 (2.01)
exp (10) 494 508 (0.97) 469 (1.05) 459 (1.07)
fib (1000) 263 245 (1.07) 234 (1.12) 250 (1.05)
knights (1) 621 441 (1.46) 390 (1.59) 356 (1.74)

Average S peedup (1.46 – 1.43) (1.88 – 1.77) (3.18 – 2.34)

Table 4. Bytecode emulation vs. unoptimized, optimized (types), and optimized (types
and determinism) compilation to C. Arithmetic – G eometric means are shown.

4 Performance Measu rements

We have evaluated the performance of a set of benchmarks executed by emulated
bytecode, translation to C, and by other programming systems. The benchmarks,
while representing interesting cases, are not real-life programs, and some of them
have been executed up to 10.000 times in order to obtain reasonable and stable
execution times. Since parts of the compiler are still in an experimental state,
we have not been able to use larger benchmarks yet. All the measurements have
been performed on a Pentium 4 Xeon @ 2.0GHz with 1Gb of RAM, running
Linux with a 2.4 kernel and using gcc 3.2 as C compiler. A short description of
the benchmarks follows:

crypt: Cryptoarithmetic puzzle involving multiplication.
prim e s: Sieve of Erathostenes (with N = 98).
tak: Takeuchi function with arguments tak(18, 12, 6, X).
d e riv: Symbolic derivation of polynomials.
po ly: Symbolically raise 1+x+y+z to the 10th power.
qso rt: Q uickSort of a list of 50 elements.
exp: 1371 1 1 using both a linear- and a logarithmic-time algorithm.
fi b : F1 0 0 0 using a simply recursive predicate.
kn ig h t: Chess knight tour in a 5×5 board.

A summary of the results appears in Table 4. The figures between parentheses
in the first column is the number of repetitions of each benchmark. The second
column contains the execution times of programs run by the Ciao bytecode
emulator. The third column corresponds to programs compiled to C without
compile-time information. The fourth and fifth columns correspond, respectively,
to the execution times when compiling to C with type and type+ determinism
information. The numbers between parentheses are the speedups relative to the
bytecode version. All times are in milliseconds. Arithmetic and geometric means
are also shown in order to diminish the influence of exceptional cases.

Table 5 shows the execution times for the same benchmarks in five well-
known Prolog compilers: GNU Prolog 1.2.16, wamcc 2.23, SICStus 3.8.6, SWI-
Prolog 5.2.7, and Yap 4.5.0. The aim is not really to compare directly with them,

Program G Prolog WAMCC SICStus SWI Yap Mercury
Opt2. C
Mercury

queens11 (1) 809 378 572 5869 362 106 1.57
crypt (1000) 1258 966 1517 8740 1252 160 3.73
primes (10000) 1102 730 797 7259 1233 336 1.20
tak (1000) 11955 7362 6869 74750 8135 482 1.60
deriv (10000) 108 126 121 339 100 72 1.00
poly (100) 440 448 420 1999 424 84 2.11
qsort (10000) 618 522 523 2619 354 129 2.01
exp (10) — — 415 — 340 — —
fib (1000) — — 285 — 454 — —
knights (1) 911 545 631 2800 596 135 2.63

Average 1.98 – 1.82
Table 5. Speed of other Prolog systems and Mercury

because a different underlying technology and external information is being used,
but rather to establish that our baseline, the speed of the bytecode system
(Ciao), is similar and quite close, in particular, to that of SICStus. In principle,
comparable optimizations could be made in these systems. The cells marked
with “—” correspond to cases where the benchmark could not be executed (in
GNU Prolog, wamcc, and SWI, due to lack of multi-precision arithmetic).

We also include the performance results for Mercury [29] (version 0.11.0).
Strictly speaking the Mercury compiler is not a Prolog compiler: the source
language is substantially different from Prolog. But Mercury has enough sim-
ilarities to be relevant and its performance represents an upper reference line,
given that the language was restricted in several ways to allow the compiler,
which generates C code with different degrees of “purity”, to achieve very high
performance by using extensive optimizations. Also, the language design requires
the necessary information to perform these optimizations to be included by the
programmer as part of the source. Instead, the approach that we use in Ciao is
to infer automatically the information and not restricting the language.

Going back to Table 4, while some performance gains are obtained in the
naive translation to C, these are not very significant, and there is even one
program which shows a slowdown. We have tracked this down to be due to a
combination of several factors:

– The simple compilation scheme generates clean, portable, “trick-free” C
(some compiler dependent extensions would speed up the programs). The
execution profile is very near to what the emulator would do.

– As noted in Section 2, the C compiler makes the fetch/switch loop of the
emulator a bit cheaper than the C execution loop. We have identified this
as a cause of the poor speedup of programs where recursive calls dominate
the execution (e.g., factorial). We want, of course, to improve this point
in the future.

– The increment in size of the program (to be discussed later — see Table 6)
may also cause more cache misses. We also want to investigate this point in
more detail.

As expected, the performance obtained when using compile-time information
is much better. The best speedups are obtained in benchmarks using arithmetic
builtins, for which the compiler can use optimized versions where several checks
have been removed. In some of these cases the functions which implement arith-
metic operations are simple enough as to be inlined by the C compiler — an
added benefit which comes for free from compiling to an intermediate language
(C, in this case) and using tools designed for it. This is, for example, the case
of queens, in which it is k nown that all the nu m bers invo lved are integ ers. B e-
sid es the info rm atio n d ed u ced by the analyzer, hand -written anno tatio ns stating
that the integ ers invo lved fi t into a m achine wo rd , and thu s there is no need fo r
infi nite precisio n arithm etic, have been m anu ally ad d ed .9

Determ inism info rm atio n o ften (bu t no t always) im pro ves the ex ecu tio n. The
Tak eu chi fu nctio n (tak) is an ex trem e case, where saving s in cho icepo int g enera-
tio n aff ect ex ecu tio n tim e. While the perfo rm ance o btained is still alm o st a facto r
o f 2 fro m that o f M ercu ry, the resu lts are enco u rag ing since we are d ealing with a
m o re co m plex so u rce lang u ag e (which preserves fu ll u nifi catio n, lo g ical variables,
cu ts, call/ 1 , d atabase, etc.), we are u sing a po rtable appro ach (co m pilatio n to
stand ard C), and we have no t yet applied all po ssible o ptim izatio ns.

A relevant po int is to what ex tent a so phisticated analysis to o l is u sefu l in
practical situ atio ns. The d eg ree o f o ptim izatio n cho sen can increase the tim e
spent in the co m pilatio n, and this m ig ht preclu d e its everyd ay u se. We have
m easu red (info rm ally) the speed o f o u r to o ls in co m pariso n with the stand ard
Ciao P ro lo g co m piler (which g enerates byteco d e), and fo u nd that the co m pila-
tio n to C tak es abo u t three tim es m o re than the co m pilatio n to byteco d e. A
co nsid erable am o u nt o f tim e is u sed in I/ O , which is being perfo rm ed d irectly
fro m P ro lo g , and which can be o ptim ized if necessary. Du e to a well-d evelo ped
m achinery (which can no twithstand ing be im pro ved in a fu tu re by, e.g , co m -
piling Ciao P P itself to C), the g lo bal analysis necessary fo r ex am ples is really
fast and never ex ceed ed twice the tim e o f the co m pilatio n to C. Thu s we think
that the u se o f g lo bal analysis to o btain the info rm atio n we need fo r ciaocc is
a practical o ptio n alread y in its cu rrent state.

Table 6 co m pares o bject size (in bytes) o f the byteco d e and the d iff erent
schem es o f co m pilatio n to C and u sing the sam e co m piler o ptio ns in all cases.
While m o d ern co m pu ters u su ally have a larg e am o u nt o f m em o ry, and pro g ram
size hard ly m atters fo r a sing le applicatio n, u sers stress co m pu ters m o re and
m o re by having several applicatio ns ru nning sim u ltaneo u sly. O n the o ther hand ,
pro g ram size d o es im pact their startu p tim e, im po rtant fo r sm all, o ften-u sed
co m m and s. B esid es, size is still very im po rtant when ad d ressing sm all d evices
with lim ited reso u rces.

As m entio ned in S ectio n 1 , d u e to the d iff erent g ranu larity o f instru ctio ns,
larg er o bject fi les and ex ecu tables are ex pected when co m piling to C. The ratio
d epend s heavily o n the pro g ram and the o ptim izatio ns applied . S ize increase

9 This is the o nly piece o f info rm a tio n used in o ur benchm a rk s tha t ca nno t be cur-

rently determ ined by C ia o P P . It sho uld be no ted, tho ug h, tha t the a bsence o f this

a nno ta tio n wo uld o nly m a k e the fina l ex ecuta ble less o ptim ized, but nev er inco rrect.

Pro g ra m By tec o d e N o n o p t. C Op t1 . C Op t2 . C

queens11 7167 3 60 9 6 (5 .0 3) 2 9 4 2 8 (4 .10) 4 2 8 2 4 (5 .9 7)
crypt 12 2 0 5 18 670 0 (15 .3 0) 10 73 8 4 (8 .8 0) 1612 5 6 (13 .2 1)
primes 64 2 8 5 0 62 8 (7.8 7) 19 3 3 6 (3 .0 0) 3 12 0 8 (4 .8 5)
tak 5 4 4 5 18 9 2 8 (3 .4 7) 18 70 0 (3 .4 3) 2 5 4 76 (4 .67)
deriv 9 60 6 4 69 0 0 (4 .8 8) 4 664 4 (4 .8 5) 9 78 8 8 (10 .19)
poly 13 5 4 1 163 2 3 6 (12 .0 5) 112 70 4 (8 .3 2) 3 4 4 60 4 (2 5 .4 4)
qsort 69 8 2 9 0 79 6 (13 .0 0) 670 60 (9 .60) 765 60 (10 .9 6)
exp 64 63 2 8 668 (4 .4 3) 2 8 2 8 4 (4 .3 7) 2 5 5 60 (3 .9 5)
fib 5 2 8 1 15 0 0 4 (2 .8 4) 14 8 2 4 (2 .8 0) 18 0 16 (3 .4 1)
knights 78 11 3 9 4 9 6 (5 .0 5) 3 9 0 16 (4 .9 9) 3 9 2 60 (5 .0 3)

Avera g e In c rea se (7.3 9 – 6.3 2) (5 .4 3 – 4 .9 4) (8 .77 – 7.14)

Ta b le 6 . Compared size of object files (bytecode vs. C) including Arith m etic - G eo -

m etric means.

with respect to the bytecode can be as large as 15× when translating to C
without optimizations, and the average case sits around a 7 -fold increase. This
increment is partially due to repeated code in the indexing mechanism, which we
plan to improve in the future.10 N ote that, as our framework can mix bytecode
and native code, it is possible to use both in order to achieve more speed in
critical parts, and to save program space otherwise. H euristics and translation
schemes like those described in [3 0] can hence be applied (and implemented as
a source to source transformation).

The size of the object code produced by wamcc is roughly comparable to that
generated by ciaocc, although wamcc produces smaller intermediate object code
files. H owever the final executable / process size depends also on which libraries
are linked statically and/or dynamically. The Mercury system is somewhat in-
comparable in this regard: it certainly produces relatively small component files
but then relatively large final executables (over 1.5 MByte).

Size, in general, decreases when using type information, as many runtime type
tests are removed, the average size being around five times the bytecode size.
Adding determinism information increases the code size because of the additional
inlining performed by the C compiler and the more complex parameter passing
code. Inlining was left to the C compiler; experiments show that more aggressive
inlining does not necessarily result in better speedups.

It is interesting to note that some optimizations used in the compilation
to C would not give comparable results when applied directly to a bytecode
emulator. For example, a version of the bytecode emulator hand-coded to work
with small integers (which can be boxed into a tagged word) performed worse
than that obtained doing the same with compilation to C. That suggests that
when the overhead of calling builtins is reduced, as is the case in the compilation
to C, some optimizations which only produce minor improvements for emulated
systems acq uire greater importance.

10 In all cases, the size of the bytecode emulator / runtime support (around 3 0 0 K b)
has to be added, although not all the functionality it provides is always needed.

5 C o n c lu sio n s a n d Fu tu re Wo rk

We have reported on the scheme and performance of ciaocc, a Prolog-to-C
compiler which uses type analysis and determinacy information to improve code
generation by removing type and mode checks and by making calls to specialized
versions of some builtins. We have also provided performance results. ciaocc is
still in a prototype stage, but it already shows promising results.

The compilation uses internally a simplified and more homogeneous represen-
tation for WAM code, which is then translated to a lower-level intermediate code,
using the type and determinacy information inferred by CiaoPP. This code is
finally translated into C by the compiler back-end. The intermediate code makes
the final translation step easier and will facilitate developing new back-ends for
other target languages.

We have found that optimizing a WAM bytecode emulator is more diffi cult
and results in lower speedups, due to the larger granularity of the bytecode
instructions. The same result has been reported elsewhere [2], although some
recent work tries to improve WAM code by means of local analysis [20].

We expect to also be able to use the information inferred by CiaoPP (e.g., de-
terminacy) to improve clause selection and to generate a better indexing scheme
at the C level by using hashing on constants, instead of the linear search used
currently. We also want to study which other optimizations can be added to the
generation of C code without breaking its portability, and how the intermediate
representation can be used to generate code for other back-ends (for example,
G CC RTL, CIL, Java bytecode, etc.).

Refe re n c e s

1. Colmerauer, A.: The B irth of Prolog. In: Second H istory of Programming L an-
guages Conference. ACM SIG PL AN N otices (1993) 37–52

2. Van R oy, P.: 1983-1993: The Wonder Y ears of Seq uential Prolog Implementation.
J ournal of L ogic Programming 19/20 (1994) 385–441

3. Pereira, F .: C-Prolog U ser’s M anual, Version 1.5, U niversity of E dinburgh. (1987)
4. Warren, D.: An Abstract Prolog Instruction Set. Technical R eport 309, Artificial

Intelligence Center, SR I International, 333 R avenswood Ave, M enlo Park CA 94025
(1983)

5. Ait-Kaci, H .: Warren’s Abstract M achine, A Tutorial R econstruction. M IT Press
(1991)

6. Taylor, A.: H igh-Performance Prolog Implementation. PhD thesis, B asser Depart-
ment of Computer Science, U nversity of Sidney (1991)

7. Krall, A., B erger, T.: The VAM AI - an abstract machine for incremental global
dataflow analysis of Prolog. In de la B anda, M .G ., J anssens, G ., Stuckey, P.,
eds.: ICL P’95 Post-Conference Workshop on Abstract Interpretation of L ogic L an-
guages, Tokyo, Science U niversity of Tokyo (1995) 80–91

8. Van R oy, P., Despain, A.: H igh-Performace L ogic Programming with the Aq uarius
Prolog Compiler. IE E E Computer M agazine (1992) 54–68

9. Swedish Institute for Computer Science PO B ox 1263, S-164 28 Kista, Swe-
den: SICStus Prolog 3.8 U ser’s M anual. 3.8 edn. (1999) Available from
http://www.sics.se/sicstus/.

10. Mariën, A.: Improving the Compilation of Prolog in the Framework of the Warren
Abstract Machine. PhD thesis, Katholieke Universiteit Leuven (1993)

11. Diaz, D., Codognet, P.: Design and Implementation of the GNU Prolog System.
Journal of Functional and Logic Programming 2001 (2001)

12. Jones, S.L.P., Ramsey, N., Reig, F.: C--: A Portable Assembly Language that Sup-
ports Garbage Collection. In Nadathur, G., ed.: International Conference on Prin-
ciples and Practice of Declarative Programming. Number 1702 in Lecture Notes in
Computer Science, Springer Verlag (1999) 1–28

13. Codognet, P., Diaz, D.: WAMCC: Compiling Prolog to C. In Sterling, L., ed.:
International Conference on Logic Programming, MIT PRess (1995) 317–331

14. Q uintus Computer Systems Inc. Mountain View CA 94041: Q uintus Prolog User’s
Guide and Reference Manual— Version 6. (1986)

15. Santos-Costa, V., Damas, L., Reis, R., Azevedo, R.: The Yap Prolog User’s Manual.
(2000) Available from http://www.ncc.up.pt/~vsc/Yap.

16. Demoen, B., Nguyen, P.L.: So Many WAM Variations, So Little Time. In: Com-
putational Logic 2000, Springer Verlag (2000) 1240–1254

17. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garćıa, P., Puebla, G.:
The Ciao Prolog System. Reference Manual (v1.8). The Ciao System Documenta-
tion Series–TR CLIP4/2002.1, School of Computer Science, Technical University
of Madrid (UPM) (2002) System and on-line version of the manual available at
http://clip.dia.fi.upm.es/Software/Ciao/.

18. Puebla, G., Hermenegildo, M.: Abstract Specialization and its Applications. In:
ACM Partial Evaluation and Semantics based Program Manipulation (PEPM’03),
ACM Press (2003) 29–43 Invited talk.

19. Winsborough, W.: Multiple Specialization using Minimal-Function Graph Seman-
tics. Journal of Logic Programming 13 (1992) 259–290

20. Ferreira, M., Damas, L.: Multiple Specialization of WAM Code. In: Practical
Aspects of Declarative Languages. Number 1551 in LNCS, Springer (1999)

21. Mills, J.: A high-performance low risc machine for logic programming. Journal of
Logic Programming (6) (1989) 179–212

22. Taylor, A.: LIPS on a MIPS: Results from a prolog compiler for a RISC. In: 1990
International Conference on Logic Programming, MIT Press (1990) 174–189

23. Hermenegildo, M., Greene, K.: The & -Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing 9 (1991) 233–257

24. Puebla, G., Bueno, F., Hermenegildo, M.: An Assertion Language for Constraint
Logic Programs. In Deransart, P., Hermenegildo, M., Maluszynski, J., eds.: Anal-
ysis and Visualization Tools for Constraint Programming. Number 1870 in LNCS.
Springer-Verlag (2000) 23–61

25. Hermenegildo, M., Puebla, G., Bueno, F., López-Garćıa, P.: Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In:
10th International Static Analysis Symposium (SAS’03). Number 2694 in LNCS,
Springer-Verlag (2003) 127–152

26. Cabeza, D., Hermenegildo, M.: A New Module System for Prolog. In: International
Conference on Computational Logic, CL2000. Number 1861 in LNAI, Springer-
Verlag (2000) 131–148

27. Van Roy, P.: Can Logic Programming Execute as Fast as Imperative Programming?
PhD thesis, Univ. of California Berkeley (1990) Report No. UCB/CSD 90/600.

28. Henderson, F., Somogyi, Z.: Compiling Mercury to High-Level C Code. In Nigel
Horspool, R., ed.: Proceedings of Compiler Construction 2002. Volume 2304 of
LNCS., Springer-Verlag (2002) 197–212

29. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury: an
effi cient purely declarative logic programming language. JLP 29 (1996)

30. Tarau, P., De Bosschere, K., Demoen, B.: Partial Translation: Towards a Portable
and Effi cient Prolog Implementation Technology. Journal of Logic Programming
29 (1996) 65–83

Generatio n o f S trip p ed -d o w n Ru ntime S y stems

u sing A b strac t Interp retatio n

and P ro g ram S p ec ializatio n

Germán P u ebla1, M anu el H ermeneg ild o1,2, and Jesú s C orreas3

1 Depa rtm ent o f C o m puter Science
Technic a l U niv ersity o f M a drid (U PM)

{german,herme}@fi.upm.es
2 Depts. o f C o m puter Science a nd E lectric a l a nd C o m puter E ngineering

U niv ersity o f N ew M ex ic o (U N M)
3 SIP, C o m plutense U niv ersity o f M a drid (U C M)

jcorreas@fdi.ucm.es

1 Intro d u c tio n a nd Mo tiv a tio n

Libraries and mod u les are a fu nd amental tool for d eveloping larg e applications,
as they allow sharing common cod e between d iff erent prog rams and they provid e
a c lean interface to wid ely u sed rou tines. M any d evelopment environments based
on bytecod e virtu al machine emu lators often provid e a fu ll-featu red library with
larg e amou nts of cod e (as for ex ample the Java ru n-time environment). S u ch sys-
tems are composed of two d iff erent environments: on one hand , a software d evel-
opment kit for prog ram d evelopment, comprising a compiler and set of libraries,
and on the other hand a ru ntime system, which contains a virtu al machine inter-
preter (and / or a ju st-in-time compiler) and a bytecod e version of the libraries.
S u ch systems present a lot of ad vantag es for the prog rammer: interoperability
(to some ex tent in pervasive d evices), a g eneric and ind epend ent prog ramming
interface, etc . H owever, these ru ntime systems tend to u se an ex cessive amou nt of
space in both memory and permanent storag e, as their libraries are prog rammed
for a very g eneral u sag e, covering lots of possible cases. In ad d ition, prog rammers
tend to d evelop libraries that are more g eneral pu rpose than is actu ally need ed
for a spec ifi c application, in ord er to make the library as reu sable as possible.
T his approach, u sefu l for prog ram d evelopment, resu lts however in applications
which inc lu d e sig nifi cant amou nts of u seless cod e fragments.

In a pervasive system scenario, the space need ed by a prog ram is of vital
importance in this kind of d evices, and the u se of g eneral d evelopment tools
and libraries is u su ally very restric ted . In the case of Java, the alternative for
d eveloping software for small d evices is to u se a d iff erent d evelopment kit and
ru ntime system, the Java M icro E d ition.4 It contains several ru ntime systems and
d evelopment kits d epend ing on how powerfu l the targ et d evice is, and several pre-
packag ed sets or libraries for d iff erent fu nctionalities (Java T V , Java P hone, etc .)
T his approach avoid s the ex cessive u se of resou rces d one in the g eneral approach,

4 http://java.sun.com/products

but at the same time constraints the range of runtime system libraries available
to programmers. If a specific functionality not existing in the reduced runtime
system is needed by the programmer, then it must be added to the program by
hand in case it is possible, therefore losing the advantages of having a general
programming library available in the extended runtime system. Moreover, it may
be the case that the runtime system with additional libraries does not fit into
the device’s memory, but it would fit if the procedures in the library which are
not used by the specific application being installed on it were removed.

In contrast, the approach presented in this work is to allow the program-
mer to use any part of a general runtime system library, and to apply abstract
interpretation-based analysis and specialization techniq ues in order to remove all
unnecessary code during execution. This dead code can be removed from both
user programs or runtime system libraries, generating a specialized version of
the runtime system for a given application.

Moreover, our approach can be easily extended to the specialization of run-
time system libraries for a set of programs, instead of specializ ing them for only
one program. Then, a specialized version for the runtime libraries can be gen-
erated to be installed in a pervasive device, including exactly the functionalities
needed by the set of programs that will execute in such pervasive system.

This work will only take into consideration the specialization of user and
runtime system libraries. It will not deal with the specialization of the bytecode
emulator itself, which is studied in Deliverable D16 and which is not written in
the same source language as the libraries.

2 E x e cution Mode l B ased on A b stract Mach ine s

A basic execution model is generally composed of three different parts, depicted
in F igure 1 and detailed as follows:

– The bytecode which corresponds to user programs.
– The bytecode which implements the runtime system libraries. This code is

usually shared among all the user programs installed on the system.5

– The abstract machine emulator (or a platform-dependent just-in-time com-
piler), which interprets (or compiles) the bytecode.

W hen a runtime system is to be installed on a small device (like pervasive
devices) the traditional approach is to define the version of the runtime system
which best fits in the resources available in the device.

The main drawback of this approach is that the set of features provided by
each runtime version is fixed. If a functionality is not included in the standard
runtime system, it must be added manually by the programmer, even if there
are pervasive devices powerful enough to host runtime libraries richer than the
ones included in the runtime version designed for them.

5 Altho ug h in so m e cases a c o m piled user pro g ram m ay c o m prise the set o f libraries

needed.

2

Hardware

Virtual machine emulator

Runtime system libraries

Runtime
system

User programs

Fig. 1 . Generic runtime system

3 Ru n tim e lib ra ry sp e c ia liz a tio n

A d iff eren t approach, tak en in this work , is to allow the prog rammer to u se the
complete fu ll-featu red set of libraries of the most g en eral version of the system.
Du rin g compilation , both the prog ram mod u les an d the ru n time libraries are
stripped -d own for the spec ifi c u se of that prog ram, u sin g abstract in terpretation -
based techn iq u es. T he ad van tag es are twofold : on on e han d , the prog rammer can
u se g en eral libraries previou sly d eveloped for other application s; on the other
han d , the ru n time libraries are in c lu d ed in the fi n al ru n time system on ly if
they are to be u sed by the prog ram. M oreover, the level of g ran u larity when
ad d in g libraries to the ru n time system is even fi n er than trad ition al compilers
(that d ec id e whether a library mu st be in c lu d ed or n ot if there are proced u res
in vok ed from the prog ram, bu t they can n ot d ec id e if a proced u re can be ex c lu d ed
from the library if it is n ot in vok ed from an y part of the prog ram), as abstract
in terpretation -based spec ialization d etects an d performs d ead -cod e elimin ation ,
even when u sin g very simple abstract d omain s.

T his approach provid es an ad d ition al ad van tag e. W hen there are several
application s that are to be ex ec u ted in a g iven pervasive d evice, the ru n time
system is u su ally shared between them. T he proced u re d epicted above can be
easily ad apted to perform the spec ialization of the ru n time libraries for all the
application s in the system. T herefore, the g en erated ru n time system will in c lu d e
all the featu res n eed ed by those application s an d spec ialized for them, bu t it will
n ot in c lu d e other libraries or proced u res in sid e libraries n ot u sed by the g iven
set of prog rams.

3

4 A P ractical application using CiaoPP and Ciao

4.1 Th e Ciao R u n tim e S yste m S tru ctu re

The Ciao runtime system has the same general structure than other runtime sys-
tems like Java. As detailed before, it is composed of a bytecode emulator written
in C and a wide set of engine and system libraries. The Ciao language includes
a strict module system [1]. S ystem libraries are encapsulated in Ciao modules,
although some internal libraries are written in C for several technical reasons
(some libraries are needed by the virtual machine, others have strict effi ciency
requirements, or they need to access low-level operating system resources).

Ciao libraries look like a user Ciao module, although they present slight
differences: they are precompiled, and can be used from a user program using a
use_module(library(...)) construct, instead of including the complete path
to the library module file. E ven built-in procedures (not written in P rolog but
embedded in the runtime engine) are listed in Ciao library modules, denoting
with impl_defined declarations that they are not defined inside the module. The
compiler then links the built-in predicate declaration with the actual fragment
of runtime engine code. This approach to built-ins and libraries allows a very
high degree of library specialization.

Ciao libraries are classified into two categories: engine libraries, those which
are mandatory for the execution of any Ciao program, and the remaining li-
braries, which are necessary only if the user program needs their functionality.
F igure 2 shows the structure of the Ciao runtime system.

B y considering libraries as regular user files, the Ciao compiler is able to
determine which libraries are needed for the user program: the compiled program
will have the minimal set of libraries, instead of all runtime libraries as traditional
runtime systems. This means that the compiler strips-down the runtime system
at a module level, but if a library module is included, all procedures in the module
will be included, even if they are not used by the program. In the following
sections a finer-grained runtime system reduction is proposed.

4.2 A n alysis an d S p e cializatio n o f m o d u lar Ciao p ro g ram s

The analysis and specialization is performed using CiaoPP, the Ciao preproces-
sor, based on abstract interpretation. O nly programs written in the Ciao lan-
guage and its extensions can be processed, and library code implemented in C in
the runtime engine cannot be processed nor specialized. Therefore, procedures
declared as impl_defined are conservatively handled by the preprocessor.

The analysis of a modular program in CiaoPP is implemented following the
framework described in [2]. In summary, modules in the program are analyzed in
turn, marking the call patterns for imported predicates as pending for analysis.
When the imported module is analyzed, all pending patterns are processed. If
the analysis results are more precise than those obtained in previous analyses of
that module, the modules which import it are marked for reanalysis. This process

4

Hardware

Runtime
system

User programs

Virtual machine emulator

Engine libraries

Runtime system libraries

Fig. 2 . Ciao runtime system

terminates when there are no marked modules in the program with pending call
patterns.

For this work a very simple abstract domain has been used. It only contains
two abstract values, > and ⊥, representing if a given predicate is used or not.
More complex domains would bring more precise results on code reachability.

The results of this inter-modular analysis framework are the starting point of
the specialization of modular programs. The specializer takes the list of calling
patterns generated for every module, and removes the code that is unreachable
from these calling patterns.

4.3 General algorithm for Runtime Generation

G iven the analyzer and specializer for modular programs included in CiaoPP,
the procedure for generating runtime libraries for a given program is as follows:

1. Determine the inter-modular graph of the program, including all needed
libraries

2. Copy all these files to a separate place.
3. Perform the analysis of the copy of the user program and the copied libraries.
4. Perform the analysis of special startup code (in order not to lose code to be

executed before the main predicate of the user program, as explained below).
5. Specialize the modular program, generating transformed source files for all

the modules of the program and libraries.

5

Not specialized Specialized

program default libs. manual

minimal 2 ,2 6 0 ,2 9 3 8 1 6 ,8 3 5 5 0 1 ,0 8 1

q sort 2 ,2 7 7 ,1 3 4 8 2 2 ,2 7 5 5 0 4 ,3 7 4

q ueens 2 ,2 6 3 ,0 2 5 8 3 3 ,4 4 1 5 0 3 ,1 4 0

Tab le 1. E x ecutable size comparison in bytes.

4.4 E mpirical results

In a first approach, user programs and non-engine libraries were considered for
specialization. Engine libraries were excluded, as they were thought as not spe-
cializable. H owever, the results were not as good as one would expect: around
a 10 % of code reduction in a minimal program. Some engine libraries needed
other libraries defined in Ciao, losing opportunities for specialization (e.g., the
sorting library is needed by aggregation predicates for implementing setof/3,
needed in turn by the debugger, used by the engine).

The second approach is to generate a specialized version of all runtime system
libraries, including engine libraries. All libraries are analyzed and specialized,
leaving procedures implemented in C unchanged, but specializing all Ciao code.

In this approach, some specific engine modules require special treatment.
During analysis and specialization, predicates are marked as needed by the pro-
gram along the list of modules starting from the startup predicate (defined in
the user program as main/0 or main/1). N evertheless, as mentioned before there
is some startup code written in Ciao which is executed before the user program
starts, and which therefore needs to be preserved in the final, specialized code.
As this code is not called from any point of the user program nor the libraries,
it will be removed by the specializer. Therefore, additional calling patterns for
such code must be provided to CiaoPP together with the user program calling
patterns.

The second approach brings much better results (even if they are still pre-
liminary since the system can be improved significantly), and they are detailed
in Table 1 for some simple examples.

In this table, N umbers correspond to a static compilation of the examples,
which includes the libraries needed by the program, but does not include the
virtual machine emulator itself. The first example is the smallest Ciao program,
while qsort and queens are simple benchmarks which include some additional
libraries: qsort uses append/3 from the lists handling library and write/1 for
printing out the results, and queens uses the Ciao statistics library to get the
time spent in the benchmark and format/2 for formatted output.

the second and third columns correspond to the traditional compilation of
the programs, including the default set of Ciao libraries in the first case, or just
the minimal set of libraries, in the second case. The fourth column is the result
of specializing the code of programs and libraries, removing dead code.

6

5 C onclusions and Future Work

Despite the preliminary nature of this work, We have already obtained an impor-
tant reduction on size of libraries by removing library procedures which are not
used by a given program. Furthermore, a significant improvement is expected
using richer domains, as other abstract domains can detect additional fragments
of unused code (for example, using modes domains in programs with tests on
the instantiation of variables). Another source of improvement is the detection
of dead-code for built-ins written in C. Currently procedures written in C are
not removed from the system engine even if they are not called from anywhere in
the program. A procedure can be implemented to get the annotations produced
by CiaoPP analyzer to generate C code only for the library procedures which
are used in the program. This work will be complemented with the work on De-
liverable D16 regarding abstract machine specialization, in order to cover more
opportunities for size reduction. We expect the combination of these techniques
to result in very significantly reduced footprints for executables, as required in
pervasive systems.

References

1. D . Cabeza and M . H ermenegildo. T he Ciao M odule System: A New M odule System

for Prolog. In Specia l Issue on P a ra llelism a nd Im plem enta tion of (C)L P Sy stem s,
volume 30 of E lectronic N otes in T h eoretica l C om puter Science. Elsevier - North

H olland, M arch 2000.

2. G. Puebla, J . Correas, M . H ermenegildo, F. B ueno, M . Garćıa de la B anda, K . M ar-

riott, and P. J . Stuckey. A Generic Framew ork for Context-Sensitive Analysis of

M odular Programs. In M . B ruynooghe and K . L au, editors, P rogra m D evelopm ent
in C om puta tiona l L ogic, A D eca de of Resea rch Adva nces in L ogic-B a sed P rogra m
D evelopm ent, number 3049 in L NCS, pages 234– 261. Springer-V erlag, H eidelberg,

Germany, August 2004.

7

