ASAP
R 14v € IST-2001-38059

HS T Advanced Analysis and Specialization for
Pervasive Systems

First Prototype

Deliverable number: D8

Workpackage: Integrated Tool (WP7)

Preparation date: 1 March 2004

Due date: 1 March 2004

Classification: Public

Lead participant: Tech. Univ. of Madrid (UPM)

Partners contributed: Tech. Univ. of Madrid (UPM), Univ. of Southampton, Roskilde
Univ

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998-2002).

Short description:

D8 corresponds to the work in task 7.2, the implementation of the prototype of the integrated
tool on top of Ciao. This task has taken as starting point the previous prototype incorporating
the tools of the partners: mecckg, BTA (a first version of) the binding time analysis for offline
specialization, and CiaoPP-1.0. The prototype now includes also Logen, a complete BTA,
and CiaoPP-1.1, incorporating new techniques for program transformation.

The present deliverable is a second version of D8, already delivered in the first period of
the project. This second version reflects the changes and improvements made to the proto-
type. It includes two parts in this document and two attachments. Part | provides a tutorial-
like overview of the use of CiaoPP in program development, which is quite comprehensive
and focuses on giving a high-level glance of the possibilities of the tool (it corresponds to the
final version of a paper of the same title to appear in Science of Computer Programming, Else-
vier Science, 2005). Part Il provides a tutorial-like overview of PyLogen. The first attachment
(see also Section 3 below) is an updated version of the CiaoPP-1.1 Reference Manual which,
in addition to updates, now includes a tutorial guide for using CiaoPP, including descriptions of
the new program transformations which have been incorporated, the new menu interface, etc.
A second first (virtual) attachment (see Section 2 below) is the Ciao-1.11 Manual (available at
http://clip.dia.fi1.upm.es/) which corresponds to a new distribution of the Ciao sys-
tem. Since this is a very large document it is not included herein, and instead it can be obtained
from http://clip.dia.fi.upm.es/ASAP/Software.

1 Bottom-Up Analyses

A set of tools based on bottom-up analysis has been integrated into CiaoPP. Bottom-up analysis
has an elegant semantic basis based on the declarative semantics of logic programs, straightfor-
ward implementation, and flexible application. In addition, goal-directed or top-down analyses
can be simulated through the use of query-answer transformations, of which the so-called “magic
set” method is one. These transformations can also serve to increase precision with respect to
bottom-up analysis. A toolkit of bottom-up analysis tools and query-answer transformations
has been built up. Efficient algorithms for bottom-up analysis are at the heart of the toolkit. A
systematic method for implementing analyses using the tools is then set out.

The method is based on (i) abstract compilation of a program into a “domain program”, (ii)
computation of (an approximation to) the model of the domain program, and (iii) use of various

query-answer transformations to simulate goal-directed analysis and improve precision. Stages
(i) and (ii1) can also be used directly on the original program in some applications. If the domain
program has a finite model, then a precise model can be computed in step (ii). If the model is
infinite or very large, methods of approximation including regular approximation and others can
be used. Abstract compilation can be achieved very flexibly, based on the construction of pre-
interpretations based on arbitrary regular types [GHO4].

1.1 Interface to the Bottom-Up Analysis Tools

The bottom-up tools have been applied in the automatic BTA tool [CGLHO04] associated with
LOGEN and with the backwards analysis work [Gal03]. They are primarily intended as an analy-
sis engine to be incorporated in other analyses, rather than used directly from the user interface.
The main components of the tools are:

e Animplementation of the least model computation, which is the least fixed point of the Tp
function.

e Abstraction of a program with respect to a pre-interpretation.

e Derivation of a pre-interpretation by converting a non-deterministic finite tree automaton
(NFTA) to a deterministic finite tree automaton (DFTA).

e The backwards analysis transformation.

e Analysis of a program over a domain of NFTAs (i.e. the NFTAs are derived from the
program, in contrast to the derivation of a pre-interpretation from a given NFTA).

An interface to the analysis tools is provided by the following predicates:

e tpr(Cls,M1,M2): where ClIs is a list of clauses from a module P (see below), M1 is
a model of predicates external to CI's, and M2 is the output model, the least fixed point of
T'p. This is the core engine of the bottom-up analysis.

e dnm(Modulle, RegTypeFile, SDV):where Module isamodule name and RegTypeFile
is a file containing rules for some regular types, and SDV is an indicator of which standard
types are added to the regular types (e.g. SDV=sd means that standard types static and
dynamic are added. The predicate determinizes the regular types, computes and abstract
domain program over the corresponding pre-interpretation, and calls tpr to compute the
model over the pre-interpretation. The output is sent to a file.

2

e ba(File,Outfile): performs backwards analysis of the module in File, with the
default assumption that all built-in predicates are observed. The output is a model of the
relation between the entry program calls and the observed program points.

o dfta(RegTypes,File,SDV,0utFile): Determinizes the regular types in RegTypes
with respect to the signature of the program in File. SDV are the added standard types
(see above).

e tdv(File,Query): where File isan input program and Query is an atomic goal for
the program. The output is an NFTA approximation of the program’s calls and success
patterns w.r.t. computation of Query. This is an implementation of the analysis over
Nondeterministic Finite Tree Automata (NFTAS) [GP02a3].

An interface from the internal representation of programs in the CiaoPP system to the above
tools has been provided. This has been exploited in analyses that access the assertions in the
Ci1aoPP database, for example. These applications are described in Deliverable D17 (Combined
Static and Dynamic Checking).

2 CiaoDE: The Ciao Development Environment

A new distribution of the prototype analysis tool* has been generated. This new distribution
includes in a single package and with a single setup procedure tools which were distributed
and installed separately until now, which caused compatibility and dependency problems. This
new source-code distribution alleviates those problems, as a single source tree contains highly
integrated code whose configuration, installation, and usage is easier than it was before.

3 CiaoPP: The Ciao Program Preprocessor

This integrated tool runs on top of the Ciao public domain program development environment,
except for some well defined external components, and it has been improved and extended to
incorporate most of the new techniques developed in this period (which are described in further
detail in other deliverables). In particular, the enclosed reference manual describes the inter-
modular fixpoint algorithm for the analysis of modular programs reported in D6; and the effi-
cient, stack-based local unfolding rule based on covering ancestors also reported in D6; the new

Tobefoundathttp://clip.dia.fi.upm es/ ASAP/ Sof tware .

3

determinacy analysis developed which takes advantage of the type and mode analysis already
integrated in the tool (reported in D15), etc.

Contents

Deliverable Description 1
1 Bottom-Up Analyses 1

1.1 Interface to the Bottom-Up AnalysisTools 2
2 CiaoDE: The Ciao Development Environment 3
3 CiaoPP: The Ciao Program Preprocessor 3

| Integrated Program Debugging, Verification, and Optimization Using

Abstract Interpretation (and The Ciao System Preprocessor) 3
4 TheRoleof Abstract Interpretation 4
4.1 Abstract Verification and Debugging 5
4.2 Abstract Executability and Program Transformation 8
5 Static Analysisand Program Assertions 9
5.1 Modular Static AnalysisBasics: 10
5.2 Assertions and Properties: 11
53 Type Analysis: 13
5.4 Non-failure and Determinacy Analysis: 14
5.5 Size, Cost, and Termination Analysis: 14
5.6 Decidability, Approximations, and Safety: 15
6 Program Debugging and Assertion Validation 15
6.1 Static Debugging: 16
6.2 Static Checking of Assertions in System Libraries: 18
6.3 Static Checking of User Assertions and Program Validation: 19
6.4 Dynamic Debugging with Run-time Checks: 21
6.5 Performance Debugging and Validation: 22
7 Source Program Optimization 23
7.1 Abstract Specialization: 23
7.2 Parallelization: 24
7.3 Resource and Granularity Control:, 25

1

7.5 Integration of Abstract Interpretation and Partial Evaluation: 28
Il A Tutorial Overview of the PyLogen System 29
8 Starting PYLOGEN 29
9 Specialising the Regular Expression Interpreter 30
10 Using the Automatic Binding-time Analysis 34
References 36

Part |

Integrated Program Debugging,
Verification, and Optimization Using
Abstract Interpretation (and The Ciao
System Preprocessor)

The technique of Abstract Interpretation [CC77] has allowed the development of sophisticated
program analyses which are at the same time provably correct and practical. The semantic ap-
proximations produced by such analyses have been traditionally applied to high- and low-level
optimizations during program compilation, including program transformation. More recently,
novel and promising applications of semantic approximations have been proposed in the more
general context of program development, such as verification and debugging.

We present a novel programming framework which uses extensively abstract interpretation
as a fundamental tool in the program development process. The framework uses modular, in-
cremental abstract interpretation to obtain information about the program, which is then used to
validate programs, to detect bugs with respect to partial specifications written using assertions
(in the program itself and/or in system libraries), to generate run-time tests for properties which
cannot be checked completely at compile-time and simplify them, and to perform high-level pro-
gram transformations such as multiple abstract specialization, parallelization, and resource usage
control, all in a provably correct way.

After introducing some of the basic concepts underlying the approach, the framework is
described in a tutorial fashion through the presentation of its implementation in CiaoPP, the
preprocessor of the Ciao program development system [BCC+97].2 Ciao is a multi-paradigm
programming system, allowing programming in logic, constraint, and functional styles (as well
as a particular form of object-oriented programming). At the heart of Ciao is an efficient logic
programming-based kernel language. This allows the use of the very large body of approxima-
tion domains, inference techniques, and tools for abstract interpretation-based semantic analysis
which have been developed to a powerful and mature level in this area (see, e.g., [MH92, CVV94,
GdW94, BCHP96, dIBHB"96a, HBPLG99] and their references). These techniques and systems

2Thefi rst, abridged version of this paper was prepared as a companion to an invited talk at the 2003 Symposium
of Satic Analysis, SAS 03, and a demonstration of Ciao and CiaoPP at work was performed at the meeting.

3

can approximate at compile-time, always safely, and with a significant degree of precision, a
wide range of properties which is much richer than, for example, traditional types. This includes
data structure shape (including pointer sharing), independence, storage reuse, bounds on data
structure sizes and other operational variable instantiation properties, as well as procedure-level
properties such as determinacy, termination, non-failure, and bounds on resource consumption
(time or space cost).

In the rest of the paper we first discuss briefly the specific role of abstract interpretation in dif-
ferent parts of our program development framework (Section 4) and then illustrate it by present-
ing what is arguably the first and most complete implementation of this idea: CiaoPP [PBHOOa,
HBPLG99].2 We do this in a tutorial fashion, elaborating on different aspects of how the actual
process of program development is aided in an implementation of our framework, by showing
examples of CiaoPP at work. Section 5 presents CiaoPP at work performing program analysis,
while Section 6 does the same for program debugging and validation, and Section 7 for program
transformation and optimization.

Space constraints prevent us from providing a complete set of references to related work on
the many topics touched upon in the paper. Thus, we only provide the references most directly
related to the papers where all the techniques used in CiaoPP are discussed in detail, which are
often our own work. We ask the reader to kindly forgive this. The publications referenced do
themselves contain much more comprehensive references to the related work.

4 TheRoleof Abstract Interpretation

We start by recalling some basic concepts from abstract interpretation. We consider the important
class of semantics referred to as fixpoint semantics. In this setting, a (monotonic) semantic
operator (which we refer to as Sp) is associated with each program P. This Sp function operates
on a semantic domain D which is generally assumed to be a complete lattice or, more generally,
a chain complete partial order. The meaning of the program (which we refer to as [P]) is defined
as the least fixpoint of the Sp operator, i.e., [P] = Ifp(Sp). A well-known result is that if Sp is
continuous, the least fixpoint is the limit of an iterative process involving at most w applications
of Sp and starting from the bottom element of the lattice.

3In fact, the implementation of the preprocessor is generic in that it can be easily customized to different pro-
gramming systems and dialects and in that it is designed to allow the integration of additional analysesin asimple
way. Asaparticularly interesting example, the preprocessor has been adapted for use with the CHIP CLP(F' D) sys-
tem. Thishasresulted in CHIPRE, apreprocessor for CHIP which has been shown to detect non-trivial programming
errorsin CHIP programs. More information on the CHIPRE system and an example of a debugging session with it
can be found in [PBHOOa].

In the abstract interpretation technique, the program P is interpreted over a non-standard
domain called the abstract domain D, which is simpler than the concrete domain D. The abstract
domain D,, is usually constructed with the objective of computing safe approximations of the
semantics of programs, and the semantics w.r.t. this abstract domain, i.e., the abstract semantics
of the program, is computed (or approximated) by replacing the operators in the program by
their abstract counterparts. The abstract domain D, also has a lattice structure. The concrete
and abstract domains are related via a pair of monotonic mappings: abstraction « : D — D,
and concretization v : D, — D, which relate the two domains by a Galois insertion (or a Galois
connection) [CCT77].

One of the fundamental results of abstract interpretation is that an abstract semantic operator
S% for a program P can be defined which is correct w.r.t. Sp in the sense that v (1fp(S%)) is an
approximation of [P], and, if certain conditions hold (e.g., ascending chains are finite in the D,,
lattice), then the computation of 1fp(S%) terminates in a finite number of steps. We will denote
lfp(S$), i.e., the result of abstract interpretation for a program P, as [P] .

Typically, abstract interpretation guarantees that [P], is an over-approximation of the ab-
stract semantics of the program itself, «([P]). Thus, we have that [P]_, 2 «([P]), which we
will denote as [P] .. Alternatively, the analysis can be designed to safely under-approximate
the actual semantics, and then we have that [P[], € «([P]), which we denote as [P] - .

4.1 Abstract Verification and Debugging

Both program verification and debugging compare the actual semantics of the program, i.e., [P],
with an intended semantics for the same program, which we will denote by /. This intended
semantics embodies the user’s requirements, i.e., it is an expression of the user’s expectations. In
Table 1 we define classical verification problems in a set-theoretic formulation as simple relations
between [P] and I.

Using the exact actual or intended semantics for automatic verification and debugging is
in general not realistic, since the exact semantics can be typically only partially known, infi-
nite, too expensive to compute, etc. On the other hand the abstract interpretation technique
allows computing safe approximations of the program semantics. The key idea in our ap-
proach [BDD*97, HPB99, PBHO0C] is to use the abstract approximation [P, directly in pro-
gram verification and debugging tasks.

A number of approaches have already been proposed which make use to some extent of ab-
stract interpretation in verification and/or debugging tasks. Abstractions were used in the context
of algorithmic debugging in [LS88]. Abstract interpretation for debugging of imperative pro-
grams has been studied by Bourdoncle [Bou93], by Comini et al. for the particular case of algo-

5

Property Defi nition

P is partially correctw.r.t. I | [P] C I

P is complete w.r.t. T I C [P]
Pisincorrect w.r.t. 1 [P]Z 1
P is incomplete w.r.t. I Z[P]

Table 1: Set theoretic formulation of verification problems

rithmic debugging of logic programs [CLV95] (making use of partial specifications) [CLMV99],
and very recently by P. Cousot [Cou03].

Our first objective herein is to present the implications of the use of approximations of both
the intended and actual semantics in the verification and debugging process. As we will see, the
possible loss of accuracy due to approximation prevents full verification in general. However,
and interestingly, it turns out that in many cases useful verification and debugging conclusions
can still be derived by comparing the approximations of the actual semantics of a program to the
(also possibly approximated) intended semantics.

In our approach we actually compute the abstract approximation [P], of the concrete se-
mantics of the program [P] and compare it directly to the (also approximate) intention (which is
given in terms of assertions [PBHOOb]), following almost directly the scheme of Table 1. This
approach can be very attractive in programming systems where the compiler already performs
such program analysis in order to use the resulting information to, e.g., optimize the generated
code, since in these cases the compiler will compute [P]_, anyway. Alternatively, [P]_, can
always be computed on demand.

For now, we assume that the program specification is given as a semantic value 7, € D,.
Comparison between actual and intended semantics of the program is most easily done in the
same domain, since then the operators on the abstract lattice, that are typically already defined
in the analyzer, can be used to perform this comparison. Thus, it is interesting to study the
implications of comparing I, and [P],, which is an approximation of ([P])).

In Table 2 we propose (sufficient) conditions for correctness and completeness w.r.t. I,
which can be used when [P] is approximated. Several instrumental conclusions can be drawn
from these relations.

Analyses which over-approximate the actual semantics (i.e., those denoted as [P] .), are
specially suited for proving partial correctness and incompleteness with respect to the abstract
specification 7,. It will also be sometimes possible to prove incorrectness in the extreme case
in which the semantics inferred for the program is incompatible with the abstract specification,

6

Property Defi nition Suffi cient condition
P is partially correct w.rt. I, | a([P]) C I, [P] + C 1,
P is complete w.r.t. I, I, C o[P]) I, C[P],-
P isincorrect w.r.t. I, a([P]) € 1, [P],,- < I, or
[Pl NIn=0A[P], #0
P is incomplete w.r.t. 7, I, Z a([P]) I, Z[P].+

Table 2: Validation problems using approximations

i.e., when [P]_+ N1, = (. We also note that it will only be possible to prove total correctness
if the abstraction is precise, i.e., [P], = «([P]). According to Table 2 completeness requires
[P] - and partial correctness requires [P] .. Thus, the only possibility is that the abstraction is
precise.

On the other hand, we use [P] - to denote the (less frequent) case in which analysis under-
approximates the actual semantics. In such case, it will be possible to prove completeness and
incorrectness. In this case, partial correctness and incompleteness can only be proved if the
analysis is precise.

If analysis information allows us to conclude that the program is incorrect or incomplete w.r.t.
1, an (abstract) symptom has been found which ensures that the program does not satisfy the
requirement. Thus, debugging should be initiated to locate the program construct responsible for
the symptom. Since [P]_ . often contains information associated to program points, it is often
possible to use the this information directly and/or the analysis graph itself to locate the earliest
program point where the symptom occurs (see Section 6). Also, note that the whole setting is
even more interesting if the I, itself is considered an approximation (i.e., we consider I and
I7)), as is the case in the assertions providing upper- and lower-bounds on cost in the examples
of Section 6.

It is important to point out that the use of safe approximations is what gives the essential
power to the approach. As an example, consider that classical examples of assertions are type
declarations. However, herein we are interested in supporting a much more powerful setting
in which assertions can be of a much more general nature, stating additionally other properties,
some of which cannot always be determined statically for all programs. These properties may in-
clude properties defined by means of user programs and extend beyond the predefined set which
may be natively understandable by the available static analyzers. Also, only a small number of
(even zero) assertions may be present in the program, i.e., the assertions are optional. In general,
we do not wish to limit the programming language or the language of assertions unnecessarily in

7

Property Defi nition Suffi cient condition
L is abstractly RT(L,P) CTS(L,P) | 3N € Ars(B, D,) :

executable to true in P AL N

L is abstractly RT(L,P) C FF(L,P) | 3N € Apr(B,D,) :

executable to false in P AL TN

Table 3: Abstract Executability

order to make the validity of the assertions statically decidable (and, consequently, the proposed
framework needs to deal throughout with approximations).

Additional discussions and more details about the foundations and implementation issues of
our approach can be found in [BDD*97, HPB99, PBH00c, PBHO00a].

4.2 Abstract Executability and Program Transformation

In our program development framework, abstract interpretation also plays a fundamental role in
the areas of program transformation and program optimization. Optimizations are performed by
means of the concept of abstract executability [GH91, PH97]. This allows reducing at compile-
time certain program fragments to the values true, false, or error, or to a simpler program frag-
ment, by application of the information obtained via abstract interpretation. This allows opti-
mizing and transforming the program (and also detecting errors at compile-time in the case of
error).

For simplicity, we will limit herein the discussion to reducing a procedure call or program
fragment L (for example, a “literal” in the case of logic programming) to either true or false.
Each run-time invocation of the procedure call L will have a local environment which stores the
particular values of each variable in L for that invocation. We will use # to denote this envi-
ronment (composed of assignments of values to variables, i.e., substitutions) and the restriction
(projection) of the environment ¢ to the variables of a procedure call L is denoted 6| ..

We now introduce some definitions. Given a procedure call L without side-effects in a pro-
gram P we define the trivial success set of L in P as T'S(L, P) = {60|. : L6 succeeds exactly
once in P with empty answer substitution (¢)}. Similarly, given a procedure call L from a pro-
gram P we define the finite failure set of L in P as F'F'(L, P) = {0, : L6 fails finitely in P}.

Finally, given a procedure call L from a program P we define the run-time substitution set of
L in P, denoted RT'(L, P), as the set of all possible substitutions (run-time environments) in the
execution state just prior to executing the procedure call L in any possible execution of program

8

P.

Table 3 shows the conditions under which a procedure call L is abstractly executable to either
true or false. In spite of the simplicity of the concepts, these definitions are not directly applicable
in practice since RT'(L, P), T'S(L, P), and F'F(L, P) are generally not known at compile time.
However, it is usual to use a collecting semantics as concrete semantics for abstract interpretation
so that analysis computes for each procedure call L in the program an abstract substitution A,
which is a safe approximation of RT'(L, P) ,i.e. VL € P RT(L,P) C y(AL).

Also, under certain conditions we can compute either automatically or by hand sets of abstract
values Ars(L, D,) and App(L, D,) where L stands for the base form of L, i.e., where all
the arguments of L contain distinct free variables. Intuitively they contain abstract values in
domain D, which guarantee that the execution of L trivially succeeds (resp. finitely fails). For
soundness it is required that VA € Ars(L, Do) y(A) € T'S(L, P)and VA € App(L, Do) v(A) C
FF(L,P).

Even though the simple optimizations illustrated above may seem of narrow applicability, in
fact for many builtin procedures such as those that check basic types or which inspect the struc-
ture of data, even these simple optimizations are indeed very relevant. Two non-trivial examples
of this are their application to simplifying independence tests in program parallelization [PH99]
(Section 7) and the optimization of delay conditions in logic programs with dynamic procedure
call scheduling order [PdIBMS97].

These and other more powerful abstract executability rules are embedded in the multivari-
ant abstract interpreter in our program development framework. The resulting system performs
essentially all high- and low-level program optimizations and transformations during program
development and in compilation. In fact, the combination of the concept of abstract executability
and multivariant abstract interpretation has been shown to be a very powerful program transfor-
mation and optimization tool, capable of performing essentially all the transformations tradition-
ally done via partial evaluation [PH99, PHG99, CC02, Leu98]. Also, the class of optimizations
which can be performed can be made to cover traditional lower-level optimizations as well, pro-
vided the lower-level code to be optimized is “reflected” at the source level or if the abstract
interpretation is performed directly at the object level.

5 Static Analysisand Program Assertions

The fundamental functionality behind CiaoPP is static global program analysis, based on ab-
stract interpretation. For this task CiaoPP uses the PLAI abstract interpreter [MH92, BdIBH99],
including extensions for, e.g., incrementality [HPMS00, PH96], modularity [BCHP96, PHQO,

9

BdIBH*01], analysis of constraints [dIBHB*96b], and analysis of concurrency [MdIBH94].

The system includes several abstract analysis domains developed by several groups in the
LP and CLP communities and can infer information on variable-level properties such as moded
types, definiteness, freeness, independence, and grounding dependencies: essentially, precise
data structure shape and pointer sharing. It can also infer bounds on data structure sizes, as
well as procedure-level properties such as determinacy, termination, non-failure, and bounds on
resource consumption (time or space cost). CiaoPP implements several techniques for dealing
with “difficult” language features (such as side-effects, meta-programming, higher-order, etc.)
and as a result can for example deal safely with arbitrary 1ISO-Prolog programs [BCHP96]. A
unified language of assertions [BCHP96, PBHOOb] is used to express the results of analysis,
to provide input to the analyzer, and, as we will see later, to provide program specifications
for debugging and validation, as well as the results of the comparisons performed against the
specifications.

5.1 Modular Static Analysis Basics:

As mentioned before, CiaoPP takes advantage of modular program structure to perform more
precise and efficient, incremental analysis. Consider the program in Figure 1, defining a module
which exports the gsort predicate and imports predicates geq and I't from module compare.
During the analysis of this program, CiaoPP will take advantage of the fact that the only pred-
icate that can be called from outside is the exported predicate gsort. This allows CiaoPP to
infer more precise information than if it had to consider that all predicates may be called in any
possible way (as would be true had this been a simple “user” file instead of a module). Also,
assume that the compare module has already been analyzed. This allows CiaoPP to be more
efficient and/or precise, since it will use the information obtained for geq and 1t during analysis
of compare instead of either (re-)analyzing compare or assuming topmost substitutions for
them. Assuming that geq and It have a similar binding behavior as the standard comparison
predicates, a mode and independence analysis (“sharing+freeness” [MH91]) of the module using
CiaoPP yields the following results:*

:- true pred gsort(A,B)

: mshare([[A]l.[A.B]1.[B1D
=> mshare([[A.B]])-

“4In the “sharing+freeness’ domain var denotes variables that do not point yet to any data struture, mshar e
denotes pointer sharing patterns between variables. Derived properties gr ound and i ndep denote respectively
variables which point to data structures which contain no pointers, and pairs of variables which point to data struc-
tures which do not share any pointers.

10

- module(gsort, [gsort/2], [assertions]).
.- use_module(compare, [geg/2,1t/2]).

gsort([X|L].R) :-
partition(L,X,L1,L2),
gsort(L2,R2), gsort(L1l,R1l),
append(R1, [X]R2].,R).
gsort(L].L[1)-

partition([],_B,[1.[D-
partition([E|R],C,[E]Leftl],Right):-
1t(E,C), partition(R,C,Leftl,Right).
partition([E|R].C,Left, [E|RIghtl]):-
geq(E,C), partition(R,C,Left,Rightl).

append([].Ys,Ys).
append([X]Xs],Ys, [X]Zs]):- append(Xs,Ys,Zs).

Figure 1: A modular gsort program.

- true pred partition(A,B,C,D)
: Cvar(C), var(D), mshare([[A].[A.B],[B1.[C].[C1D)
=> (ground(A), ground(C), ground(D), mshare([[BI1D))-
:- true pred append(A,B,C)
> (ground(A), mshare([[B1,IB.C1.ICID)
=> (ground(A), mshare([[B.C]1]))-

These assertions express, for example, that the third and fourth arguments of partition have
“output mode”: when partition is called (:) they are free unaliased variables and they are
ground on success (=>). Also, append is used in a mode in which the first argument is input
(i.e., ground on call). Also, upon success the arguments of gsort will share all variables (if

any).

5.2 Assertions and Properties:

The above output is given in the form of CiaoPP assertions. These assertions are a means of spec-
ifying properties which are (or should be) true of a given predicate, predicate argument, and/or
program point. If an assertion has been proved to be true it has a prefix true —like the ones

11

above. Assertions can also be used to provide information to the analyzer in order to increase
its precision or to describe predicates which have not been coded yet during program develop-
ment. These assertions have a trust prefix [BCHP96]. For example, if we commented out the
use_modulle/2 declaration in Figure 1, we could describe the mode of the (now missing) geq
and It predicates to the analyzer for example as follows:

- trust pred geq(X,Y) => (ground(X), ground(Y)).
- trust pred 1t(X,Y) => (ground(X), ground(Y)).

The same approach can be used if the predicates are written in, e.g., an external language such as,
e.g., C or Java. Finally, assertions with a check prefix are the ones used to specify the intended
semantics of the program, which can then be used in debugging and/or validation, as we will see
in Section 6. Interestingly, this very general concept of assertions is also particularly useful for
generating documentation automatically (see [Her00] for a description of their use by the Ciao
auto-documenter).

Assertions refer to certain program points. The true pred assertions above specify in a
combined way properties of both the entry (i.e., upon calling) and exit (i.e., upon success) points
of all calls to the predicate. It is also possible to express properties which hold at points between
clause literals. As an example of this, the following is a fragment of the output produced by
CiaoPP for the program in Figure 1 when information is requested at this level:

gsort([X|L].R) :-
true((ground(X),ground(L),var(R),var(Ll),var(L2),var(R2),
partition(L,X,L1,L2),
true((ground(X),ground(L),ground(L1l),ground(L2),var(R),var(R2),
gsort(L2,R2),

In CiaoPP properties are just predicates, which may be builtin or user defined. For example,
the property var used in the above examples is the standard builtin predicate to check for a free
variable. The same applies to ground and mshare. The properties used by an analysis in
its output (such as var, ground, and mshare for the previous mode analysis) are said to be
native for that particular analysis. The system requires that properties be marked as such with a
prop declaration which must be visible to the module in which the property is used. In addition,
properties which are to be used in run-time checking (see later) should be defined by a (logic)
program or system builtin, and also visible. Properties declared and/or defined in a module can
be exported as any other predicate. For example:

- prop list/1.
list([D)-
List([_|LD) :- list(L).

12

or, using the functional syntax package, more compactly as:
- prop list/1. list =[] | [|list].

defines the property “list”. A list is an instance of a very useful class of user-defined properties
called regular types [YS87, DZ92, GdW94, GP02b, VBO02], which herein are simply a syn-
tactically restricted class of logic programs. We can mark this fact by stating “-z- regtype
list/1.” instead of “z- prop list/1.” (this can be done automatically). The definition
above can be included in a user program or, alternatively, it can be imported from a system li-
brary, e.g.:

- usemodule(library(lists),[list/1]).

5.3 Type Analysis:

CiaoPP can infer (parametric) types for programs both at the predicate level and at the literal
level [GdW94, GP02b, VB02]. The output for Figure 1 at the predicate level, assuming that we
have imported the 11sts library, is:

- true pred gsort(A,B)
- (term(A), term(B))
=> (list(A), list(B)).
:- true pred partition(A,B,C,D)
> (term(A), term(B), term(C), term(D))
= (list(A), term(B), list(C), list(D)).
- true pred append(A,B,C)
> (list(A), listl(B,term), term(C))
=> (list(A), listl(B,term), listl(C,term)).

where term is any term and prop Listl is defined in library(lists) as:

- regtype listl(L,T) # "@var{L} is a list of at least one @var{T}’s."
List1([X]IR],.T) :- T(X), list(R,T).

- regtype list(L,T) # "@var{L} is a list of @var{T}’s."

list([1._T).

List([X]L],T) - T(X), list(L).-

We can use entry assertions [BCHP96] to specify a restricted class of calls to the module entry
points as acceptable:

- entry gsort(A,B) : (list(A, num), var(B)).

13

This informs the analyzer that in all external calls to gsort, the first argument will be a list
of numbers and the second a free variable. Note the use of builtin properties (i.e., defined in
modules which are loaded by default, such as var, num, 1ist, etc.). Note also that properties
natively understood by different analysis domains can be combined in the same assertion. This
assertion will aid goal-dependent analyses obtain more accurate information. For example, it
allows the type analysis to obtain the following, more precise information:

- true pred gsort(A,B)
: (list(A,num), term(B))
= (list(A,num), list(B,num)).
:- true pred partition(A,B,C,D)
> (list(A,num), num(B), term(C), term(D))
= (list(A,num), num(B), list(C,num), list(D,num)).
- true pred append(A,B,C)
> (C List(A,num), listl(B,num), term(C))
= (Llist(A,num), listl(B,num), listl(C,num)).

5.4 Non-failure and Determinacy Analysis:

CiaoPP includes a non-failure analysis, based on [DLGH97] and [BLGHO04], which can detect
procedures and goals that can be guaranteed not to fail, i.e., to produce at least one solution or not
terminate. It also can detect predicates that are “covered”, i.e., such that for any input (included
in the calling type of the predicate), there is at least one clause whose “test” (head unification
and body builtins) succeeds. CiaoPP also includes a determinacy analysis based on [LGBHO04],
which can detect predicates which produce at most one solution, or predicates whose clause tests
are mutually exclusive, even if they are not deterministic (because they call other predicates that
can produce more than one solution). For example, the result of these analyses for Figure 1
includes the following assertion:

- true pred gsort(A,B)
: C List(A,num), var(B)) => (list(A,num), list(B,num))
+ (not_fails, covered, is _det, mut_exclusive).

(The + field in pred assertions can contain a conjunction of global properties of the computation
of the predicate.)

5.5 Size, Cost, and Termination Analysis:

CiaoPP can also infer lower and upper bounds on the sizes of terms and the computational cost
of predicates [DLGHL94, DLGHL97]. The cost bounds are expressed as functions on the sizes

14

of the input arguments and yield the number of resolution steps. Various measures are used for
the “size” of an input, such as list-length, term-size, term-depth, integer-value, etc. Note that
obtaining a non-infinite upper bound on cost also implies proving termination of the predicate.
As an example, the following assertion is part of the output of the upper bounds analysis:
- true pred append(A,B,C)
: (C list(A,num), listl(B,num), var(C))
= (list(A,num), listl(B,num), listl(C,num),
size_ub(A, length(A)), size_ub(B,length(B)),
size_ub(C, length(B)+length(A)))
+ steps_ub(length(A)+1).

Note that in this example the size measure used is list length. The assertion size_ub(C, length(B)+length
means that an (upper) bound on the size of the third argument of append/3 is the sum of the
sizes of the first and second arguments. The inferred upper bound on computational steps is the
length of the first argument of append/3.
The following is the output of the lower-bounds analysis:
:- true pred append(A,B,C)
:C list(A,num), listl(B,num), var(C))
= (list(A,num), listl(B,num), listl(C,num),
size_Ib(A,length(A)), size_Ib(B,length(B)),
size_ Ib(C,length(B)+length(A)))
+ (not_fails, covered, steps_lb(length(A)+1)).
The lower-bounds analysis uses information from the non-failure analysis, without which a trivial
lower bound of 0 would be derived.

5.6 Decidability, Approximations, and Safety:

As a final note on the analyses, it should be pointed out that since most of the properties be-
ing inferred are in general undecidable at compile-time, the inference technique used, abstract
interpretation, is necessarily approximate, i.e., possibly imprecise. On the other hand, such ap-
proximations are also always guaranteed to be safe, in the sense that (modulo bugs, of course)
they are never incorrect.

6 Program Debugging and Assertion Validation

CiaoPP is also capable of combined static and dynamic validation, and debugging using the ideas
outlined so far. To this end, it implements the framework described in [HPB99, PBHO00a] which

15

=l Interactive

syntax
error/
w

arning Diagnosis ?L)Jlr?ttei‘me
/ error

s,
: ([[[T]
i P =

;- entry
:- check

l Program ‘ cLp |
. +
B RT tests System

Inspection

Builtins/
Libs

i
i
i
i
i
i
i
i

‘. PREPROCESSOR

Figure 2: Architecture of the Preprocessor

involves several of the tools which comprise CiaoPP. Figure 2 depicts the overall architecture.
Hexagons represent the different tools involved and arrows indicate the communication paths
among them.

Program verification and detection of errors is first performed at compile-time by using the
sufficient conditions shown in Table 2, i.e., by inferring properties of the program via abstract
interpretation-based static analysis and comparing this information against (partial) specifica-
tions ., written in terms of assertions.

Both the static and the dynamic checking are provably safe in the sense that all errors flagged
are definite violations of the specifications.

6.1 Static Debugging:

The idea of using analysis information for debugging comes naturally after observing analysis
outputs for erroneous programs. Consider the program in Figure 3. The result of regular type
analysis for this program includes the following code:

16

- module(gsort, [gsort/2], [assertions]).
- entry gsort(A,B) : (list(A, num), var(B)).

gsort([X|L].R) :-
partition(L,L1,X,L2),
gsort(L2,R2), gsort(L1l,R1l),
append(R2, [x]R1].,R).
gsort([]1.L[1D)-

partition([],_B,[1.[D-
partition([e|R],C,[E]Leftl],Right):-

E<C, !, partition(R,C,Leftl,Right).
partition([E|R].C,Left, [E|RIightl]):-

E >= C, partition(R,C,Left,Rightl).

append([1.X,X).
append([HIX1,Y,[HIZ]):- append(X,Y,Z).

Figure 3: A tentative gsort program.

- true pred gsort(A,B)
- (term(A), term(B))
= (list(A,t113), list(B,™X)).

- regtype t113/1.

t113(A) :- arithexpression(A).

t113([D) -

t113([AlB]) :- arithexpression(A), list(B,tl113).
t113(e).

where arithexpression is a library property which describes arithmetic expressions and
lList(B, Xx) means “a list of x’s.” A new name (t113) is given to one of the inferred types,
and its definition included, because no definition of this type was found visible to the module. In
any case, the information inferred does not seem compatible with a correct definition of gsort,
which clearly points to a bug in the program.

17

6.2 Static Checking of Assertions in System Libraries:

In addition to manual inspection of the analyzer output, CiaoPP includes a number of automated
facilities to help in the debugging task. For example, CiaoPP can find incompatibilities between
the ways in which library predicates are called and their intended mode of use, expressed in the
form of assertions in the libraries themselves. Also, the preprocessor can detect inconsistencies
in the program and check the assertions present in other modules used by the program.

For example, turning on compile-time error checking and selecting type and mode analysis
for our tentative gsort program in Figure 3 we obtain the following messages:

WARNING: Literal partition(L,L1,X,L2) at gsort/2/1/1 does not succeed!
ERROR: Predicate E>=C at partition/4/3/1 is not called as expected:
Called: num>=var
Expected: arithexpression>=arithexpression

where gsort/2/1/1 stands for the first literal in the first clause of gsortand partition/4/3/1
stands for the first literal in the third clause of partition.®

The first message warns that all calls to partition will fail, something normally not in-
tended (e.g., in our case). The second message indicates a wrong call to a builtin predicate, which
is an obvious error. This error has been detected by comparing the mode information obtained
by global analysis, which at the corresponding program point indicates that E is a free variable,
with the assertion:

:- check calls A<B (arithexpression(A), arithexpression(B)).

which is present in the default builtins module, and which implies that the two arguments to
</2 should be ground. The message signals a compile-time, or abstract, incorrectness symp-
tom [BDD"97], indicating that the program does not satisfy the specification given (that of the
builtin predicates, in this case). Checking the indicated call to partition and inspecting its
arguments we detect that in the definition of qsort, partition is called with the second and
third arguments in reversed order — the correct call is partition(L,X,L1,L2).

After correcting this bug, we proceed to perform another round of compile-time checking,
which produces the following message:

WARNING: Clause ’partition/4/2” is incompatible with its call type
Head: partition([e|R].,C,[E]Leftl],Right)
Call Type: partition(list(num),num,var,var)

5In the actual system line numbers and automated |location of errorsin source fi les are provided.

18

This time the error is in the second clause of partition. Checking this clause we see that in
the first argument of the head there is an e which should be E instead. Compile-time checking
of the program with this bug corrected does not produce any further warning or error messages.

6.3 Static Checking of User Assertions and Program Validation:

Though, as seen above, it is often possible to detect error without adding assertions to user
programs, if the program is not correct, the more assertions are present in the program the more
likely it is for errors to be automatically detected. Thus, for those parts of the program which are
potentially buggy or for parts whose correctness is crucial, the programmer may decide to invest
more time in writing assertions than for other parts of the program which are more stable. In
order to be more confident about our program, we add to it the following check assertions:®

- calls gsort(A,B) : list(A, num). % Al
:- success gsort(A,B) => (ground(B), sorted num_list(B)). % A2
:- calls partition(A,B,C,D) : (ground(A), ground(B)). % A3
:- success partition(A,B,C,D) => (list(C, num),ground(D)). % A4
- calls append(A,B,C) : (list(A,num),list(B,num)). % A5
- comp partition/4 + not_fails. % A6
- comp partition/4 + is_det. % A7
.- comp partition(A,B,C,D) + terminates. % A8

- prop sorted_num_list/1.
sorted_num_list([])-
sorted_num_list([X]):- number(X).
sorted_num_list([X,Y]Z]):-
number(X), number(Y), X=<Y, sorted_num_list([Y]Z])-.-

where we also use a new property, sorted_num_l 1st, defined in the module itself. These as-
sertions provide a partial specification of the program. They can be seen as integrity constraints:
if their properties do not hold at the corresponding program points (procedure call, procedure
exit, etc.), the program is incorrect. Call I's assertions specify properties of all calls to a pred-
icate, while success assertions specify properties of exit points for all calls to a predicate.
Properties of successes can be restricted to apply only to calls satisfying certain properties upon
entry by adding a “:” field to success assertions. Finally, Comp assertions specify global
properties of the execution of a predicate. These include complex properties such as determi-
nacy or termination and are in general not amenable to run-time checking. They can also be

5The check prefi x is assumed when no prefi x is given, asin the example shown.

19

restricted to a subset of the calls using “:”. More details on the assertion language can be found
in [PBHOOD].

CiaoPP can perform compile-time checking of the assertions above, by comparing them with
the assertions inferred by analysis (see Table 2 and [BDD*97, PBHO00c] for details), producing
as output the following assertions (refer also to Figure 2, output of the comparator):

- checked calls gsort(A,B) : list(A,num). % Al
:- check success gsort(A,B) => sorted_num_list(B). % A2
:- checked calls partition(A,B,C,D) : (ground(A),ground(B)). % A3
:- checked success partition(A,B,C,D) => (list(C,num),ground(D)).% A4
:- false calls append(A,B,C) : (List(A,num), list(B,num)). % A5
:- checked comp partition/4 + not_fails. % A6
:- checked comp partition/4 + is_det. % A7
:- checked comp partition/4 + terminates. % A8

Note that a number of initial assertions have been marked as checked, i.e., they have been
validated. If all assertions had been moved to this checked status, the program would have
been verified. In these cases CiaoPP is capable of generating certificates which can be checked
efficiently for, e.g., mobile code applications [APHO04]. However, in our case assertion A5 has
been detected to be false. This indicates a violation of the specification given, which is also
flagged by CiaoPP as follows:

ERROR: (Ins 22-23) false calls assertion:
:- calls append(A,B,C) : list(A,num),list(B,num)
Called append(list("x),[x]list("x)],var)

The error is now in the call append(R2, [X]R1],R) in gsort (x instead of X). Asser-
tions A1, A3, A4, A6, A7, and A8 have been detected to hold, but it was not possible to prove
statically assertion A2, which has remained with check status. Note that though the predicate
partition may fail in general, in the context of the current program it can be proved not to
fail. Note also that A2 has been simplified, and this is because the mode analysis has deter-
mined that on success the second argument of gsort is ground, and thus this does not have to
be checked at run-time. On the other hand the analyses used in our session (types, modes, non-
failure, determinism, and upper-bound cost analysis) do not provide enough information to prove
that the output of qsort is a sorted list of numbers, since this is not a native property of the
analyses being used. While this property could be captured by including a more refined domain
(such as constrained types), it is interesting to see what happens with the analyses selected for
the example.’

"Note that while property sor t ed_numl i st cannot be proved with only (over approximations) of mode and
regular type information, it may be possible to prove that it does not hold (an example of how properties which are

20

6.4 Dynamic Debugging with Run-time Checks:

Assuming that we stay with the analyses selected previously, the following step in the devel-
opment process is to compile the program obtained above with the “generate run-time checks”
option. CiaoPP will then introduce run-time tests in the program for those cal Is and success
assertions which have not been proved nor disproved during compile-time (see again Figure 2).
In our case, the program with run-time checks will call the definition of sorted num_list at
the appropriate times. In the current implementation of CiaoPP we obtain the following code for
predicate gsort (the code for partition and append remain the same as there is no other
assertion left to check):

gsort(A,B) :-
new_qgsort(A,B),
postc([gsort(C,D) : true => sorted(D)], gsort(A,B)).

new_gsort([X|L].R) :-
partition(L,X,L1,L2),
gsort(L2,R2), gsort(L1l,R1l),
append(R2, [X|R1],R).
new_qgsort([1.[1)-

where postc is the library predicate in charge of checking postconditions of predicates. If we
now run the program with run-time checks in order to sort, say, the list [1, 2], the Ciao system
generates the following error message:

?- gsort([1,2],L).

ERROR: for Goal gsort([1,2].[2,1]D)
Precondition: true holds, but

Postcondition: sorted_num_list([2,1]) does not.

L = [2,1] ?

Clearly, there is a problem with gsort, since [2,1] is not the result of ordering [1,2] in
ascending order. This is a (now, run-time, or concrete) incorrectness symptom, which can be
used as the starting point of diagnosis. The result of such diagnosis should indicate that the call
to append (where R1 and R2 have been swapped) is the cause of the error and that the right
definition of predicate gsort is the one in Figure 1.

not natively understood by the analysis can also be useful for detecting bugs at compile-time): while the regular
type analysis cannot capture perfectly the property sort ed_numl i st , it can still approximate it (by analyzing
the defi nition) asl i st (B, numn) . If type analysis for the program were to generate a type for B not compatible
with | i st (B, nun), then adefi nite error symptom would be detected.

21

- module(reverse, [nrev/2], [assertions]).
- use_module(library(’assertions/native_props’)).
- entry nrev(A,B) : (ground(A), list(A, term), var(B)).

nrev(Ll.[1)-

nrev([H|L].,R) :-
nrev(L,R1),
append(R1, [H],R).

Figure 4: The naive reverse program.

6.5 Performance Debugging and Validation:

Another very interesting feature of CiaoPP is the possibility of stating assertions about the ef-
ficiency of the program which the system will try to verify or falsify. This is done by stating
lower and/or upper bounds on the computational cost of predicates (given in number of execu-
tion steps). Consider for example the naive reverse program in Figure 4. Assume also that the
predicate append is defined as in Figure 1.

Suppose that the programmer thinks that the cost of nrev is given by a linear function on
the size (list-length) of its first argument, maybe because he has not taken into account the cost
of the append call). Since append is linear, it causes nrev to be quadratic. We will show that
CiaoPP can be used to inform the programmer about this false idea about the cost of nrev. For
example, suppose that the programmer adds the following *“check” assertion:

- check comp nrev(A,B) + steps_ub(length(A)+1).

With compile-time error checking turned on, and mode, type, non-failure and lower-bound cost
analysis selected, we get the following error message:

ERROR: false comp assertion:
:— comp nrev(A,B) : true => steps_ub(length(A)+1)
because in the computation the following holds:
steps_Ib(0.5*exp(length(A),2)+1.5*1ength(A)+1)

This message states that nrev will take at least 0.5 (length(A))? + 1.5 length(A) + 1 reso-
lution steps (which is the cost analysis output), while the assertion requires that it take at most
length(A) + 1 resolution steps. The cost function in the user-provided assertion is compared
with the lower-bound cost assertion inferred by analysis. This allows detecting the inconsistency

22

and proving that the program does not satisfy the efficiency requirements imposed. Upper-bound
cost assertions can also be proved to hold, i.e., can be checked, by using upper-bound cost analy-
sis rather than lower-bound cost analysis. In such case, if the upper-bound computed by analysis
is lower or equal than the upper-bound stated by the user in the assertion. The converse holds
for lower-bound cost assertions. Thanks to this functionality, CiaoPP can certify programs with
resource consumption assurances and also efficiently check such certificates [HALGP04].

7 Source Program Optimization

We now turn our attention to the program optimizations that are available in CiaoPP. These
include abstract specialization, parallelization (including granularity control), multiple program
specialization, and integration of abstract interpretation and partial evaluation. All of them are
performed as source to source transformations of the program. In most of them static analysis is
instrumental, or, at least, beneficial.

7.1 Abstract Specialization:

Program specialization optimizes programs for known values (substitutions) of the input. It is
often the case that the set of possible input values is unknown, or this set is infinite. However,
a form of specialization can still be performed in such cases by means of abstract interpretation,
specialization then being with respect to abstract values, rather than concrete ones. Such abstract
values represent a (possibly infinite) set of concrete values. For example, consider the definition
of the property sorted_num_l ist/1, and assume that regular type analysis has produced:

- true pred sorted num_list(A) : list(A,num) => list(A,num).
Abstract specialization can use this information to optimize the code into:

sorted_num_list([]D)-
sorted_num_list([_1])-
sorted_num_list([X,Y|Z]):- X=<Y, sorted_num_list([Y]Z])-

which is clearly more efficient because no number tests are executed. The optimization above is
based on abstractly executing the number literals to the value true, as discussed in Section 4.2.

CiaoPP can also apply abstract specialization to the optimization of programs with dynamic
scheduling (e.g., using delay declarations) [PdIBMS97]. The transformations simplify the
conditions on the delay declarations and also move delayed literals later in the rule body, leading
to substantial performance improvement. This is used by CiaoPP, for example, when supporting
complex computation models, such as Andorra-style execution [HBC*99].

23

7.2 Parallelization:

An example of a non-trivial program optimization performed using abstract interpretation in
CiaoPP is program parallelization [BdIBH99]. It is also performed as a source-to-source trans-
formation, in which the input program is annotated with parallel expressions. The parallelization
algorithms, or annotators [MBdIBH99], exploit parallelism under certain independence condi-
tions, which allow guaranteeing interesting correctness and no-slowdown properties for the par-
allelized programs [HR95, dIBHMOO]. This process is complicated by the presence of shared
variables and pointers among data structures at run-time.

We consider again the program of Figure 1. A possible parallelization (obtained in this case
with the “MEL” annotator) is:

gsort([X|L].R) :-
partition(L,X,L1,L2),
(indep([[L1,L2]]) -> gsort(L2,R2) & gsort(L1,R1l)
; gsort(L2,R2), gsort(L1,R1l)),
append(R1, [X]R2],R).

which indicates that, provided that L1 and L2 do not have variables in common (at execution
time), then the recursive calls to gsort can be run in parallel. Given the information inferred by
the abstract interpreter using, e.g., the mode and independence analysis (see Section 5), which
determines that L1 and L2 are ground after partition (and therefore do not share variables),
the independence test and the conditional can be simplified via abstract executability and the
annotator yields instead:

gsort([X]L],R) :-
partition(L,X,L1,L2),
gsort(L2,R2) & gsort(L1l,R1),
append(R1, [X]R2],R).

which is much more efficient since it has no run-time test. This test simplification process is
described in detail in [BAIBH99] where the impact of abstract interpretation in the effectiveness
of the resulting parallel expressions is also studied.

The tests in the above example aim at strict independent and-parallelism. However, the anno-
tators are parameterized on the notion of independence. Different tests can be used for different
independence notions: non-strict independence [CH94], constraint-based independence [dIBHMO0O],
etc. Moreover, all forms of and-parallelism in logic programs can be seen as independent and-
parallelism, provided the definition of independence is applied at the appropriate granularity

24

level .8

7.3 Resource and Granularity Control:

Another application of the information produced by the CiaoPP analyzers, in this case cost anal-
ysis, is to perform combined compile-time/run—time resource control. An example of this is task
granularity control [LGHD96] of parallelized code. Such parallel code can be the output of the
process mentioned above or code parallelized manually.

In general, this run-time granularity control process involves computing sizes of terms in-
volved in granularity control, evaluating cost functions, and comparing the result with a thresh-
old® to decide for parallel or sequential execution. Optimizations to this general process include
cost function simplification and improved term size computation, both of which are illustrated in
the following example.

Consider again the gsort program in Figure 1. We use CiaoPP to perform a transformation for
granularity control, using the analysis information of type, sharing+freeness, and upper bound
cost analysis, and taking as input the parallelized code obtained in the previous section. CiaoPP
adds a clause:

“gsort(_1, 2) :- g_gsort(_1, 2).” (to preserve the original entry point) and pro-
duces g_qsort/2, the version of gsort/2 that performs granularity control (s_qsort/2 is
the sequential version):

g_gsort([X|L],.R) :-
partition_o3_4(L,X,L1,L2, 1, 2),
(257 -> (1>7 -> g_gsort(L2,R2) & g _gsort(L1l,R1)
; g gsort(L2,R2), s _gsort(L1,R1))
; (1>7 -> s _gsort(L2,R2), g_gsort(L1,R1)
; s_gsort(L2,R2), s_gsort(L1,R1))),
append(R1, [X]R2],R)-
g_gsort(L].L[D-

Note that if the lengths of the two input lists to the gsort program are greater than a thresh-
old (a list length of 7 in this case) then versions which continue performing granularity control
are executed in parallel. Otherwise, the two recursive calls are executed sequentially. The exe-
cuted version of each of such calls depends on its grain size: if the length of its input list is not

8For example, stream and-parallelism can be seen as independent and-parallelism if the independence of “bind-

ings’ rather than goalsis considered.
9This threshold can be determined experimentally for each parallel system, by taking the average value resulting
from several runs.

25

greater than the threshold then a sequential version which does not perform granularity control
is executed. This is based on the detection of a recursive invariant: in subsequent recursions this
goal will not produce tasks with input sizes greater than the threshold, and thus, for all of them,
execution should be performed sequentially and, obviously, no granularity control is needed.

In general, the evaluation of the condition to decide which predicate versions are executed
will require the computation of cost functions and a comparison with a cost threshold (measured
in units of computation). However, in this example a test simplification has been performed, so
that the input size is simply compared against a size threshold, and thus the cost function for
gsort does not need to be evaluated.'® Predicate partition_03_4/6:

partition_o3_4([],_8,[1,[1,0,0).
partition_o3_4([E|IR].C, [E]Leftl],Right, 1, 2) :-

E<C, partition_o3 4(R,C,Leftl,Right, 3, 2), 1 is _3+1.
partition_o3 4([E|R].C,Left,[E|JRightl], 1, 2) :-

E>=C, partition_o3 4(R,C,Left,Rightl, 1, 3), 2 is _3+1.

is the transformed version of partition/4, which “on the fly” computes the sizes of its third
and fourth arguments (the automatically generated variables _1 and _2 represent these sizes re-
spectively) [LGH95].

7.4 Multiple Specialization:

Sometimes a procedure has different uses within a program, i.e. it is called from different places
in the program with different (abstract) input values. In principle, (abstract) program specializa-
tion is then allowable only if the optimization is applicable to all uses of the predicate. However,
it is possible that in several different uses the input values allow different and incompatible opti-
mizations and then none of them can take place. In CiaoPP this problem is overcome by means
of “multiple program specialization” where different versions of the predicate are generated for
each use. Each version is then optimized for the particular subset of input values with which
it is to be used. The abstract multiple specialization technique used in CiaoPP [PH99] has the
advantage that it can be incorporated with little or no modification of some existing abstract
interpreters, provided they are multivariant (PLAI and similar frameworks have this property).
This specialization can be used for example to improve automatic parallelization in those
cases where run-time tests are included in the resulting program. In such cases, a good number
of run-time tests may be eliminated and invariants extracted automatically from loops, resulting
generally in lower overheads and in several cases in increased speedups. We consider automatic

10This size threshold will obviously be different if the cost function is.

26

parallelization of a program for matrix multiplication using the same analysis and paralleliza-
tion algorithms as the gsort example used before. This program is automatically parallelized
without tests if we provide the analyzer (by means of an entry declaration) with accurate in-
formation on the expected modes of use of the program. However, in the interesting case in
which the user does not provide such declaration, the code generated contains a large number of
run-time tests. We include below the code for predicate multiply which multiplies a matrix
by a vector:

multiply([1._.[D-
multiply([VO]Rest],V1,[Result]Others]) :-

(ground(vl),
indep([[VO,Rest],[VO,0Others], [Rest,Result],[Result,Others]]) ->
vmul (VO,V1,Result) & multiply(Rest,V1,0thers)
; vmul(VvO,V1,Result), multiply(Rest,V1,0thers)).

Four independence tests and one groundness test have to be executed prior to executing in par-
allel the calls in the body of the recursive clause of multiply (these tests essentially check
that the arrays do not contain pointers that point in such a way that would make the vmul and
multiply calls be dependent). However, abstract multiple specialization generates four ver-
sions of the predicate multiply which correspond to the different ways this predicate may be
called (basically, depending on whether the tests succeed or not). Of these four variants, the most
optimized one is:

multiply3([1._.[D-
multiply3([VO]Rest],Vl, [Result]|Others]) :-
(indep([[Result,Others]]) ->
vmul (VO,V1,Result) & multiply3(Rest,V1l,0thers)
; vmul(VO,V1,Result), multiply3(Rest,V1,0thers)).

where the groundness test and three out of the four independence tests have been eliminated.
Note also that the recursive calls to multiply use the optimized version multiply3. Thus,
execution of matrix multiplication with the expected mode (the only one which will succeed in
Prolog) will be quickly directed to the optimized versions of the predicates and iterate on them.
This is because the specializer has been able to detect this optimization as an invariant of the
loop. The complete code for this example can be found in [PH99]. The multiple specialization
implemented incorporates a minimization algorithm which keeps in the final program as few
versions as possible while not losing opportunities for optimization. For example, eight versions
of predicate vmul (for vector multiplication) would be generated if no minimizations were per-
formed. However, as multiple versions do not allow further optimization, only one version is
present in the final program.

27

7.5 Integration of Abstract Interpretation and Partial Evaluation:

In the context of CiaoPP we have also studied the relationship between abstract multiple spe-
cialization, abstract interpretation, and partial evaluation. Abstract specialization exploits the
information obtained by multivariant abstract interpretation where information about values of
variables is propagated by simulating program execution and performing fixpoint computations
for recursive calls. In contrast, traditional partial evaluators (mainly) use unfolding for both prop-
agating values of variables and transforming the program. It is known that abstract interpretation
is a better technique for propagating success values than unfolding. However, the program trans-
formations induced by unfolding may lead to important optimizations which are not directly
achievable in the existing frameworks for multiple specialization based on abstract interpreta-
tion. In [PHG99] we present a specialization framework which integrates the better information
propagation of abstract interpretation with the powerful program transformations performed by
partial evaluation.

We are currently investigating the use of abstract domains based on improvements of regular
types [VBO02] for their use for partial evaluation.

28

Part |1
A Tutorial Overview of the PyLogen
System

The PYLOGEN system is an implemented tool for specialising Prolog programs. The specialisa-
tion engine is written in SICStus Prolog and the interface is a mixture of Python and Tk. This
section will explain the basic functionality through a simple tutorial.

8 Starting PYLOGEN

Follw the online instructions for installing PYLOGEN . To start PYLOGEN :

e OS X:
[T] pythonw logen.py

e Windows and Linux:
[T1 python logen.py

Regular Expression Example

For this tutorial we use a simple regular expression parser (Listing 1). The interpreter takes a
basic regular expression and a string (represented by a list of atoms) and succeeds if the string
matches the regular expression (Listing 2). The empty pattern, ¢, is represented by the special
constant eps.

Listing 1: An interpreter for regular expressions
match (Regexp, String) : — regexp (Regexp, String ,[]).

regexp (eps,T,T).

regexp (X,[X|T],T) : — atomic(X).

regexp (+(A,_B),Str,DStr) : — regexp (A, Str,DStr).

regexp (+(.A,B),Str,DStr) : — regexp (B, Str,DStr).

regexp (.(A,B),Str,DStr) : — regexp (A, Str,1), regexp(B,|,DStr).
regexp (x(A),S,DS) : — regexp (.(A,x(A)),S,DS).

regexp (x(A),S,S).

29

Listing 2: Using the regular expression interpreter

| ?— match(.(x(a),b), [a,a,a,b]).
yes

% source_info

| ?— match(.(x(a),b), [a,a,a,b,c]).
no

9 Specialising the Regular Expression Interpreter

Create a new file

Click on the new icon or select new from from the File menu. In the dialogbox select a location
for the new file and call it regexp.pl.

T‘Jew Fila Name
Directory: momefsjc02ricvs_rooticogenZfexamples _.l |
£ hackup (7 extending_vanilla 3 matlak
£3 basic £ glokal 3 modular
£ hin_solve 3 gapal 7 modules
7 Bta 3 interpreters 1 PIC
£7 bta: henchmarks £ lix £ FroE
£ C¥5 =3 lagimix £ selftune
£7 db_access 3 lapstr £ slice
imj] L=
File hame: |regexp.p| | Save I
Files of type: Prolog files (*.pl) — | Cancel |
.

Edit the new file

The default mode in PYLOGEN edits the annotations asscoiated with the current source code.
The top left pane contains the sourcecode, the top right pane contains the filter declarations and
the lower pane displays the different output modes. To actually edit the sourcecode we must first
enter sour cecode mode. Click on the edit icon or select sour cecode mode from the Edit menu.

Once in sour cecode modeadd the sourcecode from Listing 1 into the top left pane. When you
have finished typing entering the sourcecode click the saveicon or select annotation mode from

30

the Edit menu. If there is a parse error you will be notified by an error message, if everything is
correct the source code we be reloaded and annotated using the unknown annotation.

-30uUrce

match{Reéexp;String) ol =

regexplieps.T.T),

regexp . LHITI.TY ¢
regexp i+ {A._B).Str, DStr)
regexp t+{_A.B».Str DStr) &
regexpt, tA.B) .5tr 05tr
regexp (A 5. 05 &
regexpi#{A).5.5),

o [0 LTI o

Annotate the new file

The unknown annotation is used to identify unannotated calls is the program. To specialise the
regular expression interpreter we must first properly annotate the program. We assume that the
regular expression will be known at specialisation time, static, but the string to match against
will be dynamic.

The predicate match/2 is an entry point into the regular expression interpreter, it simply
calls regexp/3 with an empty list as the third argument. The third argument contains the ”left
over” part of the string, so match/2 only succeeds on an exact match. We choose to unfold the
call to regexp/3, clicking on the call will display the annotation menu. Select unfold from the
menu to annotate this call.

—Source
natochi{Regexp . String) - mmld |tr'1r‘|g, [J:.
regexplieps,T1-T), memo
regexpiH. [RIT]. T - ERafts
regexpt+{0,_B) . Str. DStry (- call r-D5try,
regexpi+i_A.B}.Str DStr) :- .05t ,
regexpt , (A, By, Str, Doery -] Eescal i
regexpi*{Ar.5. 05 - semicall 050,
(={A}.5.53,

regexg il

ucall

unknown

online

Now we move onto annotate the regexp/3 predicate. The first call is to the built-in pred-
icate atomic/1. If we have an atomic item in our pattern then we simply look for that item
in the input string. As the first argument is static (it was passed directly from match/2), we

31

can safely make this call at specialisation time. Mark the call to atomic/1 as call, again by
clicking on the call and selecting cal l.

The remaining calls are all recursive calls to the regexp/3 predicate. The annotations in a
program ensure it will terminate at specialisation time. When annotating a program by hand it
is important to keep in mind which calls are safe to unfold and which must be marked memo.
In the case of the regular expression interpreter we know the pattern is static, so as long as we
are decreasing the pattern each call we are going to eventually terminate. Inspecting the clauses
shows that the only unsafe call is in handling of the *(Pattern), this allows an unbounded
number of matches against Pattern. As we do not have the string to match against we must
mark the recursive call to regexp(.-.(A,*(A)),S,DS) as memo. The rest of the calls can
be marked unfold.

-3ource

§match(Regexﬁ;String) t- regexp(Regexp.String.[1),

fregexpleps. T.T),

regexp (K [KIT]. Ty - atomic{¥),

iregexp (+{A._B).Str.0Str) 1- regexplA.Str.0Str),
regexp(+{_A.B).Str.0Str) 21— regexpiB.Str.DStr?,
fregexp (. (A.BY.Str, 0Str) - regexpiA.Str.l}. rege<p(B.I1.0Str},
iregexp(=(A2.S,.05) 1- regexp{, (A.={A3).5. 05,
regexp{={A}.5.5),

Add an entry point

We have now annotated all of the clauses in the regular expression program. Now we must tell
the specialiser something about the entry point of the program. We intend to call match/2 with
a static first argument and a dynamic second argument. Click the insert filter icon or select
insert fi Iter from the Edit menu.

Add Filter
|negexpf3 ;- filter match(static , dynamic).
matchiZ
ok | ‘ cancel |
o

The left hand side contains a list of predicates appearing in the source program. Double

32

click on match/2 to create an empty filter declaration. Change the declaration to make the first
argument static.

.— filter match(static , dynamic).

Filter Propagation

As a call to regexp/3 is marked as memo we will also need to provide a filter declaration for
regexp/3. This can be done manually, inferring that regexp/3 is static, dynamic, dynamic
from the inital call in match/2. We can also use the filter propgation discussed in Lopstr 2004,
BTA paper. Save the file and select propagate fi Iter s from the BTA menu.

~Declarations

- filter
matchiztatic, duynamicl,
1~ filter
regexpiztatic, dynamic, dynamic},

Specialising the regular expression interpreter

Now we have annotated the interpreter we can can specialise it for different regular expressions.
Save the file and enter a specialisation query in the Goal entry box.

match (. (b,x(a)), X)

This will specialise the interpreter for matching a string begining with a b followed by zero or
more a’s. Click Specialise or press return to specialise the program.

Goal: [matchi (b, (aj),]

Specialised File l Memo Tahle I Generating Extension | Output I

t= mocule!'regexp.spec' [1),
match{[bl*{a}]. A} -
match_ QLAY ,
match__0(AY -
regexp__1¢A. [11.
regexp__1([kIA]. B} -
regexp_ 2{A. B,
regexp__1{[bI1A]. A,
regexp__2{[alf]. By -
regexp__2{A. B,
regexp__2([alR]. AL,

33

The specialise code contains an entry point match([b]*(a)], A) which will call the
corresponding specialised predicate. The overhead of interpreting the regular expression has
been removed and only the string matcher remains.

The memo table maintains the list of specialised predicates and their original call patterns.
It is used internally during specialisation and is saved to a file when specialisation is complete.
Selecting the M emo Table tab displays the table.

Specialised File Memo Tahle | Generating Extension I Qutput I

|lzensumi{3},

|itableinatchilbl«{a}], A, match__0¢A). [crossmodulel,
[tabletregexpilbl=ial].A.Bi. regexp_ L1{A.B3. [0,
Ittabletregexp([al={a2].A.B), regexp__2(A.By. [1).

The two enteries for regexp/3 correspond to the two specialised versions of regexp/3
generated during specialisation, called regexp__1 and regexp_2. regexp__1 is specialised
for a b followed by some a’s, and regexp__2 is specialised for an a follow by some more a’s.
Hovering over a call in the specialised file displays the original mapping from the memo table in
a balloon window.

s = L e L g

regexp__2i[alfAl, AL,
Statvexp(al' (RL.AB) —> regexp_2(A.B)["

A cogen specialiser first creates a generating extension, a specialised specialiser, which is
then used to specialise a file for a particular query. Clicking on the generating extension tab
will diplay this file. The generating extension only needs to be regenerated if the annotations
change, it can be reused for different specialisation queries.

10 Using the Automatic Binding-time Analysis

In the last section we annotated the file by hand, manually checking each annotation. The LOP-
STR’04 BTA paper introduces the automatic binding-time analysis (bta). The bta automatically
annotates a file with a correct set of annotations. From the BTA menu select unfold all, this will
reset the file, annotating it to perform all of the operations at specialisation time. Now add an
entry point for the bta, this is done using a filter declaration.

- Filter match(static, dynamic).

34

Specialised File Memo Tahle Generating Extension I Output I

match_uiA, B. C» 1-
regexp_request (A, B. [J]. internal. Cb,
iregexp_uieps,. A. A. truel,
fregexp_uiA,. [AIB]. B, true) :-
atomictAy,
regexp_wiA+_. B. C. O 1-
regexp_UiA. B, C. D,
fregexp_ui_+A, B, C. D} :-
regexp_uif. B. C. Di,
fregexp_u([AIE]. C. D. {(E.F}} :-
regexp_uif. C. G. Ei.
regexp_uiB. G. D. Fi,
fregexp_ut={Al. B. C. D) i-

Status: |

The regular expression interpreter manipulates terms as it parses the regular expression. Se-
lect List Norm from the BTA menu. Save the file and then select Auto bta from the BTA menu.

The bta should provide the same annotations we selected manually. Only the recursive call
to regexp/3 handling the * will be marked as memo.

-Source

! = ', - :___, '.::_, .--.- s
EhatcH(Regexp,String} t= regexpiFegexp.String. [11,

regexpieps, T.T),

tregexp i [HITILTY - atomiciH),

;regexp(+(ﬂ,_B),Str,DStr) 1- regexp(A-5tr.0Strd,
fregexp(+{_A.B1.5tr.05tr) 31— regexp(B.5tr.0Strl,

fregexpl AALEX.Str DStr) - regexpi(A.Str.I). regexp(B.I1.0Str),
jregexp{x(A),.5.05) - regexpl,(R.*(R1)>.5,D5),
lregexpi={A).5.50,

The filter declarations should be correctly propagated throughout the program.

-Declarations

- Filter
matchistatic,. dynamich,
- filter
regexpistatic,. dynamic, dynamich.

35

References

[APHO4]

[BCC+97]

[BCHPY6]

[BDD+97]

[BdIBHY9]

[BAIBH+01]

[BLGHO4]

[Bou93]

E. Albert, G. Puebla, and M. Hermenegildo. An Abstract Interpretation-based
Approach to Mobile Code Safety. In Proc. of Compiler Optimization meets Com-
piler Verification (COCV’04), April 2004.

F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lo6pez-Garcia, and
G. Puebla. The Ciao Prolog System. Reference Manual. The Ciao System
Documentation Series-TR CLIP3/97.1, School of Computer Science, Technical
University of Madrid (UPM), August 1997. System and on-line version of the
manual available at http://clip.dia.fi.upm.es/Software/Ciao/
http://clip.dia.fi.upm.es/Software/Ciao/.

F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-
dard Prolog Programs. In European Symposium on Programming, number 1058
in LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag.

F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int’l Workshop
on Automated Debugging—AADEBUG’97, pages 155-170, Linkdping, Sweden,
May 1997. U. of Linkdping Press.

F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Effectiveness of Abstract
Interpretation in Automatic Parallelization: A Case Study in Logic Programming.
ACM Transactions on Programming Languages and Systems, 21(2):189-238,
March 1999.

F. Bueno, M. Garcia de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and
P. Stuckey. A Model for Inter-module Analysis and Optimizing Compilation.
In Logic-based Program Synthesis and Transformation, number 2042 in LNCS,
pages 86-102. Springer-Verlag, March 2001.

F. Bueno, P. Lopez-Garcia, and M. Hermenegildo. Multivariant Non-Failure
Analysis via Standard Abstract Interpretation. In 7th International Symposium
on Functional and Logic Programming (FLOPS 2004), number 2998 in LNCS,
pages 100-116, Heidelberg, Germany, April 2004. Springer-Verlag.

F. Bourdoncle. Abstract debugging of higher-order imperative languages. In
Programming Languages Design and Implementation’93, pages 46-55, 1993.

36

[CCTT]

[CCO02]

[CGLHO4]

[CH94]

[CLMV99]

[CLV95]

[Cou03]

[CV94]

[dIBHB*964]

P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principles of Programming Languages, pages 238-
252, 1977.

P. Cousot and R. Cousot. Systematic Design of Program Transformation Frame-
works by Abstract Interpretation. In POPL’02: 29ST ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 178-190, Portland,
Oregon, January 2002. ACM.

S.J. Craig, John P. Gallagher, M. Leuschel, and Kim S. Henriksen. Fully auto-
matic binding time analysis for Prolog. In Sandro Etalle, editor, Pre-Proceedings,
14th International Workshop on Logic-Based Program Synthesis and Transfor-
mation, LOPSTR 2004, Verona, August 2004, pages 61-70, 2004.

D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent And-
parallelism Using Sharing and Freeness Information. In 1994 International Static
Analysis Symposium, number 864 in LNCS, pages 297-313, Namur, Belgium,
September 1994. Springer-Verlag.

M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal of
Logic Programming, 39(1-3):43-93, 1999.

M. Comini, G. Levi, and G. Vitiello. Declarative diagnosis revisited. In 1995
International Logic Programming Symposium, pages 275-287, Portland, Oregon,
December 1995. MIT Press, Cambridge, MA.

P. Cousot. Automatic Verification by Abstract Interpretation, Invited Tutorial. In
Fourth International Conference on Verification, Model Checking and Abstract
Interpretation (VMCALI), number 2575 in LNCS, pages 20-24. Springer, January
2003.

B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Ab-
stract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35-101, 1994.

M. Garcia de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Transactions on Programming Languages and Systems, 18(5):564-615,
September 1996.

37

[dIBHB+96b]

[dIBHMO0]

[DLGH97]

[DLGHL94]

[DLGHL97]

[DZ92]

[Gal03]

[GdW94]

[GHO1]

[GHO4]

M. Garcia de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Trans. on Programming Languages and Systems, 18(5):564-615, 1996.

M. Garcia de la Banda, M. Hermenegildo, and K. Marriott. Independence in
CLP Languages. ACM Transactions on Programming Languages and Systems,
22(2):269-339, March 2000.

S.K. Debray, P. Lopez-Garcia, and M. Hermenegildo. Non-Failure Analysis for
Logic Programs. In 1997 International Conference on Logic Programming, pages
48-62, Cambridge, MA, June 1997. MIT Press, Cambridge, MA.

S.K. Debray, P. Lopez-Garcia, M. Hermenegildo, and N.-W. Lin. Estimating
the Computational Cost of Logic Programs. In Static Analysis Symposium,
SAS’94, number 864 in LNCS, pages 255-265, Namur, Belgium, September
1994. Springer-Verlag.

S.K. Debray, P. Lopez-Garcia, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge, MA, October 1997.

P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In Types
in Logic Programming, pages 157-187. MIT Press, 1992.

J. P. Gallagher. A Program Transformation for Backwards Analysis of Logic Pro-
grams. In M. Bruynooghe, editor, Proceedings of the International Symposium
on Logic Based Program Synthesis and Transformation (LOPSTR 2003), volume
3018 of LNCS, pages 92-105, 2003.

J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of
logic programs. In Pascal Van Hentenryck, editor, Proc. of the 11th International
Conference on Logic Programming, pages 599-613. MIT Press, 1994.

F. Giannotti and M. Hermenegildo. A Technique for Recursive Invariance De-
tection and Selective Program Specialization. In Proc. 3rd. Int’l Symposium on
Programming Language Implementation and Logic Programming, number 528
in LNCS, pages 323-335. Springer-Verlag, August 1991.

J. P. Gallagher and K. S. Henriksen. Abstract domains based on regular types. In
V. Lifschitz and B. Demoen, editors, Proceedings of the International Conference

38

[GP024]

[GPO2b]

[HALGPO04]

[HBC+99]

[HBPLG99]

[Her00]

[HPB99]

on Logic Programming (ICLP’2004), volume 3132 of Springer-Verlag Lecture
Notes in Computer Science, pages 27-42, 2004.

J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Fi-
nite Tree Automata for Set-Based Analysis of Logic Programs. In Shriram Krish-
namurthi and C. R. Ramakrishnan, editors, Fourth International Symposium on
Practical BAspects of Declarative Languages (PADL’02), LNCS, pages 243-261,
January 2002.

J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite
Tree Automata for Set-Based Analysis of Logic Programs. In Fourth Interna-
tional Symposium on Practical Aspects of Declarative Languages, number 2257
in LNCS, pages 243-261. Springer-Verlag, January 2002.

M. Hermenegildo, E. Albert, P. Lopez-Garcia, and G. Puebla. Some Techniques
for Automated, Resource-Aware Distributed and Mobile Computing in a Multi-
Paradigm Programming System. In Proc. of EURO-PAR 2004, number 3149 in
LNCS, pages 21-37. Springer-Verlag, August 2004.

M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garcia de la Banda,
P. Lopez-Garcia, and G. Puebla. The CIAO Multi-Dialect Compiler and Sys-
tem: An Experimentation Workbench for Future (C)LP Systems. In Parallelism
and Implementation of Logic and Constraint Logic Programming, pages 65-85.
Nova Science, Commack, NY, USA, April 1999.

M. Hermenegildo, F. Bueno, G. Puebla, and P. Lopez-Garcia. Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In 1999 Int’l.
Conference on Logic Programming, pages 52-66, Cambridge, MA, November
1999. MIT Press.

M. Hermenegildo. A Documentation Generator for (C)LP Systems. In Inter-
national Conference on Computational Logic, CL2000, number 1861 in LNAI,
pages 1345-1361. Springer-Verlag, July 2000.

M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De-
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 161-192. Springer-
Verlag, July 1999.

39

[HPMS00]

[HRO5]

[Leu98]

[LGBHO04]

[LGHO95]

[LGHDY6]

[LS88]

[MBdIBH99]

[MdIBH94]

M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis
of Constraint Logic Programs. ACM Transactions on Programming Languages
and Systems, 22(2):187-223, March 2000.

M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time Con-
ditions. Journal of Logic Programming, 22(1):1-45, 1995.

M. Leuschel. Program Specialisation and Abstract Interpretation Reconciled.
In Joint International Conference and Symposium on Logic Programming, June
1998.

P. Lopez-Garcia, F. Bueno, and M. Hermenegildo. Determinacy Analysis for
Logic Programs Using Mode and Type Information. In Proceedings of the 14th
International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’04), LNCS. Springer-Verlag, August 2004.

P. Lopez-Garcia and M. Hermenegildo. Efficient Term Size Computation for
Granularity Control. In International Conference on Logic Programming, pages
647-661, Cambridge, MA, June 1995. MIT Press, Cambridge, MA.

P. Lopez-Garcia, M. Hermenegildo, and S.K. Debray. A Methodology for Gran-
ularity Based Control of Parallelism in Logic Programs. J. of Symbolic Compu-
tation, Special Issue on Parallel Symbolic Computation, 22:715-734, 1996.

Y. Lichtenstein and E. Y. Shapiro. Abstract algorithmic debugging. In R. A.
Kowalski and K. A. Bowen, editors, Fifth International Conference and Sympo-
sium on Logic Programming, pages 512-531, Seattle, Washington, August 1988.
MIT.

K. Muthukumar, F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. Auto-
matic Compile-time Parallelization of Logic Programs for Restricted, Goal-level,
Independent And-parallelism. Journal of Logic Programming, 38(2):165-218,
February 1999.

K. Marriott, M. Garcia de la Banda, and M. Hermenegildo. Analyzing Logic
Programs with Dynamic Scheduling. In 20th. Annual ACM Conf. on Principles
of Programming Languages, pages 240-254. ACM, January 1994.

40

[MH91]

[MH92]

[PBH00a]

[PBHOOb]

[PBHO0C]

[PAIBMS97]

[PHO6]

[PHI7]

[PHO9]

K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna-
tional Conference on Logic Programming, pages 49-63. MIT Press, June 1991.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program
Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszyn-
ski, editors, Analysis and Visualization Tools for Constraint Programming, num-
ber 1870 in LNCS, pages 63-107. Springer-Verlag, September 2000.

G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Con-
straint Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski,
editors, Analysis and Visualization Tools for Constraint Programming, number
1870 in LNCS, pages 23-61. Springer-Verlag, September 2000.

G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro-
gram Synthesis and Transformation (LOPSTR’99), number 1817 in LNCS, pages
273-292. Springer-Verlag, 2000.

G. Puebla, M. Garcia de la Banda, K. Marriott, and P. Stuckey. Optimization of
Logic Programs with Dynamic Scheduling. In 1997 International Conference on
Logic Programming, pages 93-107, Cambridge, MA, June 1997. MIT Press.

G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental
Analysis of Logic Programs. In International Static Analysis Symposium, number
1145 in LNCS, pages 270-284. Springer-Verlag, September 1996.

G. Puebla and M. Hermenegildo. Abstract Specialization and its Application to
Program Parallelization. In J. Gallagher, editor, Logic Program Synthesis and
Transformation, number 1207 in LNCS, pages 169-186. Springer-Verlag, 1997.

G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Ap-
plication to Program Parallelization. J. of Logic Programming. Special Issue on
Synthesis, Transformation and Analysis of Logic Programs, 41(2&3):279-316,
November 1999.

41

[PHOO]

[PHG99]

[VB02]

[YS87]

G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of
Modular Ciao-Prolog Programs. In Special Issue on Optimization and Implemen-
tation of Declarative Programming Languages, volume 30 of Electronic Notes in
Theoretical Computer Science. Elsevier - North Holland, March 2000.

G. Puebla, M. Hermenegildo, and J. Gallagher. An Integration of Partial Evalu-
ation in a Generic Abstract Interpretation Framework. In O Danvy, editor, ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Ma-
nipulation (PEPM’99), number NS-99-1 in BRISC Series, pages 75-85. Univer-
sity of Aarhus, Denmark, January 1999.

C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic
programs. In International Static Analysis Symposium, number 2477 in LNCS,
pages 102-116. Springer-Verlag, September 2002.

E. Yardeni and E. Shapiro. A Type System for Logic Programs. Concurrent
Prolog: Collected Papers, pages 211-244, 1987.

42

The Ciao Prolog Preprocessor

A Program Analysis, Verification, Debugging, and Source-to-Source Transformation Tool
The Ciao System Documentation Series

Technical Report CLIP 1/04 (first version 8/95).

Draft printed on: 16 March 2005

Version 1.041011 (2005/3/15, 13:0:46 CET)

Edited by: F. Bueno, P. Lépez-Garcia, G. Puebla, M. Hermenegildo
clip@clip.dia.fi.upm.es

http://www.cliplab.org/

Facultad de Informatica

Universidad Politécnica de Madrid

Copyright (© 1989-2005 The CLIP Group / UPM

Table of Contents

R0 0010 =Y 1
1 Introduction............. ..., 3
1.1 How to use thismanual 3
1.2 Note ... 3
1.3 Imstallation 3
1.4 Getting started............o i 4
1.5 Usage and interface (c1i@0pp)........ovvemuuiiiieninenno.... 5
1.6 Documentation on exports (ci20pp)cvevuiieineo.... 6
current_pp_flag/2 (pred) 6

set_pp-flag/2 (pred) i 6
push_ppflag/2 (pred).......... 6

pop-pp-flag/1 (pred)............ 6

ppflag/1 (pred) ... 6
valid_flag_value/2 (prop) 7
remove_action/1 (udreexp) 8

add_action/1 (udreexp) 8

transform/1 (pred) i 8

module/1 (pred) 8

acheck/0 (pred) ... 8

analyze/1 (pred) i 9

output/1 (pred) i 9

output/0 (pred) ..ot 9

1.7 Documentation on internals (ciaopp) 9
analysis/1 (Prop)cooouieiiiiiiii . 9
transformation/1 (prop) 12

help/0 (pred) ... 14

1.8 Other information (ciaopp)ooviiiieiiiin... 14
1.8.1 Analysis with PLAL............. 14

1.8.2 Inter-modular Analysis............................. 14

1.8.3 Abstract Partial Deduction......................... 16

2 CiaoPP user menu interface.................. 17
2.1 Usage and interface (auto_interface)....................... 18
2.2 Documentation on exports (auto_interface) 18
auto_analyze/1 (pred) 18
auto_optimize/1 (pred) 18
auto_check_assert/1 (pred) 18

customize/1 (pred) L 18
customize_and_exec/1 (pred) 19

again/0 (pred)o 19
get_menu_configs/1 (pred).......................... 19
save_menu_config/1 (pred) 19
remove_menu_config/1 (pred)....................... 19
restore_menu_config/1 (pred) 19
show_menu_configs/0 (pred)........................ 19

show_menu_config/1 (pred)......................... 20

ii The Ciao Prolog Preprocessor

3 Using Assertions for Preprocessing Programs.. 21

3.1 ASSEITIONS ..ottt 21
3.1.1 Properties of Success States 21

3.1.2 Restricting Assertions to a Subset of Calls........... 22

3.1.3 Properties of Call States............................ 22

3.1.4 Properties of the Computation...................... 22

3.1.5 Compound Assertions.................cooovein.... 22

3.1.6 Examples..........o 23

3.2 Properties 23
3.3 Preprocessing Units i 24
3.4 Foreign Code. ..ot 25
341 Examplescoo 26

3.5 Dynamic Predicates 26
3.6 Entry Points......... 27
3.6.1 Exampleso 28

3.7 Modules....... ... 28
3.8 Dynamic Calls 29
3.8.1 Exampleso 29

3.9 SUIMIMATYt e 30
4 The Ciao assertion package................... 31
4.1 Moreinfo..... ..o 31
4.2 Some attention points 31
4.3 Usage and interface (assertions) 32
4.4 Documentation on new declarations (assertions)............ 32
pred/1 (decl)...... ... 32

pred/2 (decl)....... 33

calls/1 (decl) ... 33

calls/2 (decl). ... 33

success/1 (decl) ... 33

success/2 (decl) ... 34

comp/1 (decl).......... 34

comp/2 (decl) ... 34

prop/1 (decl) ... 34

prop/2 (decl) ... 35

entry/1 (decl).......... . 35

modedef/1 (decl)........... 35

decl/1 (decl) ..o 36

decl/2 (decl) 36

comment /2 (decl) 36

exit/1 (decl) ... 36

exit/2 (decl) 36

4.5 Documentation on exports (assertions)..................... 37
check/1 (pred)oo i 37

trust/1 (pred) ... 37

true/1 (pred) 37

false/1 (pred) ... 38

5 Types and properties related to assertions 39

5.1 Usage and interface (assertions_props)..................... 39
5.2 Documentation on exports (assertions_props).............. 39
assrt_body /1 (regtype) ..o 39
head_pattern/1 (prop), 40
complex_arg_property/1 (regtype) 41
property_conjunction/1 (regtype) 41

property starterm/1 (regtype) 41
complex_goal_property/1 (regtype).................. 42

nabody/1 (Prop)c.coeoiiiiii . 42

dictionary /1 (regtype)ovurvenieeni .. 42
c_assrt_body/1 (regtype) ..., 42
s_assrt_body/1 (regtype)ovvii 43
g-assrt_body/1 (regtype)ccoviiiii.. 43

assrt_status/1 (regtype) ..., 44

assrt_type/1 (regtype) ... 44

predfunctor/1 (regtype)............c.ooiiiii... 44
propfunctor/1 (regtype)..........c.ooeeiiiiii... 44

docstring/1 (Prop).......ooveviiieiiiii . 44

6 Declaring regular types 47
6.1 Defining properties ... 47
6.2 Usage and interface (regtypes) ..., 50
6.3 Documentation on new declarations (regtypes) 50
regtype/1 (decl)...... 50

regtype/2 (decl)......... .. 51

7 Basic data types and properties 53
7.1 Usage and interface (basic_props)coeveeeiuneea... 53
7.2 Documentation on exports (basic_props).................... 53
term/1 (regtype) . ..ot 53

int/1 (regtype)oovneii 54

nnegint/1 (regtype)......oovviiiii 54

flt/1 (regtype) ..o 54

num/1 (TegLYPe) v v oot 55

atm/1 (TegtyPe) . .o vv e 55

struct/1 (regtype) ... 56

gnd/1 (regtype) . ..o 56

constant/1 (regtype). ... 57

callable/1 (regtype) ... 57
operator_specifier/1 (regtype) 57

list/1 (TegtypPe) .. v vomvrei e 58

list/2 (regtype) .. .coovvii 59

member/2 (Prop)........o.oueeiiiii i 59

sequence/2 (Tegtype) - ..couueeie e, 60
sequence_or_list/2 (regtype) ..., 60
character_code/1 (regtype)c.cooveiiiin... 61

string/1 (regtype) .. .oovvrieii 61

predname/1 (Tegtype)coveeniiiiiiii 61
atm_or_atm_list /1 (regtype) 62

compat/2 (Prop) - . .vvvveine e 62

INSt/2 (ProOP) .o e et 63

1SO/1 (PIOP) . v v v 63
not_further_inst/2 (prop)................. 63

sideff/2 (prop) ... 63

iv The Ciao Prolog Preprocessor

regtype/1 (Prop) . ..oveee e 64

native/1 (Prop) ... 64

native/2 (Prop) ... 64

eval/1 (Prop) «..o.vouri i 64

EQUIV/2 (PIOP) - v v v et 65

8 Properties which are native to analyzers 67
8.1 Usage and interface (native_props)......................... 67

8.2 Documentation on exports (native_props)................... 67
covered/2 (Prop)ooeuiii it 67

linear/1 (Prop)oovviiiiei i 67

mshare/1 (Prop)oooviiiiiii 68

nonground/1 (Prop) ... 68

fails/1 (Prop) ..o 68

not_fails/1 (prop)........... il 68

possibly_fails/1 (prop) ... 69

covered/1 (Prop)couveeuneiii i 69

not_covered/1 (Prop)coeuiiiiiiaii... 69

is_det/1 (Prop) .. .vvvvveii 69

non_det/1 (Prop)oeiiiiiiiiiiiii., 69

possibly_nondet/1 (prop).............ccoviiiii.... 69

mut_exclusive/1 (Prop) ..., 69

not_mut_exclusive/1 (prop)......................... 70

sizeIb/2 (Prop) . ..o 70

8ize_ub/2 (Prop) . ..o 70

SIZ€/2 (PLOD) « v e e 70

S12€-0/2 (PTOP) « « v vv e 70

steps_1b/2 (Prop) ..o 70

steps_ub/2 (Prop) ... 71

Steps/2 (PLOP) - vvvee i 71

StePS_0/2 (PIOD) . ..o v 71

finite_solutions/1 (Prop)cooeiioi... 71

terminates/1 (Prop)ooeiiiiiiiii 71

indep/1 (Prop) - vvvvvei 71

indep/2 (Prop) .. vvvvvei 72

instance/2 (Prop). ..., 72

9 Run-time checking of assertions 73
9.1 Usage and interface (rtchecks), 73

9.2 Documentation on exports (rtchecks)....................... 73
check/1 (pred) i 73

Referenceso, 75
Predicate/Method Definition Index 79
Regular Type Definition Index................... 81
Concept Definition Index........................ 83

Global Index ... i i et i i 85

Summary 1

Summary

CiaoPP is the precompiler of the Ciao Prolog development environment. CiaoPP can perform
a number of program debugging, analysis, and source-to-source transformation tasks on (Ciao)
Prolog programs. These tasks include:

e Inference of properties of the predicates and literals of the program, including types,
modes and other variable instantiation properties, non-failure, determinacy, bounds on
computational cost, bounds on sizes of terms in the program, etc.

e Certain kinds of static debugging, finding errors before running the program. This in-
cludes checking how programs call system library predicates and also checking the assertions
present in the program or in other modules used by the program. Such assertions represent
essentially partial specifications of the program.

e Several kinds of source to source program transformations such as program specialization,
partial evaluation of a program, program parallelization (taking granularity control into
account), inclusion of run-time tests for assertions which cannot be checked completely at
compile-time, etc.

The information generated by analysis, the assertions in the system libraries, and the asser-
tions optionally included in user programs as specifications are all written in the same assertion
language, which is in turn also used by the Ciao system documentation generator, 1pdoc.

CiaoPP is distributed under the GNU general public license.

This documentation corresponds to version 1.0#1011 (2005/3/15, 13:0:46 CET).

The Ciao Prolog Preprocessor

Chapter 1: Introduction 3

1 Introduction

CiaoPP is the precompiler of the Ciao Prolog development environment. CiaoPP can perform
a number of program debugging, analysis, and source-to-source transformation tasks on (Ciao)
Prolog programs. These tasks include:

e Inference of properties of the predicates and literals of the program, including types,
modes and other variable instantiation properties, non-failure, determinacy, bounds on
computational cost, bounds on sizes of terms in the program, etc.

e Certain kinds of static debugging, finding errors before running the program. This in-
cludes checking how programs call system library predicates and also checking the assertions
present in the program or in other modules used by the program. Such assertions represent
essentially partial specifications of the program.

e Several kinds of source to source program transformations such as program specialization,
partial evaluation of a program, program parallelization (taking granularity control into
account), inclusion of run-time tests for assertions which cannot be checked completely at
compile-time, etc.

The information generated by analysis, the assertions in the system libraries, and the asser-
tions optionally included in user programs as specifications are all written in the same assertion
language, which is in turn also used by the Ciao system documentation generator, 1pdoc.

CiaoPP is distributed under the GNU general public license.

1.1 How to use this manual

This is a reference manual. You can use it to look up in it descriptions for the commands,
flags, and options that can be used with CiaoPP. The Predicate/Method Definition Index may
help you in locating commands. The Regular Type Definition Index may help in locating the
definitions of the types associated to the arguments of commands. The Concept Definition Index
may help in locating the part of the manual where a particular feature of CiaoPP is described.
The Global Index includes all of the above plus references to pages where the command, type,
or concept is used (not necessarily defined).

This chapter gives a brief overview of CiaoPP and its capabilities, and lists all commands,
flags, and options neccesary to use its program transformation, debugging, and analysis func-
tionality. It assumes some familiarity with the techniques that implement such functionalities.
However, references are included to technical papers that explain in detail such techniques. An
overview of the functionalities available is given in (undefined) [A tutorial overview of CiaoPP],
page (undefined) in the form of a tutorial on CiaoPP.

1.2 Note

We are in the process of merging all CiaoPP 0.8 functionality into the 1.0 version. In the
meantime, you may find that some functionality documented in this manual is not available or
not working properly. Please bear with us in the meantime. Sorry for any inconvenience.

1.3 Installation

The distribution of CiaoPP consists of its source files, written in Ciao. Thus, you need to
have Ciao (version 1.11 or higher) installed.

Once you have the source files in an installation directory, please, edit first file
CIAOPPSETTINGS.pl and change the required options at the top of that file. Then, run:

4 The Ciao Prolog Preprocessor

lpmake install
(Ipmake is an utility that comes with the Ciao distribution). This will:
1. Create an executable ciaopp that you can run under Unix.
Create an executable ciaopp.bat that you can run under Windows.
3. Set up things so that you can use CiaoPP as a library module from, e.g., the Ciao shell. In

order to do this, please follow the (short) instructions that lpmake install prints out at
the end when you run it.

1.4 Getting started

A CiaoPP session consists in the preprocessing of a file. The session is governed by a menu,
where you can choose the kind of preprocessing you want to be done to your file among several
analyses and program transformations available. Many of these make use of several flags to
modify their behaviour. The available flags are described later in this chapter. The options
available at the menu are described to some extent also later in this chapter. What follows is
an introductory overview of the menu. Commands to manipulate the menu are described in
Chapter 2 [CiaoPP user menu interface], page 17.

The execution of command customize_and_exec(FileName), which takes a file name as
argument, at the CiaoPP shell prompt displays the menu, which will look (depending on the
options available in the current CiaoPP version) something like:

7- customize_and_exec(myfile).

(Press h for help)

Use Saved Menu Configuration: [stored_cfgl] (none) 7

Select Menu Level: [naive, expert] (naive) 7

Select Action Group: [analyze, check_assertions, optimize]
(analyze) 7

Select Cost Analysis: [none, steps_ub, steps_lb, steps_ualb,
steps_o] (none) 7

Select Mode Analysis: [none, pd, pdb, def, gr, share, shareson,

shfr, shfrson, shfrnv, son, aeq, depth,
path, difflsign, fr, frdef, lsign]

(shfr) 7

Select Type Analysis: [none, eterms, ptypes, svterms, terms]
(eterms) 7

Select Type Output: [defined, all] (all) 7

Perform Non-Failure Analysis: [none, nf, nfg] (none) 7

Perform Determinism Analysis: [none, det] (none) 7

Print Program Point Info: [off, on] (off) 7

Collapse AI Info: [off, on] (on) ?

Note: Current Saved Menu Configurations: [stored_cfgl]

Menu Configuration Name: (none) 7

Except for the first and last lines, which refer to loading or saving a menu configuration
(a predetermined set of selected values for the different menu options), each line corresponds
to an option you can select, each having several possible values. You can select either analy-
sis (analyze) or assertion checking (check_assertions) or program optimization (optimize),
and you can later combine the three kinds of preprocessing. The relevant options for the ac-
tion group selected are then shown, together with the relevant flags. See analysis/1 and
transformation/1 later in this chapter for a description of the values for each option. See
pp_flag/1 later in this chapter for a description of the values of each flag.

Chapter 1: Introduction 5

CiaoPP can help you to analyze your program, in order to infer properties of the predicates
and literals in your program (which might be useful in the subsequent steps during the same
session). You can use Cost Analysis to infer both lower and upper bounds on the computational
time cost and sizes of terms of procedures in a program. Mode Analyses obtain at compile-time
accurate variable groundness and sharing information and other variable instantiation properties.
Type Analysis infers regular types. Regular types are explained in detail in Chapter 6 [Declaring
regular types|, page 47. Non-failure and Determinacy Analysis detect procedures and goals that
can be guaranteed to not fail and/or to be deterministic.

CiaoPP also can help to optimize your program (by means of source-to-source program trans-
formations), using program specialization, partial evaluation, program parallelization and gran-
ularity control, and other program transformations. Specialization can help to simplify your
program w.r.t. the analysis information (eliminating dead code, predicates that are guaranteed
to either succeed or fail, etc.), specialize it and then simplify it, or just specialize it, i.e., to
unfold all versions of the predicates in your program. CiaoPP can also perform automatic par-
allelization of your source program during precompilation using several annotation algorithms,
and granularity control on parallel programs, transforming the program in order to perform
run—time granularity control, i.e., deciding parallel or sequential execution of goals depending
on the estimated amount of work under them (estimated by cost analysis).

CiaoPP also helps in debugging your programs. It makes it possible to perform static de-
bugging, i.e., finding errors at compile-time, before running the program, and also dynamic
debugging, in the sense of including run-time tests that will perform the checking for errors at
run-time. Static debugging is performed by assertion checking. This includes checking the ways
in which programs call the system library predicates and also checking the assertions present
in the program or in other modules used by the program. Such assertions essentially represent
partial specifications of the program. For dynamic checking, CiaoPP will include run-time tests
for the parts of assertions which cannot be checked completely at compile-time.

Chapter 3 [Using Assertions for Preprocessing Programs|, page 21, gives an overview on the
use of the assertion language in CiaoPP. In that chapter and the following ones, several existing
properties that can be used in assertions are described. Programmers can also define their own
properties (see the abovementioned chapters).

1.5 Usage and interface (ciaopp)

e Library usage:

The ciaopp executable starts a shell at which prompt you can issue any of the commands
described below and in the next chapter as exports.

e Other modules used:

— Application modules:
ciaopp(driver), ciaopp(preprocess_flags), ciaopp(printer), auto_
interface(auto_interface), auto_interface(auto_help), typeslib(typeslib),
program(p_asr), infer(infer).

— System library modules:
messages, system.

— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, attributes, mattr_global, basic_props,
basiccontrol, data_facts, exceptions, io_aux, io_basic, prolog_flags,
streams_basic, system_info, term_compare, term_typing, hiord_rt, debugger_
support.

6 The Ciao Prolog Preprocessor

1.6 Documentation on exports (ciaopp)

current_pp_flag/2: PREDICATE
Usage: current_pp_flag(Name, Value)

— Description: Preprocess flag Name has the value Value.
— The following properties should hold at call time:

Value is a free variable. (var/1)
Name is a valid preprocessor flag. (pp_flag/1)
— The following properties should hold upon exit:
Value is a valid value for Name preprocessor flag. (valid_flag_value/2)
set_pp_flag/2: PREDICATE

Usage: set_pp_flag(Name, Value)
— Description: Sets the Value for preprocessor flag Name.
— The following properties should hold at call time:

Name is a valid preprocessor flag. (pp_flag/1)
Value is a valid value for Name preprocessor flag. (valid_flag_value/2)
push_pp_flag/2: PREDICATE

Usage: push_pp_flag(Flag, Value)
— Description: Sets the Value for Flag, storing the current value to restore it with
pop_pp_flag/1.
— The following properties should hold at call time:

Flag is a valid preprocessor flag. (pp_flag/1)
Value is a valid value for Flag preprocessor flag. (valid_flag_value/2)
pop_pp-flag/1: PREDICATE

Usage: pop_pp_flag(Flag)
— Description: Restores the value of Flag previous to the last non-canceled push_pp_
flag/2 on it.
— The following properties should hold at call time:

Flag is a valid preprocessor flag. (pp_flag/1)
pp-flag/1: PREDICATE
Valid flags:

e for the output:
e analysis_info (off,on) Whether to output the results of analysis.
e point_info (off,on) Whether to output analysis information for program points
within clauses.

e collapse_ai_vers (off,on) to output all the versions of call/success patterns
inferred by analysis or just one version (summing-up all of them).

Chapter 1: Introduction 7

type_output (defined,all) to output the types inferred for predicates in terms
only of types defined by the user or including types inferred anew.

e for analysis:

fixpoint (plai ,dd,di,check_di,check_di2,check_di3, check_di4) The
kind of fixpoint computation used.

multi_success (off,on) Whether to allow success multivariance.

widen (off,on) Whether to perform widening.

intermod (off,on,auto) The policy for inter-modular analysis.

success_
policy (best,first,all,top,botfirst,botbest,botall,bottom) The policy
for obtaining success information for imported predicates during inter-modular
analysis.

initial_guess (botfirst, botbest, botall, bottom) The policy for obtain-
ing initial guess when computing the analysis of a predicate from the current
module.

entry_policy (all,top_level,force) The policy for obtaining entry call pat-
terns for exported predicates during inter-modular analysis.

depth (a non-negative integer) The maximum depth of abstractions in analyses
based on term depth.

type_eval (on,off) Whether to attempt concrete evaluation of types being in-
ferred.

type_precision (defined,all) to use during type analysis only types defined
by the user or also types inferred anew.

e for partial evaluation:

global_control (off,id,inst,hom_emb) The abstraction function to use to
control the creation of new patterns to analyze as a result of unfolding.
comp_rule (leftmost,local_builtin,local_emb, jump_builtin) The compu-
tation rule for the selection of atoms in a goal.

local_control (off, orig, inst, det, det_la, depth,
first_sol,first_sol_d, all_sol, hom_emb,hom_emb_anc, hom_

emb_as, df _hom_emb_as, df _tree_hom_emb, df_hom_emb) The unfolding rule
to use during partial evaluation.

unf_depth (a non-negative integer) The depth limit for unfolding.
rem_use_cls (off, pre, post, both) Whether to remove useless clauses.
abs_spec_defs (off,rem,exec,all) Whether to exploit abstract substitutions
while obtaining specialized definitions on unfolding.

filter_nums (off,safe,on) Whether to filter away numbers in partial evalua-
tion.

exec_unif (off,on) Whether to execute unifications during specialization time
or not.

pres_inf_fail (off,on) Whether infinite failure should be preserved in the
specialized program.

part_concrete (off ,mono,multi) The kind of partial concretization to be per-
formed.

e for parallelization and granularity control:

granularity_threshold (a non-negative integer) The threshold on computa-
tional cost at which parallel execution pays off.

8 The Ciao Prolog Preprocessor

valid_flag_value/2: PROPERTY
Usage: valid_flag_value(Name, Value)

— Description: Value is a valid value for Name preprocessor flag.
— If the following properties should hold at call time:

Name is a valid preprocessor flag. (pp_flag/1)
flag_value(Value) (undefined property)
remove_action/1: (UNDOC_REEXPORT)

Imported from driver (see the corresponding documentation for details).

add_action/1: (UNDOC_REEXPORT)
Imported from driver (see the corresponding documentation for details).

transform/1: PREDICATE

Usage 1: transform(Trans)
— Description: Returns on backtracking all available program transformations.
— The following properties should hold at call time:
Trans is a free variable. (var/1)
— The following properties should hold upon exit:
Trans is a valid transformation identifier. (transformation/1)

Usage 2: transform(Trans)
— Description: Performs transformation Trans on the current module.
— The following properties should hold at call time:

Trans is currently a term which is not a free variable. (nonvar/1)
Trans is a valid transformation identifier. (transformation/1)
module/1: PREDICATE

Usage 1: module(File)
— Description: Reads File and sets it as the current module.
— The following properties should hold at call time:
File is currently a term which is not a free variable. (nonvar/1)

Usage 2: module(FileList)

— Description: Reads the list of files FileList and sets the set of them as the current
module.

— The following properties should hold at call time:
FileList is currently a term which is not a free variable. (nonvar/1)
FileList is a list. (list/1)

Chapter 1: Introduction 9

acheck/0: PREDICATE
Usage:
— Description: Checks assertions w.r.t. analysis information.

analyze/1: PREDICATE
Usage 1: analyze(Analysis)
— Description: Returns on backtracking all available analyses.
— The following properties should hold at call time:

Analysis is a free variable. (var/1)
— The following properties should hold upon exit:
Analysis is a valid analysis identifier. (analysis/1)

Usage 2: analyze(Analysis)
— Description: Analyzes the current module with Analysis.
— The following properties should hold at call time:

Analysis is currently a term which is not a free variable. (nonvar/1)
Analysis is a valid analysis identifier. (analysis/1)
output/1: PREDICATE

Usage: output (Output)
— Description: Outputs the current module preprocessing state to a file Output.
— The following properties should hold at call time:

Output is currently a term which is not a free variable. (nonvar/1)
output/0: PREDICATE
Usage:

— Description: Outputs the current Module preprocessing state to a file Module_opt.pl.

1.7 Documentation on internals (ciaopp)

analysis/1: PROPERTY
Analyses can be integrated in CiaoPP in an ad-hoc way (see the Internals manual), in
which the CiaoPP menu would not be aware of them. The current analyses supported in
the menu are:
e for groundness and sharing:
e gr tracks groundness in a very simple way.
e def tracks groundness dependencies, which improves the accuracy in inferring
groundness.
e share tracks sharing among (sets of) variables [MH92], which gives a very accu-
rate groundness inference, plus information on dependencies caused by unifica-
tion.

e son tracks sharing among pairs of variables, plus variables which are linear (see
[Son86]).

The Ciao Prolog Preprocessor

e shareson is a combination of the above two [CMB93|, which may improve on
the accuracy of any of them alone.

e shfr tracks sharing and variables which are free (see [MH91]).
e shfrson is a combination of shfr and son.

e shfrnv augments shfr with knowledge on variables which are not free nor
ground.

e for term structure:

e depth tracks the structure of the terms bound to the program variables during
execution, up to a certain depth; the depth is fixed with the depth flag.

e path tracks sharing among variables which occur within the terms bound to the
program variables during execution; the occurrence of run-time variables within
terms is tracked up to a certain depth, fixed with the depth flag.

e aeq tracks the structure of the terms bound to the program variables during
execution plus the sharing among the run-time variables occurring in such terms,
plus freeness and linearity. The depth of terms being tracked is set with the depth
flag. Sharing can be selected between set-sharing or pair-sharing.

e for types:

Type analysis supports different degrees of precision. For example, with the flag
type_precision with value defined, the analysis restricts the types to the finite
domain of predefined types, i.e., the types defined by the user or in libraries, without
generating new types. Another alternative is to use the normal analysis and to have
in the output only predefined types, this is handled through the type_output flag.

e eterms performs structural widening (see [VB02]).

Greater precision can be obtained evaluating builtins like is/2 abstractly:
eterms includes a variant which allows evaluation of the types, which is gov-
erned by the type_eval flag.

e ptypes uses the topological clash widening operator (see [VHCLC95]).
e svterms implements the rigid types domain of [JB92].

e terms uses shortening as the widening operator (see [GAW94]), in several fash-
ions, which are selected via the depth flag; depth 0 meaning the use of restricted
shortening [SG94].

e for partial evaluation:

Partial evaluation is performed during analysis when the local_control flag is set
to other than off. Flag fixpoint must be set to di. Unfolding will take place while
analyzing the program, therefore creating new patterns to analyze. The unfolding
rule is governed by flag local_control (see transformation(codegen)). Whether
unfolding should take place (thus, possibly creating new patterns) or not is governed
by flag global_control:

e off unfolds always;

e id unfolds patterns which are not equal (modulo renaming) to a formerly ana-
lyzed pattern.

e inst unfolds patterns which are not an instance of a previous pattern.
e hom_emb unfolds patterns which are not covered under the homeomorphic em-
bedding ordering [BibRef: homeoemb].
Only hom_emb guarantees termination. However, id and inst are more efficient, and
terminating in many practical cases.

For partial evaluation to take place, an analysis domain capable of tracking term
structure should be used (e.g., eterms, pd, etc.). In particular:

Chapter 1: Introduction 11

pd allows to perform traditional partial evaluation but using instead abstract
interpretation with specialized definitions [PAH04].

pdb improves the precision of pd by detecting calls which cannot succeed, i.e.,
either loop or fail.

Note that these two analyses will not infer useful information on the program. They
are intended only to enable (classical) partial evaluation.

e for constraint domains:

fr [Dum94| determines variables which are not constraint to particular values
in the constraint store in which they occur, and also keeps track of possible
dependencies between program variables.

frdef is a combination of fr and def, determining at the same time variables
which are not constraint to particular values and variables which are constraint
to a definite value.

1sign [MS94] infers the signs of variables involved in linear constraints (and the
possible number and form of such constraints).

difflsign is a simplified variant of 1sign.

e for properties of the computation:

det detects procedures and goals that are deterministic (i.e. that produce at
most one solution), or predicates whose clause tests are mutually exclusive (which
implies that at most one of their clauses will succeed) even if they are not de-
terministic (because they call other predicates that can produce more than one
solution).

nfg detects procedures that can be guaranteed not to fail (i.e., to produce at least
one solution or not to terminate). It is a mono-variant non-failure analysis, in the
sense that it infers non-failure information for only a call pattern per predicate
[DLGH97].

nf detects procedures and goals that can be guaranteed not to fail and is able to
infer separate non-failure information for different call patterns [BLGHO04].

seff marks predicates as having side-effects or not.

e for size of terms:

Size analysis yields functions which give bounds on the size of output data of proce-
dures as a function of the size of the input data. The size can be expressed in various
measures, e.g., term-size, term-depth, list-length, integer-value, etc.

size_ub infers upper bounds on the size of terms.

size_1b infers lower bounds on the size of terms.

size_ualb infers both upper and lower bounds on the size of terms.

size_o gives (worst case) complexity orders for term size functions (i.e. big O).

e for the number of resolution steps of the computation:

Cost (steps) analysis yields functions which give bounds on the cost (expressed in the
number of resolution steps) of procedures as a function of the size of their input data.

steps_ub infers upper bounds on the number of resolution steps. Incorporates
a modified version of the CASLOG [DL93| system, so that CiaoPP analyzers
are used to supply automatically the information about modes, types, and size
measures needed by the CASLOG system.

steps_1b infers lower bounds on the number of resolution steps. Implements the
analysis described in [DLGHLI7].

steps_ualb infers both upper and lower bounds on the number of resolution
steps.

12 The Ciao Prolog Preprocessor

e steps_o gives (worst case) complexity orders for cost functions (i.e. big O).
e for the execution time of the computation:

e time_ap yields functions which give approximations on the execution time (ex-
pressed in milliseconds) of procedures as a function of the size of their input
data.

Usage: analysis(Analysis)
— Description: Analysis is a valid analysis identifier.

transformation/1: PROPERTY
Transformations can be integrated in CiaoPP in an ad-hoc way (see the Internals manual),
in which the CiaoPP menu would not be aware of them. The current transformations
supported in the menu are:

e for program specialization:

e simp This transformation tries to explote analysis information in order to simplify
the program as much as possible. It includes optimizations such as abstract
executability of literals, removal of useless clauses, and unfolding of literals for
predicates which are defined by just a fact or a single clause with just one literal
in its body (a bridge). It also propagates failure backwards in a clause as long
as such propagation is safe.

e spec This transformation performs the same optimizations as simp but it also
performs multiple specialization when this improves the possibilities of optimiza-
tion. The starting point for this transformation is not a program annotated with
analysis information, as in the case above, but rather an expanded program which
corresponds to the analysis graph computed by multi-variant abstract interpre-
tation. A minimization algorithm is used in order to guarantee that the resulting
program is minimal in the sense that further collapsing versions would represent
losing opportunities for optimization.

e vers This transformation has in common with spec that it takes as starting
point the expanded program which corresponds to the analysis graph computed by
abstract interpretation. However, this transformation performs no optimizations
and does not minimize the program. As a result, it generates the expanded
program.

e for partial evaluation:

e codegen This generates the specialized program resulting from partial evaluation,
obtained by unfolding goals during analysis. The kind of unfolding performed is
governed by the comp_rule flag, as follows:

e leftmost unfolds the leftmost clause literal;
e local_builtin selects for unfolding first builtins which can be evaluated;

e local_emb tries to select first atoms which do not endanger the embedding
ordering or evaluable builtins whenever possible;

e jump_builtin selects the leftmost goal but can ‘jump’ over (ignore) builtins
when they are not evaluable. A main difference with the other computation
rules is that unfolding is performed ‘in situ’, i.e., without reordering the
atoms in the clause.

Unfolding is performed continuously on the already unfolded clauses, until a
condition for stopping the process is satisfied. This condition is stablished by the
local control policy, governed by the local_control flag, as follows:

e inst allows goal instantiation but no actual unfolding is performed.

Chapter 1: Introduction 13

e orig returns the clauses in the original program for the corresponding pred-
icate.

e det allows unfolding while derivations are deterministic and stops them when
a non-deterministic branch is required. Note that this may not be terminat-
ing.

e det_la same as det, but with look-ahead. It can perform a number of non-
deterministic steps in the hope that the computation will turn deterministic.
This number is determined by flag unf_depth.

e depth always performs the same number of unfolding steps for every call
pattern. The number is determined by flag unf_depth.

e first_sol explores the SLD tree width-first and keeps on unfolding until a
first solution is found. It can be non-terminating.

e first_sol_d same as above, but allows terminating when a given depth
bound is reached without obtaining any solution. The bound is determined
by unf_depth.

e all_sol tries to generate all solutions by exploring the whole SLD tree. This
strategy only terminates if the SLD is finite.

e hom_emb keeps on unfolding until the selected atom is homeomorphically
embedded in an atom previously selected for unfolding.

e hom_emb_anc same as before, but only takes into account previously selected
atoms which are ancestors of the currently selected atom.

e hom_emb_as same as before, but efficiently implemented by using a stack to
store ancestors.

e df_hom_emb_as same as before, but traverses the SLD tree on a depth-
first fashion (all strategies above use wide-first search). This allows better
performance.

e df_tree_hom_emb same as above, but does not use the efficient stack-based
implementation for ancestors.

e df_hom_emb same as above, but compares with all previously selected atoms,
and not only ancestors. It is like hom_emb but with depth-first traversal.

e arg_filtering This transformation removes from program literals static values
which are not needed any longer in the resulting program. This is typically the
case when some information is known at compile-time about the run-time values
of arguments.

e codegen_af This performs codegen and arg_filtering in a single traversal of
the code. Good for efficiency.

e for code size reduction:

e slicing This transformation is very useful for debugging programs since it iso-
lates those predicates that are reachable from a given goal. The goals used are
those exported by the module. The ‘slice’ being obtained is controlled by the
following local control policies (described above): df _hom_emb_as, df _hom_emb,
df _tree_hom_emb. It is also necessary to analyze the program with any of the
currently available analyses for partial evaluation. Slicing is also very useful in or-
der to perform other software engineering tasks, such as program understanding,
maintenance, specialization, code reuse, etc.

e for program parallelization:

Parallelization is performed by considering goals the execution of which can be deemed
as independent [HR95,dIBHMO0] under certain conditions. Parallel expressions (pos-
sibly conditional) are built from such goals, in the following fashions:

14 The Ciao Prolog Preprocessor

e mel exploits parallel expressions which preserve the ordering of literals in the
clauses;

e cdg tries to exploit every possible parallel expression, without preserving the
initial ordering;

e udg is as above, but only exploits unconditional parallel expressions [MBdIBH99;

e urlp exploits unconditional parallel expressions for NSIAP with a posteriori con-
ditions [CH94].

e crlp exploits conditional parallel expressions for NSIAP with a posteriori con-
ditions.

e granul This transformation allows to perform run-time task granularity control
of parallelized code (see [LGHD964a]), so that the program will decide at run-time
whether to run parallel expressions or not. The decision is based on the value of
flag granularity_threshold.

e for instrumenting the code for run-time assertion checking:
e rtchecks Transforms the program so that it will check the predicate-level asser-
tions at run-time.
Usage: transformation(Transformation)
— Description: Transformation is a valid transformation identifier.

help/0: PREDICATE
No further documentation available for this predicate.

1.8 Other information (ciaopp)

In this section the flags related with program analysis are explained in some detail. In
particular, special attention is given to inter-modular program analysis and partial deduction
(performed in CiaoPP during analysis).

1.8.1 Analysis with PLAI

Most of the analyses of CiaoPP are performed with the PLAI (Programming in Logic with
Abstract Interpretation) framework [BAIBH94]. This framework is based on the computation of
a fixed point for the information being inferred. Such a fixed point computation is governed by
flag fixpoint, whose values are:

e plai for the classical fixed point computation [MH89a];

e dd for an incremental fixed point computation [HPMS00];

e di for the depth independent fixed point algorithm of [HPMS00];
e check_di .

1.8.2 Inter-modular Analysis

In inter-modular analysis CiaoPP takes into account the results of analyzing a module when
other modules in the same program are analyzed. Thus, it collects analysis results (success
patterns) for calls to predicates in other modules to improve the analysis of a given module.
It also collects calls (call patterns) that are issued by the given module to other modules to
reconsider them during analysis of such other modules.

Such flow of analysis information between modules while being analyzed can be performed
when analyzing one single module. The information flow then affects only the modules imported

Chapter 1: Introduction 15

by it. New call patterns will be taken into account when/if it is the turn for such imported
modules to be analyzed. Improved success patterns will only be reused when/if the importing
module is reanalyzed. However, CiaoPP can also iterate continuously over the set of modules of
a given program, transferring the information from one module to others, and deciding which
modules to analyze at which moment. This will be done until an inter-modular fixed point is
reached in the analysis of the whole program (whereas analysis is performed one-module-at-a-
time, anyway).

Inter-modular analysis is enabled with flag intermod. Also, flag fixpoint should be set to
di. During inter-modular analysis there are several possible choices for selecting success patterns
and call patterns. For example, when a success pattern is required for a given call pattern to
an imported predicate, and there exist several that could be used, but none of them fit exactly
with the given call pattern. Also, if, in that same case, there are no success patterns that fit (in
which case CiaoPP has to make an initial guess). Finally, when there are new call patterns to
a given module obtained during analysis of the modules that import it, which of them to use as
entry points should be decided. All these features are governed by the following flags:

e intermod to activate inter-modular analysis.
e off disables inter-modular analysis. This is the default value.
e on enables inter-modular analysis.

e auto allows the analysis of a modular program, using auto_analyze/2 with the main
module of the program, until inter-modular fixed point.

e success_policy to obtain success information for given call patterns to imported predi-
cates.

e best selects the success pattern which corresponds to the best over-approximation of
the sought call pattern; if there are several non-comparable best over-approximations,
one of them is chosen randomly.

e first selects the first success pattern which corresponds to a call pattern which is an
over-approximation of the sought call pattern.

e all computes the greatest lower bound of the success patterns that correspond to
over-approximating call patterns.

e top selects Top (no information) as answer pattern for any call pattern.

e botfirst selects the first success pattern which corresponds to a call pattern which is
an under-approximation of the sought call pattern.

e botbest selects the success pattern which corresponds to the best under-approximation
of the sought call pattern; if there are several non-comparable best under-
approximations, one of them is chosen randomly.

e botall computes the least upper bound of the success patterns that correspond to
under-approximating call patterns.

e bottom selects Bottom (failure) as answer pattern for any call pattern.

e initial_guess to obtain an initial guess for the success pattern corresponding to a call
pattern to an imported predicate when there is none that fully matches.

e botfirst selects the success pattern already computed corresponding to the first call
pattern which is an under-approximation of the given call pattern.

e botbest selects the success pattern corresponding to the call pattern which best under-
approximates the given call pattern (if there are several, non-comparable call patterns,
one of them is selected randomly).

e botall computes the least upper bound of the success patterns that correspond to
under-approximating call patterns.

e bottom selects Bottom as initial guess for any call pattern.
e entry_policy to obtain entry call patterns for exported predicates.

16 The Ciao Prolog Preprocessor

e all selects all entry call patterns for the current module which have not been analyzed
yet, either from entry assertions found in the source code, or from the analysis of other
modules that import the current module.

e top_level is only meaningful during auto inter-modular analysis, and it is set auto-
matically by CiaoPP. If the current module is the top-level module (the main module
of the modular program being analyzed), the entry policy behaves like all. In any
other case, it selects entry call patterns for the current module from the analysis of
other modules that import it, ignoring entry assertions found in the source code.

e force forces the analysis of all entries of the module (from both the module source
code and calling modules), even if they have been already analyzed.

1.8.3 Abstract Partial Deduction

Partial deduction (or partial evaluation) is a program transformation technique which spe-
cializes the program w.r.t. information known at compile-time. In CiaoPP this is performed
during analysis of the program, so that not only concrete information but also abstract informa-
tion (from the analysis) can be used for specialization. With analysis domain pd (and pdb) only
concrete values will be used; with other analysis domains the domain abstract values inferred
will also be used. This feature is governed by the following flags:

e abs_spec_defs to exploit abstract substitutions in order to:

e rem try to eliminate clauses which are incompatible with the inferred substitution at
each unfolding step;

e exec perform abstract executability of atoms;
e all do both.

e part_concrete to try to convert abstract information into concrete information if possible,
so that:

e mono one concrete atom is obtained;

e multi multiple atoms are allowed when the information in the abstract substitution is
disjunctive.

e rem_use_cls to identify clauses which are incompatible with the abstract call substitution
and remove them:

e pre prior to performing any unfolding steps;
e post after performing unfolding steps;
e both both before and after performing unfolding steps.

e filter_nums to filter away during partial evaluation numbers which:
e safe are not safe, i.e., do not appear in the original program, or
e on all numbers.

Chapter 2: CiaoPP user menu interface 17

2 CiaoPP user menu interface

Author(s): David Trallero Mena.
Version: 1.0#1011 (2005/3/15, 13:0:46 CET)
Version of last change: 1.0#1008 (2005/3/13, 23:23:7 CET)

This module defines a simplified user-level interface for CiaoPP. It complements the more
expert oriented interface defined by modules driver and printer. This is also the interface
called by the shortcuts available in menus and toolbars in the emacs mode.

The idea of this interface is to make it easy to perform some fundamental, prepackaged tasks,
such as checking assertions in programs (i.e., types, modes, determinacy, non-failure, cost, etc.),
performing optimizations such as specialization and parallelization, and performing several types
of analysis of the program. The results can be observed as new or transformed assertions and
predicates in a new version of the program.

The basic way of using it is as follows:
e In general, the default setting should be adequate for most basic tasks. Thus:

e To check a program simply call auto_check_assertions/1 with the file name as argu-
ment. In emacs this can be done most easily by clicking on the corresponding button
in the toolbar or in the CiaoPP menus.

e To optimize (transform) a program simply call auto_optimize/1 with the file name
as argument. In emacs this can be done most easily by clicking on the corresponding
button in the toolbar or in the CiaoPP menus.

e To analyze a program simply call auto_analyze/1 with the file name as argument.
In emacs this can be done most easily by clicking on the corresponding button in the
toolbar or in the CiaoPP menus.

e To customize the actions performed by the above operations call auto_optimize/1
with the file name as argument. This will prompt (with help) for the value of the
different options and flags.

e Alternatively, one can change what the above commands do by customizing each of them.
To this end, call customize_and_exec/1 with the file name as argument. In emacs this
can be done most easily by clicking on the corresponding button in the toolbar or in the
CiaoPP menus.

e The customization menus can be made to show more or less detail depending on the level
of expertise of the user. This can be configured in the customization menu itself.

18 The Ciao Prolog Preprocessor

2.1 Usage and interface (auto_interface)

e Library usage:
:- use_module(library(auto_interface)).
e Exports:
— Predicates:

auto_analyze/1, auto_optimize/1, auto_check_assert/1, customize/1,
customize_and_exec/1, again/0.

e Other modules used:
— Application modules:

ciaopp(preprocess_flags), ciaopp(driver), ciaopp(printer), ciaopp(menu_
generator).

— System library modules:
lists, aggregates, messages.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, mattr_global, basic_props,
basiccontrol, data_facts, exceptions, io_aux, io_basic, prolog_flags,
streams_basic, system_info, term_compare, term_typing, hiord_rt, debugger_
support.

2.2 Documentation on exports (auto_interface)

auto_analyze/1: PREDICATE
Usage: auto_analyze (F)

— Description: Analyze the module F with the default analysis options (use
customize (analyze) to change these options).

auto_optimize/1: PREDICATE
Usage: auto_optimize (F)
— Description: Optimize file F with default options (use customize(optimize) to
change these options).

auto_check_assert/1: PREDICATE
Usage: auto_check_assert (F)

— Description: Check the assertions in file F giving errors if assertions are violated (use
customize (check_assertions) to change these options).

customize/1: PREDICATE
Usage: customize (X)
— Description: Customize is used for change the values of a set of flags. These flags
are grouped into analyze, check assertions and optimize. X should take the values:
analyze, check_assertions or optimize.

Chapter 2: CiaoPP user menu interface 19

customize_and_exec/1: PREDICATE
Usage: customize_and_exec(File)

— Description: It is like doing customize(all), auto_analyze(File). Consider auto_
optimize/1 or auto_check_assertions/1 in proper cases.

again/0: PREDICATE
Usage:

— Description: Performs the last actions done by customize_and_exec/1, on the last
file previously analyzed, checked, or optimized

get_menu_configs/1: PREDICATE
Usage: get_menu_configs(X)

— Description: Returns a list of atoms in X with the name of stored configurations.
— The following properties should hold at call time:

X is a free variable. (var/1)
— The following properties should hold upon exit:
X is a list of atoms. (1ist/2)
save_menu_config/1: PREDICATE

Usage: save_menu_config(Name)
— Description: Save the current flags configuration under the Name key.
— The following properties should hold at call time:
Name is an atom. (atm/1)

remove_menu_config/1: PREDICATE
Usage: remove_menu_config(Name)

— Description: Remove the configuration stored with the Name key (the same provided
in save_menu_config/1).

— The following properties should hold at call time:
Name is an atom. (atm/1)

restore_menu_config/1: PREDICATE
Usage: restore_menu_config(Name)

— Description: Restore the configuration saved with the Name key (the same provided
in save_menu_config/1).

— The following properties should hold at call time:

Name is an atom. (atm/1)
show_menu_configs/0: PREDICATE
Usage:

— Description: Show all stored configurations.

20 The Ciao Prolog Preprocessor

show_menu_config/1: PREDICATE
Usage: show_menu_config(C)

— Description: Show specific configuration values pointed by C key (the same provided
in save_menu_config/1).

— The following properties should hold at call time:
C is an atom. (atm/1)

Chapter 3: Using Assertions for Preprocessing Programs 21

3 Using Assertions for Preprocessing Programs

Author(s): F. Bueno.
Version: 1.0#1011 (2005/3/15, 13:0:46 CET)
Version of last change: 0.7#33 (2000/3/28, 10:54:38 CEST)

This chapter explains the use of assertions to specify a program behaviour and properties
expected to hold of the program. It also clarifies the role of assertion-related declarations so
that a program can be statically preprocessed with CiaoPP.

CiaoPP starts a preprocessing session from a piece of code, annotated with assertions. The
code can be either a complete self-contained program or part of a larger program (e.g., a module,
or a user file which is only partial). The assertions annotating the code describe some properties
which the programmer requires to hold of the program. Assertions are used also to describe to
the static analyzer some properties of the interface of the code being preprocessed at a given
session with other parts of the program that code belongs to. In addition, assertions can be
used to provide information to the static analyzer, in order to guide it, and also to control
specialization and other program transformations.

This chapter explains the use of assertions in describing to CiaoPP: (1) the program specifi-
cation, (2) the program interface, and (3) additional information that might help static prepro-
cessing of the program.

In the following, the Ciao assertion language is briefly described and heavily used. In Chap-
ter 4 [The Ciao assertion package|, page 31, a complete reference description of assertions is
provided. More detailed explanations of the language can be found in [PBH97].

This chapter also introduces and uses properties, and among them (regular) types. See
Chapter 7 [Basic data types and properties|, page 53, for a concrete reference of (some of) the
Ciao properties. See Chapter 6 [Declaring regular types|, page 47, for a presentation of the Ciao
type language and an explanation on how you can write your own properties and types.

Most of the predicates used below which are not defined belong to the ISO-Prolog standard
[DEDC96]. The builtin (or primitive) constraints used have also become more or less de-facto
standard. For detailed descriptions of particular constraint logic programming builtins refer for

example to the CHIP [COS96], PrologIlV [PRO], and Ciao [BCC04] manuals.

3.1 Assertions

Predicate assertions can be used to declare properties of the execution states at the time of
calling a predicate and upon predicate success. Also, properties of the computation of the calls
to a predicate can be declared.

Assertions may be qualified by keywords check or trust. Assertions qualified with the
former—or not qualifed—are known as check assertions; those qualified with the latter are known
as trust assertions. Check assertions state the programmer’s intention about the program and
are used by the debugger to check for program inconsistencies. On the contrary, trust assertions
are “trusted” by CiaoPP tools.

[e The specification of a program is made of all check assertions for the program predicates. }

3.1.1 Properties of Success States

They are similar in nature to the postconditions used in program verification. They can be
expressed in our assertion language using the basic assertion:

22 The Ciao Prolog Preprocessor

:— success Goal => Postcond.

This assertion should be interpreted as, “for any call of the form Goal which succeeds, on
success Postcond should also hold” .

Note that, in contrast to other programming paradigms, in (C)LP calls to a predicate may
either succeed or fail. The postcondition stated in a success assertion only refers to successful
executions.

3.1.2 Restricting Assertions to a Subset of Calls

Sometimes we are interested in properties which refer not to all invocations of a predicate,
but rather to a subset of them. With this aim we allow the addition of preconditions (Precond)
to predicate assertions as follows: ‘Goal : Precond’.

For example, success assertions can be restricted and we obtain an assertion of the form:
:— success Goal : Precond => Postcond.

which should be interpreted as, “for any call of the form Goal for which Precond holds, if
the call succeeds then on success Postcond should also hold”.

3.1.3 Properties of Call States

It is also possible to use assertions to describe properties about the calls for a predicate which
may appear at run-time. An assertion of the form:

:— calls Goal : Cond.
must be interpreted as, “all calls of the form Goal should satisfy Cond”.

3.1.4 Properties of the Computation

Many other properties which refer to the computation of the predicate (rather than the input-
output behaviour) are not easily expressible using calls and success predicate assertions only.
Examples of properties of the computation which we may be interested in are: non-failure,
termination, determinacy, non-suspension, etc.

This sort of properties are expressed by an assertion of the form:
:— comp Goal : Precond + Comp-prop.

which must be interpreted as, “for any call of the form Goal for which Precond holds, Comp-
prop should also hold for the computation of Goal”. Again, the field ‘: Precond’ is optional.

3.1.5 Compound Assertions

In order to facilitate the writing of assertions, a compound predicate assertion can be used as
syntactic sugar for the above mentioned basic assertions. Each compound assertion is translated
into one or several basic assertions, depending on how many of the fields in the compound
assertion are given. The compound assertion is as follows.

:— pred Pred : Precond => Postcond + Comp-prop.
Each such compound assertion corresponds to: a success assertion of the form:
:— success Pred : Precond => Postcond.
if the pred assertion has a => field (and a : field). It also corresponds to a comp assertion of
the form:
:— comp Pred : Precond + Comp-prop.
if the pred assertion has a + field (and a : field).
All compound assertions given for the same predicate correspond to a single calls assertion.

This calls assertion states as properties of the calls to the predicate a disjunction of the
properties stated by the different compund assertions in their : field. Thus, it is of the form:

Chapter 3: Using Assertions for Preprocessing Programs 23

:- calls Pred : (Precondl ; ... ; Precondn).
for all the Precondi in the : fields of (all) the different pred assertions.

Note that when compound assertions are used, calls assertions are always implicitly gen-
erated. If you do not want the calls assertion to be generated (for example because the set
of assertions available does not cover all possible uses of the predicate) basic success or comp
assertions rather than compound (pred) assertions should be used.

3.1.6 Examples

Consider the classical gsort program for sorting lists. We can use the following assertion in

order to require that the output of procedure gsort be a list:
:— success gsort(A,B) => list(B).

Alternatively, we may require that if gsort is called with a list in the first argument position
and the call succeeds, then on success the second argument position should also be a list. This
is declared as follows:

:— success gsort(A,B) : list(A) => 1list(B).

The difference with respect to the previous assertion is that B is only expected to be a list
on success of predicate gsort/2 if A was a list at the call.

In addition, we may also require that in all calls to predicate gsort the first argument should
be a list. The following assertion will do:

:— calls gsort(A,B) : list(A).

The gsort procedure should be able to sort all lists. Thus, we also require that all calls to

it that have a list in the first argument and a variable in the second argument do not fail:
:— comp gsort(A,B) : (list(A) , var(B)) + does_not_fail.

Instead of the above basic assertions, the following compund one could be given:

:- pred gsort(A,B) : (list(A) , var(B)) => 1list(B) + does_not_fail.
which will be equivalent to:

:- calls gsort(A,B) : (list(A), var(B)).

:— success gsort(A,B) : (1ist(A), var(B)) => list(B).

:— comp gsort(A,B) : (list(A) , var(B)) + does_not_fail.

This will not allow to call gsort with anything else than a variable as second argument. If
this use of gsort is expected, one should have added the assertion:

:— pred gsort(A,B) : list(A) => 1list(B).

which, together with the above one, will imply:

:- calls gsort(A,B) : ((1list(A), var(B)) ; list(A)).

Then it is only required that A be a list.

3.2 Properties

Whereas each kind of assertion indicates when, i.e., in which states or sequences of states, to
check the given properties, the properties themselves define what to check. Properties are used
to say things such as “X is a list of integers,” “Y is ground,” “p(X) does not fail,” etc. and in
Ciao they are logic predicates, in the sense that the evaluation of each property either succeeds
or fails. The failure or success of properties typically needs to be determined at the time when
the assertions in which they appear are checked. Assertions can be checked both at compile-time
by CiaoPP and at run-time by Ciao itself (after the instrumentation of the program by CiaoPP).
In this section we will concentrate exclusively on run-time checking.

24 The Ciao Prolog Preprocessor

A property may be a predefined predicate in the language (such as integer (X)) or constraint
(such as X>5). Properties may include extra-logical predicates such as var (X)). Also, expressions
built using conjunctions of properties,! or, in principle, any predicate defined by the user, using
the full underlying CLP language. As an example, consider defining the predicate sorted (B) and
using it as a postcondition to check that a more involved sorting algorithm such as gsort (4,B)
produces correct results.

While user-defined properties allow for properties that are as general as allowed by the full
source language syntax, some limitations are useful in practice. Essentially, the behaviour of
the program should not change in a fundamental way depending on whether the run-time tests
are being performed or not. For example, turning on run-time checking should not introduce
non-termination in a program which terminates without run-time checking. To this end, it is
required that the user ensure that the execution of properties terminate for any possible initial
state. Also, checking a property should not change the answers computed by the program or
produce unexpected side-effects. Regarding computed answers, in principle properties are not
allowed to further instantiate their arguments or add new constraints. Regarding side-effects,
it is required that the code defining the property does not perform input/output, add/delete
clauses, etc. which may interfere with the program behaviour. It is the user’s responsability to
only use predicates meeting these conditions as properties. The user is required to identify in a
special way the predicates which he or she has determined to be legal properties. This is done
by means of a declaration of the form

:— prop Spec.
where Spec is a predicate specification in the form PredName/Arity.

Given the classes of assertions presented previously, there are two fundamental classes of
properties. The properties used in the Cond of calls assertions, Postcond of success assertions,
and Precond of success and comp assertions refer to a particular execution state and we refer
to them as properties of execution states. The properties used in the Comp-prop part of comp
assertions refer to a sequence of states and we refer to them as properties of computations.

Basic properties, including instantiation and compatibility state properties, types, and prop-
erties of computations (all discussed in Chapter 6 [Declaring regular types|, page 47) are docu-
mented in Chapter 7 [Basic data types and properties], page 53.

3.3 Preprocessing Units

The preprocessing unit is the piece of code that is made available to CiaoPP at a given
preprocessing session. Normally, this is a file, but not all the code of a program is necessarily
contained in one single file: in order to statically manipulate the code in a file, CiaoPP needs
to know the interactions of this code with other pieces of the program—probably scattered over
other files—, as well as what the user’s interaction with the code will be upon execution. This
is also done through the use of assertions.

If the preprocessing unit is self-contained the only interaction of its code (apart from calling
the builtin predicates of the language) is with the user. The user’s interaction with the program
consist in querying the program. The predicates that may be directly queried by the user are
entry points to the preprocessing unit.

Entry points can be declared in two ways: using a module declaration specifying the entry
points, or using one entry declaration for each entry point. If entry declarations are used, instead
of, or in addition to, the module declaration, they can also state properties which will hold at
the time the predicate is called.

However, if the preprocessing unit is not self-contained, but only part of a larger program,
then other interactions may occur. The interactions of the preprocessing unit include: the user’s

L Although disjunctions are also supported, we restrict our attention to only conjunctions.

Chapter 3: Using Assertions for Preprocessing Programs 25

queries, calls from other parts of the program to the unit code, calls to the unit code from unit
code which does not appear explicitely in the unit text, and calls from the unit code to other
parts of the program.

First, other parts of the program can call predicates defined in the preprocessing unit. CiaoPP
needs to know this information. It must be declared by specifying additional entry points,
together with those corresponding to the user’s queries.

Second, the preprocessing unit itself may contain meta-calls which may call any unspecified
predicate. All predicates that may be called in such a way should be declared also as entry points.
Additional entry points also occur when there are predicates defined in the preprocessing unit
which can be dynamically modified. In this case the code dynamically added can contain new
predicate calls. These calls should be declared also as entry points.

Note that all entry points to the preprocessing unit should be declared: entry points including
query calls that the user may issue to the program, or another part of the program can issue to
the unit, but also dynamic calls: goals that may be run within the unit which do not appear
explicitely in the unit text, i.e., from meta-predicates or from dynamic clauses which may be
asserted during execution. In all cases, entry declarations are used to declare entry points.?

Third, the unit code may call predicates defined in other parts of the program. The code
defining such predicates is termed foreign code, since it is foreign to the preprocessing unit. It is
important that CiaoPP knows information about how calls to foreign code will succeed (if they
succeed), in order to improve its accuracy. This can be done using trust declarations.

Also, trust declarations can be used to provide the preprocessor with extra information. They
can be used to describe calls to predicates defined within the preprocessing unit, in addition to
those describing foreign code. This can improve the information available to the preprocessor
and thus help it in its task. Trust declarations state properties that the programmer knows to
hold of the program.

The builtin predicates is one particular case of predicates the definitions of which are never
contained in the program itself. Therefore, preprocessing units never contain code to define the
builtins that they use. However, the Ciao Program Precompiler makes no assumptions on the
underlying language (except that it is constraint logic programming). Thus, all information on
the behaviour of the language builtins should be made available to it by means of assertions
(although this does not concern the application programmer who is going to preprocess a unit,
rather it concerns the system programmer when installing the Ciao Program Precompiler).

The rest of this document summarizes how assertions can be used to declare the preprocessing
unit interactions. It shows the use of entry and trust declarations in preprocessing programs
with CiaoPP.?

3.4 Foreign Code

A program preprocessing unit may make use of predicates defined in other parts of the
program. Such predicates are foreign to the preprocessing unit, i.e., their code is not in the unit
itself. In this case, CiaoPP needs to know which is the effect that such predicates may cause
on the execution of the predicates defined in the unit. For this purpose, trust declarations are
used.

Foreign code includes predicates defined in other modules which are used by the preprocessing
unit, predicates defined in other files which do not form part of the preprocessing unit but which

2 When the language supports a module system, entry points are implicitely declared by the
exported predicates. In this case entry declarations are only used for local predicates if there
are dynamic calls.

3 This manual concentrates on one particular use of the declarations for solving problems
related to compile-time program analysis. However, there are other possible solutions. For a
complete discussion of these see [BCHP96].

26 The Ciao Prolog Preprocessor

are called by it, builtin predicates* used by the code in the preprocessing unit, and code written
in a foreign language which will be linked with the program. All foreign calls (except to builtin
predicates) need to be declared.’

e The effect of calls to foreign predicates may be declared by using trust declarations for such
predicates.

Trust declarations have the following form:

:- trust success Goal : (Prop, ..., Prop)
=> (Prop, ..., Prop).

where Goal is an atom of the foreign predicate, with all arguments single distinct variables,
and Prop is an atom which declares a property of one (or several) of the goal variables.

The first list of properties states the information at the time of calling the goal and the second
one at the time of success of the goal. Thus, such a trust assertion declares that for any call to
the predicate where the properties in the first list hold, those of the second will also hold upon
success of the call.

Simplified versions of trust assertions can also be used, much the same as with entry decla-
rations. See Section 3.1 [Assertions|, page 21.

Trust declarations are a means to provide the preprocessor with extra information about the
program states. This information is guaranteed to hold, and for this reason the preprocessor
trusts it. Therefore, it should be used with great care, since if it is wrong the precompilation of
your program will possibly be wrong.

3.4.1 Examples

The following annotations describe the behavior of the predicate p/2 for two possible call
patterns:

:— trust success p/2 : def * free => def * def.
:— trust success p/2 : free * def => free * def.

This would allow performing the analysis even if the code for p/2 is not present. In that
case the corresponding success information in the annotation can be used (“trusted”) as success
substitution.

In addition, trust declarations can be used to improve the results of compile-time program
analysis when they are imprecise. This may improve the accuracy of the debugging, possibly
allowing it to find more bugs.

3.5 Dynamic Predicates

Predicate definitions can be augmented, reduced, and modified during program execution.
This is done through the database manipulation builtins, which include assert, retract,
abolish, and clause. These builtins (with the exception of clause) dynamically manipu-
late the program itself by adding to or removing clauses from it. Predicates that can be affected
by such builtins are called dynamic predicates.

4 However, builtin predicates are usually taken care of by the system programmer, and the
preprocessor, once installed, already “knows” them.

> However, if the language supports a module system, and the preprocessor is used in modular
analysis operation mode, trust declarations are imported from other modules and do not
need to be declared in the preprocessing unit.

Chapter 3: Using Assertions for Preprocessing Programs 27

There are at least two possible classes of dynamic predicates which behave differently from
the point of view of static manipulation. First, clauses can be asserted and/or retracted to
maintain an information database that the program uses. In this case, usually only facts are
asserted. Second, full clauses can be asserted for predicates which are also called within the
program.

The first class of dynamic predicates are declared by data declarations. The second class by
dynamic declarations. The form of both declarations is as follows:

:— data Spec, ..., Spec.
:— dynamic Spec, ..., Spec.
where Spec is a predicate specification in the form PredName/Arity.

e Dynamic predicates which are called must be declared by using a dynamic declaration. }

Of course, the preprocessor cannot know of the effect that dynamic clauses added to the
definition of a predicate may cause in the execution of that predicate. However, this effect can
be described to the preprocessor by adding trust declarations for the dynamic predicates.

e The effect of calls to predicates which are dynamically modified may be declared by using
trust declarations for such predicates.

3.6 Entry Points

In a preprocessing session (at least) one entry point to the preprocessing unit is required. It
plays a role during preprocessing similar to that of the query that is given to the program to
run. Several entry points may be given. Entry points are given to the preprocessor by means of
entry or module declarations.

If the preprocessing unit is a module, only the exported predicates can be queried. If the
preprocessing unit is not a module, all of its predicates can be queried: all the unit predicates
may be entry points to it. Entry declarations can then be used by the programmer to specify
additional information about the properties that hold of the arguments of a predicate call when
that predicate is queried.

Note that if the unit is not a module all of its predicates are considered entry points to the
preprocessor. However, if the unit incorporates some entry declarations the preprocessor will
act as if the predicates declared were the only entry points (the preprocessing session being valid
for a particular use of the unit code—that specified by the entry declarations given).

e All predicates that can be queried by the user and all predicates that can be called from
parts of the program which do not explicitely appear in the preprocessing unit should (but
need not) be declared as entry points by using entry declarations.

The entry declaration has the following form:
:- entry Goal : (Prop, ..., Prop).

where Goal is an atom of the predicate that may be called, with all arguments single distinct
variables, and Prop is an atom which declares a property of one (or several) of the goal variables.
The list of properties is optional.

There are alternative formats in which the properties can be given: as the arguments of Goal
itself, or as keywords of the declaration. For a complete reference of the syntax of assertions,
see Section 3.1 [Assertions], page 21.

28 The Ciao Prolog Preprocessor

3.6.1 Examples

Consider the following program:
append([], L, L).
append ([H|T], L, [HIR]) :- append(T, L, R).
It may be called in a classical way with the first two arguments bound to lists, and the third
argument a free variable. This can be annotated in any of the following three ways:
:- entry append(X,Y,Z) : (list(X), list(Y), var(Z)).
:- entry append/3 : list * list * var.
:- entry append(list,list,var).
Assume you have the following CLP program:
p(X,Y):- q(X,Y,2).
q(X,Y,2):- X = £(Y,Z), Y + Z = 3.
Assume that p/2 is the only entry point. If you include the following declaration:
:- entry p/2.
or, equivalently,
:— entry p(X,Y).
the code will be preprocessed as if goal p(X,Y) was called with the most general call pattern
(i.e., as if X and Y may have any two values, or no value at all—the variables being free).

However, if you know that p/2 will always be called with the first argument uniquely defined
and the second unconstrained, you can then provide more accurate information by introducing
one of the following declarations:

:— entry p(X,Y) : (def(X), free(Y)).
:- entry p(def,free).

Now assume that p/2 will always be called with the first argument bound to the compound
term f(A,B) where A is definite and B is unconstrained, and the second argument of p/2 is
unconstrained. The entry declaration for this call pattern is:

:- entry p(X,Y) : (X=£f(A,B), def(A), free(B), free(Y)).
If both call patterns are possible, the most accurate approach is to include both entry dec-
larations in the preprocessing unit. The preprocessor will then analyze the program for each

declaration. Another alternative is to include an entry declaration which approximates both call
patterns, such as one of the following two:

:— entry p(X,Y) : free(Y).
:- entry p(X,free).

which state that Y is known to be free, but nothing is known of X (since it may or may not
be definite).

3.7 Modules

Modules provide for encapsulation of code, in such a way that (some) predicates defined
in a module can be used by other parts of the program (possibly other modules), but other
(auxiliary) predicates can not. The predicates that can be used are exported by the module
defining them and imported by the module(s) which use(s) them. Thus, modules provide for a
natural declaration of the allowed entry points to a piece of a program.

A module is identified by a module declaration at the beginning of the file defining that
module. The module declaration has the following form:

Chapter 3: Using Assertions for Preprocessing Programs 29

:- module(Name, [Spec,...,Spec]).
where the module is named Name and it exports the predicates in the different Spec’s.

Note that such a module declaration is equivalent, for the purpose of static preprocessing, to
as many entry declarations of the form:

:— entry Spec.
as there are exported Spec’s.

3.8 Dynamic Calls

In addition to entry points there are other calls that may occur from within a piece of code
which do not explicitely appear in the code itself. Among these are metacalls, callbacks, and
calls from clauses which are asserted during program execution.

Metacalls are literals which call one of their arguments at run-time, converting at the time of
the call a term into a goal. Predicates in this class are not only call, but also bagof, findall,
setof, negation by failure, and once (single solution).

Metacalls may be static, and this kind of calls need not be declared. A static metacall is, for
example, once (p (X)), where the predicate being called is statically identifiable (since it appears
in the code). On the other hand, metacalls of the form call(Y) are dynamic, since the predicate
being called will only be determined at runtime.®

Callbacks are also metacalls. A callback occurs when a piece of a program uses a different
program module (or object) in such a way that it provides to that module the call that it should
issue upon return. Callbacks, much the same as metacalls, can be either dynamic or static. Only
the predicates of the preprocessing unit which can be dynamically called-back need be declared.

Clauses that are asserted during program execution correspond to code which is dinamically
created; thus, the preprocessor cannot be aware of such code during a (compile-time) preprocess-
ing session. The calls that may appear from the body of a clause which is dynamically created
and asserted are also dynamic calls.

e All dynamic calls must be declared by using entry declarations for the predicates that can
be called in a dynamic way.

3.8.1 Examples

Consider a program where you use the bagof predicate to collect all solutions to a goal, and
the program call looks like:
pX,...) = ..., bagof(P,X,L),
However, you know that, upon execution, only the predicates p/2 and q/3 will be called by
bagof, i.e., X will only be bound to terms with functors p/2 and q/3. Moreover, such terms will

have all of their arguments constrained to definite values. This information should be given to
the preprocessor using the declarations:

:- entry p(def,def).
:- entry q(def,def,def).

Assume you have a graphics library predicate menu_create/5 which creates a graphic menu.
The call must specify, among other things, the name of the menu, the menu items, and the
menu handler, i.e., a predicate which should be called upon the selection of a menu item. The
predicate is used as:

6 However, sometimes analysis techniques can be used to transform dynamic metacalls into
static ones.

30 The Ciao Prolog Preprocessor

top :- ..., menu_create(Menu,0,Items,Callback,[]),

but the program is coded so that there are only two menu handlers: app_menu/2 and edit_
menu/2. The first one handles menu items of the type app_item and the second one items of
the type edit_item. This should be declared with:

:- entry app_menu(gnd,app_item).
:— entry edit_menu(gnd,edit_item).

Let a program have a dynamic predicate dyn_calls/1 to which the program asserts clauses,
such that these clauses do only have in their bodies calls to predicates p/2 and q/3. This should
be declared with:

1— entry p/2.
:— entry q/3.

Moreover, if the programmer knows that every call to dyn_calls/1 which can appear in the
program is such that upon its execution the calls to p/2 and q/3 have all of their arguments
constrained to definite values, then the two entry declarations at the beginning of the examples
may be used.

3.9 Summary

To process CLP programs with the Ciao Program Precompiler the following guidelines might
be useful:

1. Add
:— use_package(assertions).
to your program.
2. Declare your specification of the program using calls, success, comp, or pred assertions.
3. Use entry declarations to declare all entry points to your program.

4. The preprocessor will notify you during the session of certain program points where a meta-
call appears that may call unknown (at compile-time) predicates.

Add entry declarations for all the predicates that may be dynamically called at such program
points.

5. Use data or dynamic declarations to declare all predicates that may be dynamically modi-
fied.

6. Add entry declarations for the dynamic calls that may occur from the code that the program
may dynamically assert.

7. Optionally, you can interact with the preprocessor using trust assertions.

For example, the preprocessor will notify you during the session of certain program points
where a call appears to an unknown (at compile-time) predicate.

Add trust declarations for such predicates.

Chapter 4: The Ciao assertion package 31

4 The Ciao assertion package

Author(s): Manuel Hermenegildo, Francisco Bueno, German Puebla.
Version: 1.11#309 (2005/3/16, 16:41:12 CET)
Version of last change: 1.5#8 (1999/12/9, 21:1:11 MET)

The assertions package adds a number of new declaration definitions and new operator
definitions which allow including program assertions in user programs. Such assertions can be
used to describe predicates, properties, modules, applications, etc. These descriptions can be
formal specifications (such as preconditions and post-conditions) or machine-readable textual
comments.

This module is part of the assertions library. It defines the basic code-related assertions,
i.e., those intended to be used mainly by compilation-related tools, such as the static analyzer
or the run-time test generator.

Giving specifications for predicates and other program elements is the main functionality
documented here. The exact syntax of comments is described in the autodocumenter (lpdoc
[Knu84,Her99]) manual, although some support for adding machine-readable comments in as-
sertions is also mentioned here.

There are two kinds of assertions: predicate assertions and program point assertions. All
predicate assertions are currently placed as directives in the source code, i.e., preceded by “:-".
Program point assertions are placed as goals in clause bodies.

4.1 More info

The facilities provided by the library are documented in the description of its component
modules. This documentation is intended to provide information only at a “reference manual”
level. For a more tutorial introduction to the subject and some more examples please see the
document “An Assertion Language for Debugging of Constraint Logic Programs (Technical
Report CLIP2/97.1)”. The assertion language implemented in this library is modeled after this
design document, although, due to implementation issues, it may differ in some details. The
purpose of this manual is to document precisely what the implementation of the library supports
at any given point in time.

4.2 Some attention points

e Formatting commands within text strings: many of the predicates defined in these mod-
ules include arguments intended for providing textual information. This includes titles,
descriptions, comments, etc. The type of this argument is a character string. In order for
the automatic generation of documentation to work correctly, this character string should
adhere to certain conventions. See the description of the docstring/1 type/grammar for
details.

e Referring to variables: In order for the automatic documentation system to work correctly,
variable names (for example, when referring to arguments in the head patterns of pred dec-
larations) must be surrounded by an @var command. For example, @var{VariableName}
should be used for referring to the variable “VariableName”, which will appear then for-
matted as follows: VariableName. See the description of the docstring/1 type/grammar
for details.

32 The Ciao Prolog Preprocessor

4.3 Usage and interface (assertions)

- N
e Library usage:

The recommended procedure in order to make use of assertions in user programs is to include
the assertions syntax library, using one of the following declarations, as appropriate:

:— module(...,...,[assertions]).
:- include(library(assertions)).
:- use_package([assertions]).

e Exports:
— Predicates:
check/1, trust/1, true/1, false/1.
e New operators defined:

=>/2[975,xfx], : : /2 [978,xfx], dec1/1 [1150,fx], decl/2 [1150,xfx], pred/1 [1150,fx], pred/2
[1150,xfx], prop/1 [1150,fx]|, prop/2 [1150,xfx|, modedef/1 [1150,fx]|, calls/1 [1150,fx],
calls/2 [1150,xfx|, success/1 [1150,fx|, success/2 [1150,xfx|, comp/1 [1150,fx]|, comp/2
[1150,xfx], entry/1 [1150,fx], exit/1 [1150,fx], exit/2 [1150,xfx].

e New declarations defined:

pred/1, pred/2, calls/1, calls/2, success/1, success/2, comp/1, comp/2, prop/1,
prop/2, entry/1, modedef/1, decl/1, decl/2, comment/2, exit/1, exit/2.

e Other modules used:
— System library modules:
assertions/assertions_props.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, mattr_global, basic_props,
basiccontrol, data_facts, exceptions, io_aux, io_basic, prolog_flags,
streams_basic, system_info, term_compare, term_typing, hiord_rt, debugger_
support.

4.4 Documentation on new declarations (assertions)

pred/1: DECLARATION
This assertion provides information on a predicate. The body of the assertion (its only
argument) contains properties or comments in the formats defined by assrt_body/1.

More than one of these assertions may appear per predicate, in which case each one
represents a possible “ mode” of use (usage) of the predicate. The exact scope of the
usage is defined by the properties given for calls in the body of each assertion (which
should thus distinguish the different usages intended). All of them together cover all
possible modes of usage.

For example, the following assertions describe (all the and the only) modes of usage of
predicate length/2 (see lists):

:— pred length(L,N) : list * var => list * integer

"Computes the length of L.".

:— pred length(L,N) : var * integer => list * integer

"Outputs L of length N.".

:— pred length(L,N) : list * integer => list * integer

Chapter 4: The Ciao assertion package 33

"Checks that L is of length N.".

Usage: :- pred(AssertionBody).
— The following properties should hold at call time:
AssertionBody is an assertion body. (assrt_body/1)

pred/2: DECLARATION
This assertion is similar to a pred/1 assertion but it is explicitely qualified. Non-qualified
pred/1 assertions are assumed the qualifier check.

Usage: :- pred(AssertionStatus, AssertionBody).
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is an assertion body. (assrt_body/1)
calls/1: DECLARATION

This assertion is similar to a pred/1 assertion but it only provides information about the
calls to a predicate. If one or several calls assertions are given they are understood to
describe all possible calls to the predicate.

For example, the following assertion describes all possible calls to predicate is/2 (see
arithmetic):

:- calls is(term,arithexpression).

Usage: :- calls(AssertionBody).
— The following properties should hold at call time:
AssertionBody is a call assertion body. (c_assrt_body/1)

calls/2: DECLARATION
This assertion is similar to a calls/1 assertion but it is explicitely qualified. Non-qualified
calls/1 assertions are assumed the qualifier check.

Usage: :- calls(AssertionStatus, AssertionBody).
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is a call assertion body. (c_assrt_body/1)
success/1: DECLARATION

This assertion is similar to a pred/1 assertion but it only provides information about the
answers to a predicate. The described answers might be conditioned to a particular way
of calling the predicate.

For example, the following assertion specifies the answers of the length/2 predicate if it
is called as in the first mode of usage above (note that the previous pred assertion already
conveys such information, however it also compelled the predicate calls, while the success
assertion does not):

34 The Ciao Prolog Preprocessor

:— success length(L,N) : list * var => list * integer.

Usage: :- success(AssertionBody).
— The following properties should hold at call time:
AssertionBody is a predicate assertion body. (s_assrt_body/1)

success/2: DECLARATION
This assertion is similar to a success/1 assertion but it is explicitely qualified. Non-
qualified success/1 assertions are assumed the qualifier check.

Usage: :- success(AssertionStatus, AssertionBody).
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is a predicate assertion body. (s_assrt_body/1)
comp/1: DECLARATION

This assertion is similar to a pred/1 assertion but it only provides information about the
global execution properties of a predicate (note that such kind of information is also con-
veyed by pred assertions). The described properties might be conditioned to a particular
way of calling the predicate.

For example, the following assertion specifies that the computation of append/3 (see
lists) will not fail if it is called as described (but does not compel the predicate to be
called that way):

:— comp append(Xs,Ys,Zs) : var * var * var + not_fail.

Usage: :- comp (AssertionBody).
— The following properties should hold at call time:
AssertionBody is a comp assertion body. (g_assrt_body/1)

comp/2: DECLARATION
This assertion is similar to a comp/1 assertion but it is explicitely qualified. Non-qualified
comp/1 assertions are assumed the qualifier check.

Usage: :- comp(AssertionStatus, AssertionBody).
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is a comp assertion body. (g_assrt_body/1)
prop/1: DECLARATION

This assertion is similar to a pred/1 assertion but it flags that the predicate being docu-
mented is also a “ property.”

Properties are standard predicates, but which are guaranteed to terminate for any possible
instantiation state of their argument(s), do not perform side-effects which may interfere
with the program behaviour, and do not further instantiate their arguments or add new
constraints.

Chapter 4: The Ciao assertion package 35

Provided the above holds, properties can thus be safely used as run-time checks. The
program transformation used in ciaopp for run-time checking guarantees the third re-
quirement. It also performs some basic checks on properties which in most cases are
enough for the second requirement. However, it is the user’s responsibility to guaran-
tee termination of the properties defined. (See also Chapter 6 [Declaring regular types],
page 47 for some considerations applicable to writing properties.)
The set of properties is thus a strict subset of the set of predicates. Note that properties
can be used to describe characteristics of arguments in assertions and they can also be
executed (called) as any other predicates.
Usage: :- prop(AssertionBody).
— The following properties should hold at call time:
AssertionBody is an assertion body. (assrt_body/1)

prop/2: DECLARATION
This assertion is similar to a prop/1 assertion but it is explicitely qualified. Non-qualified
prop/1 assertions are assumed the qualifier check.

Usage: :- prop(AssertionStatus, AssertionBody).
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is an assertion body. (assrt_body/1)
entry/1: DECLARATION

This assertion provides information about the external calls to a predicate. It is identical
syntactically to a calls/1 assertion. However, they describe only external calls, i.e., calls
to the exported predicates of a module from outside the module, or calls to the predicates
in a non-modular file from other files (or the user).

These assertions are trusted by the compiler. As a result, if their descriptions are erroneous
they can introduce bugs in programs. Thus, entry/1 assertions should be written with
care.

An important use of these assertions is in providing information to the compiler which it
may not be able to infer from the program. The main use is in providing information on
the ways in which exported predicates of a module will be called from outside the module.
This will greatly improve the precision of the analyzer, which otherwise has to assume
that the arguments that exported predicates receive are any arbitrary term.

Usage: :- entry(AssertionBody).
— The following properties should hold at call time:
AssertionBody is a call assertion body. (c_assrt_body/1)

modedef/1: DECLARATION
This assertion is used to define modes. A mode defines in a compact way a set of call
and success properties. Once defined, modes can be applied to predicate arguments in
assertions. The meaning of this application is that the call and success properties defined
by the mode hold for the argument to which the mode is applied. Thus, a mode is
conceptually a “property macro”.

The syntax of mode definitions is similar to that of pred declarations. For example, the
following set of assertions:

36 The Ciao Prolog Preprocessor

:— modedef +A : nonvar(A) # "A is bound upon predicate entry.".

:— pred p(+A,B) : integer(A) => ground(B).
is equivalent to:
:- pred p(A,B) : (nonvar(A),integer(A)) => ground(B)
"A is bound upon predicate entry.".
Usage: :- modedef (AssertionBody).
— The following properties should hold at call time:
AssertionBody is an assertion body. (assrt_body/1)

decl/1: DECLARATION
This assertion is similar to a pred/1 assertion but it is used for declarations instead than
for predicates.
Usage: :- decl(AssertionBody).
— The following properties should hold at call time:
AssertionBody is an assertion body. (assrt_body/1)

decl/2: DECLARATION
This assertion is similar to a decl/1 assertion but it is explicitely qualified. Non-qualified
decl/1 assertions are assumed the qualifier check.

Usage: :- decl(AssertionStatus, AssertionBody).
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is an assertion body. (assrt_body/1)
comment /2: DECLARATION

Usage: :- comment (Pred, Comment).
— Description: This assertion gives a text Comment for a given predicate Pred.
— The following properties should hold at call time:
Pred is a head pattern. (head_pattern/1)

Comment is a text comment with admissible documentation commands. The
usual formatting commands that are applicable in comment strings are defined
by stringcommand/1. See the lpdoc manual for documentation on comments.

(docstring/1)

exit/1: DECLARATION
No further documentation available for this predicate.

exit/2: DECLARATION
No further documentation available for this predicate.

Chapter 4: The Ciao assertion package 37

4.5 Documentation on exports (assertions)

check/1: PREDICATE
Usage: check(PropertyConjunction)

— Description: This assertion provides information on a clause program point (position
in the body of a clause). Calls to a check/1 assertion can appear in the body of a
clause in any place where a literal can normally appear. The property defined by
PropertyConjunction should hold in all the run-time stores corresponding to that
program point. See also Chapter 9 [Run-time checking of assertions|, page 73.

— The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(property_conjunction/1)

trust/1: PREDICATE
Usage: trust (PropertyConjunction)

— Description: This assertion also provides information on a clause program point. It is
identical syntactically to a check/1 assertion. However, the properties stated are not
taken as something to be checked but are instead trusted by the compiler. While the
compiler may in some cases detect an inconsistency between a trust/1 assertion and
the program, in all other cases the information given in the assertion will be taken
to be true. As a result, if these assertions are erroneous they can introduce bugs in
programs. Thus, trust/1 assertions should be written with care.

An important use of these assertions is in providing information to the compiler which
it may not be able to infer from the program (either because the information is not
present or because the analyzer being used is not precise enough). In particular,
providing information on external predicates which may not be accessible at the time
of compiling the module can greatly improve the precision of the analyzer. This can
be easily done with trust assertion.
— The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(property_conjunction/1)

true/1: PREDICATE
Usage: true(PropertyConjunction)

— Description: This assertion is identical syntactically to a check/1 assertion. However,
the properties stated have been proved to hold by the analyzer. Thus, these assertions
often represent the analyzer output.

— The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(property_conjunction/1)

38 The Ciao Prolog Preprocessor

false/1: PREDICATE
Usage: false(PropertyConjunction)

— Description: This assertion is identical syntactically to a check/1 assertion. However,
the properties stated have been proved not to hold by the analyzer. Thus, these
assertions often represent the analyzer output.

— The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(property_conjunction/1)

Chapter 5: Types and properties related to assertions 39

5 Types and properties related to assertions

Author(s): Manuel Hermenegildo.
Version: 1.11#:309 (2005/3/16, 16:41:12 CET)
Version of last change: 1.7#156 (2001/11/24, 13:23:30 CET)

This module is part of the assertions library. It provides the formal definition of the
syntax of several forms of assertions and describes their meaning. It does so by defining types
and properties related to the assertions themselves. The text describes, for example, the overall
fields which are admissible in the bodies of assertions, where properties can be used inside these
bodies, how to combine properties for a given predicate argument (e.g., conjunctions) , etc. and
provides some examples.

5.1 Usage and interface (assertions_props)

e Library usage:
:- use_module(library(assertions_props)).
e Exports:
— Properties:
head_pattern/1, nabody/1, docstring/1.
— Regular Types:

assrt_body/1, complex_arg_property/1, property_conjunction/1, property_
starterm/1, complex_goal_property/1, dictionary/1, c_assrt_body/1, s_assrt_
body/1, g_assrt_body/1, assrt_status/1, assrt_type/l, predfunctor/1,
propfunctor/1.

e Other modules used:
— System library modules:
dcg_expansion.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, mattr_global, basic_props,
basiccontrol, data_facts, exceptions, io_aux, io_basic, prolog_flags,
streams_basic, system_info, term_compare, term_typing, hiord_rt, debugger_

support.
J
5.2 Documentation on exports (assertions_props)
assrt_body/1: REGTYPE

This predicate defines the different types of syntax admissible in the bodies of pred/1,
decl/1, etc. assertions. Such a body is of the form:

Pr [:: DP] [: CP] [=> AP] [+ GP] [# CO]

where (fields between [...] are optional):

e Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

40 The Ciao Prolog Preprocessor

e DP is a (possibly empty) complex argument property (complex_arg_property/1)
which expresses properties which are compatible with the predicate, i.e., instantiations
made by the predicate are compatible with the properties in the sense that applying
the property at any point to would not make it fail.

e CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

e AP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the answers to the predicate (if the predicate succeeds). These only
apply if the (possibly empty) properties given for calls in the assertion hold.

e GP is a (possibly empty) complex goal property (complex_goal_property/1) which
applies to the whole execution of a call to the predicate. These only apply if the
(possibly empty) properties given for calls in the assertion hold.

e CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

See the 1pdoc manual for documentation on assertion comments.

Usage: assrt_body (X)
— Description: X is an assertion body.

head_pattern/1: PROPERTY
A head pattern can be a predicate name (functor/arity) (predname/1) or a term. Thus,
both p/3 and p(A,B,C) are valid head patterns. In the case in which the head pattern is
a term, each argument of such a term can be:

e A wvariable. This is useful in order to be able to refer to the correspond-
ing argument positions by name within properties and in comments. Thus,
p(Input,Parameter,Qutput) is a valid head pattern.

13

e A variable, as above, but preceded by a * mode.” This mode determines in a
compact way certain call or answer properties. For example, the head pattern
p(Input,+Parameter,Output) is valid, as long as +/1 is declared as a mode.

Acceptable modes
are documented in library(basicmodes) and library(isomodes). User defined
modes are documented in modedef/1.

e Any term. In this case this term determines the instantiation state of the correspond-

ing argument position of the predicate calls to which the assertion applies.

4 9

e A ground term preceded by a “ mode.” The ground term determines a property of
the corresponding argument. The mode determines if it applies to the calls and/or
the successes. The actual property referred to is that given by the term but with
one more argument added at the beginning, which is a new variable which, in a
rewriting of the head pattern, appears at the argument position occupied by the term.
For example, the head pattern p(Input,+list(int),0Output) is valid for mode +/1
defined in 1ibrary (isomodes), and equivalent in this case to having the head pattern
p(Input,A,Qutput) and stating that the property 1ist(A,int) holds for the calls
of the predicate.

“

e Any term preceded by a “ mode.” In this case, only one variable is admitted,
it has to be the first argument of the mode, and it represents the argument po-
sition. I.e., it plays the role of the new variable mentioned above. Thus, no
rewriting of the head pattern is performed in this case. For example, the head
pattern p(Input,+(Parameter,list(int)),0Output) is valid for mode +/2 defined
in library(isomodes), and equivalent in this case to having the head pattern

Chapter 5: Types and properties related to assertions 41

p(Input,Parameter,Output) and stating that the property 1list (Parameter,int)
holds for the calls of the predicate.

Usage: head_pattern(Pr)
— Description: Pr is a head pattern.

complex_arg_property/1: REGTYPE
complex_arg_property(Props)
Props is a (possibly empty) complex argument property. Such properties can appear in
two formats, which are defined by property_conjunction/1 and property_starterm/1
respectively. The two formats can be mixed provided they are not in the same field of an
assertion. L.e., the following is a valid assertion:

:- pred foo(X,Y) : nonvar * var => (ground(X) ,ground(Y)).
Usage: complex_arg_property (Props)
— Description: Props is a (possibly empty) complex argument property

property_conjunction/1: REGTYPE
This type defines the first, unabridged format in which properties can be expressed in the
bodies of assertions. It is essentially a conjunction of properties which refer to variables.
The following is an example of a complex property in this format:

e (integer(X),list(Y,integer)): X has the property integer/1 and Y has the prop-
erty 1ist/2, with second argument integer.

Usage: property_conjunction(Props)
— Description: Props is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument.

property_starterm/1: REGTYPE

This type defines a second, compact format in which properties can be expressed in the
bodies of assertions. A property_starterm/1 is a term whose main functor is */2 and,
when it appears in an assertion, the number of terms joined by */2 is exactly the arity of
the predicate it refers to. A similar series of properties as in property_conjunction/1
appears, but the arity of each property is one less: the argument position to which they
refer (first argument) is left out and determined by the position of the property in the
property_starterm/1. The idea is that each element of the */2 term corresponds to a
head argument position. Several properties can be assigned to each argument position by
grouping them in curly brackets. The following is an example of a complex property in
this format:

e integer * list(integer): the first argument of the procedure (or function, or ...)
has the property integer/1 and the second one has the property 1list/2, with second
argument integer.

e {integer,var} * list(integer): the first argument of the procedure (or function,
or ...) has the properties integer/1 and var/1 and the second one has the property
list/2, with second argument integer.

Usage: property_starterm(Props)

42 The Ciao Prolog Preprocessor

— Description: Props is either a term or several terms separated by */2. The main
functor of each of those terms corresponds to that of the definition of a property, and
the arity should be one less than in the definition of such property. All arguments of
each such term are ground.

complex_goal_property/1: REGTYPE
complex_goal_property(Props)

Props is a (possibly empty) complex goal property. Such properties can be either a term
or a conjunction of terms. The main functor and arity of each of those terms corresponds
to the definition of a property. Such properties apply to all executions of all goals of the
predicate which comply with the assertion in which the Props appear.

The arguments of the terms in Props are implicitely augmented with a first argument
which corresponds to a goal of the predicate of the assertion in which the Props appear.
For example, the assertion

:— comp var(A) + not_further_inst(4).

has property not_further_inst/1 as goal property, and establishes that in all executions
of var (A) it should hold that not_further_inst(var(A),A).

Usage: complex_goal_property(Props)

— Description: Props is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. A first
implicit argument in such terms identifies goals to which the properties apply.

nabody/1: PROPERTY
Usage: nabody (ABody)

— Description: ABody is a normalized assertion body.

dictionary/1: REGTYPE
Usage: dictionary(D)

— Description: D is a dictionary of variable names.

c._assrt_body/1: REGTYPE
This predicate defines the different types of syntax admissible in the bodies of call/1,
entry/1, etc. assertions. The following are admissible:

Pr : CP [# CO]

where (fields between [...] are optional):
e CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.
e CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

Chapter 5: Types and properties related to assertions 43

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.
Usage: c_assrt_body (X)

— Description: X is a call assertion body.

s_assrt_body/1: REGTYPE
This predicate defines the different types of syntax admissible in the bodies of pred/1,
func/1, etc. assertions. The following are admissible:

Pr : CP => AP # CO
Pr : CP => AP

Pr => AP # CO

Pr => AP

where:

e Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

e CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

e AP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the answers to the predicate (if the predicate succeeds). These only
apply if the (possibly empty) properties given for calls in the assertion hold.

e CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.
Usage: s_assrt_body (X)

— Description: X is a predicate assertion body.

g_assrt_body/1: REGTYPE
This predicate defines the different types of syntax admissible in the bodies of comp/1
assertions. The following are admissible:

Pr : CP + GP # CO
Pr : CP + GP

Pr + GP # CO

Pr + GP

where:

e Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

e CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

e GP contains (possibly empty) complex goal property (complex_goal_property/1)
which applies to the whole execution of a call to the predicate. These only apply if
the (possibly empty) properties given for calls in the assertion hold.

44 The Ciao Prolog Preprocessor

e CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.
Usage: g_assrt_body (X)

— Description: X is a comp assertion body.

assrt_status/1: REGTYPE
The types of assertion status. They have the same meaning as the program-point asser-
tions, and are as follows:

assrt_status(true).
assrt_status(false).
assrt_status(check).
assrt_status(checked) .
assrt_status(trust).

Usage: assrt_status(X)
— Description: X is an acceptable status for an assertion.

assrt_type/1: REGTYPE
The admissible kinds of assertions:

assrt_type (pred) .
assrt_type (prop) .
assrt_type(decl).
assrt_type(func).
assrt_type(calls).
assrt_type(success).
assrt_type (comp) .
assrt_type(entry).
assrt_type(exit).
assrt_type(modedef) .

Usage: assrt_type(X)
— Description: X is an admissible kind of assertion.

predfunctor/1: REGTYPE
Usage: predfunctor (X)

— Description: X is a type of assertion which defines a predicate.

propfunctor/1: REGTYPE
Usage: propfunctor (X)

— Description: X is a type of assertion which defines a property.

Chapter 5: Types and properties related to assertions 45

docstring/1: PROPERTY
Usage: docstring(String)

— Description: String is a text comment with admissible documentation commands.
The usual formatting commands that are applicable in comment strings are defined
by stringcommand/1. See the 1pdoc manual for documentation on comments.

46

The Ciao Prolog Preprocessor

Chapter 6: Declaring regular types 47

6 Declaring regular types

Author(s): Manuel Hermenegildo, Pedro Lopez, Francisco Bueno.
Version: 1.11#309 (2005/3/16, 16:41:12 CET)
Version of last change: 1.11#306 (2005/3/3, 18:52:55 CET)

This library package adds some new declaration definitions and new operator definitions to
user programs. These new declarations and operators provide some very simple syntactic sugar
to support regular type definitions in source code. Regular types are just properties which have
the additional characteristic of being regular types (basic_props:regtype/1).

For example, this library package allows writing:
:— regtype tree(X) # "X is a tree.".

instead of the more combersome:
:— prop tree(X) + regtype # "X is a tree.".

Regular types can be used as properties to describe predicates and play an essential role in
program debugging (see the Ciao Prolog preprocessor (ciaopp) manual).

In this chapter we explain some general considerations worth taking into account when writing
properties in general, not just regular types. The exact syntax of regular types is also described.

6.1 Defining properties

Given the classes of assertions in the Ciao assertion language, there are two fundamental
classes of properties. Properties used in assertions which refer to execution states (i.e., calls/1,
success/1, and the like) are called properties of execution states. Properties used in asser-
tions related to computations (i.e., comp/1) are called properties of computations. Different
considerations apply when writing a property of the former or of the later kind.

Consider a definition of the predicate string_concat/3 which concatenates two character
strings (represented as lists of ASCII codes):

string_concat([],L,L).
string_concat ([X|Xs],L, [XINL]):- string_concat(Xs,L,NL).

Assume that we would like to state in an assertion that each argument “is a list of inte-
gers.” However, we must decide which one of the following two possibilities we mean exactly:
“the argument is instantiated to a list of integers” (let us call this property instantiated_
to_intlist/1), or “if any part of the argument is instantiated, this instantiation must be
compatible with the argument being a list of integers” (we will call this property compatible_
with_intlist/1). For example, instantiated_to_intlist/1 should be true for the terms []
and [1,2], but should not for X, [a,2], and [X,2]. In turn, compatible_with_intlist/1
should be true for [1, X, [1,2], and [X,2], but should not be for [X|1], [a,2], and 1. We
refer to properties such as instantiated_to_intlist/1 above as instantiation properties and
to those such as compatible_with_intlist/1 as compatibility properties (corresponding to the
traditional notions of “instantiation types” and “compatibility types”).

It turns out that both of these notions are quite useful in practice. In the example above, we
probably would like to use compatible_with_intlist/1 to state that on success of string_
concat/3 all three argument must be compatible with lists of integers in an assertion like:

:- success string_concat(A,B,C) => (compatible_with_intlist(A),
compatible_with_intlist(B),
compatible_with_intlist(C)).

48 The Ciao Prolog Preprocessor

With this assertion, no error will be flagged for a call to string_concat/3 such
as string_concat([20],L,R), which on success produces the resulting atom string_
concat ([20],L, [20|L]), but a call string_concat([],a,R) would indeed flag an error.

On the other hand, and assuming that we are running on a Prolog system, we would probably
like to use instantiated_to_intlist/1 for sumlist/2 as follows:

:- calls sumlist(L,N) : instantiated_to_intlist(L).

sumlist([],0).

sumlist ([X|R],S) :- sumlist(R,PS), S is PS+X.
to describe the type of calls for which the program has been designed, i.e., those in which the
first argument of sumlist/2 is indeed a list of integers.

The property instantiated_to_intlist/1 might be written as in the following (Prolog)
definition:

:— prop instantiated_to_intlist/1.

instantiated_to_intlist(X) :-
nonvar (X), instantiated_to_intlist_aux(X).

instantiated_to_intlist_aux([]).
instantiated_to_intlist_aux([X|T]) :-
integer(X), instantiated_to_intlist(T).
(Recall that the Prolog builtin integer/1 itself implements an instantiation check, failing if
called with a variable as the argument.)
The property compatible_with_intlist/1 might in turn be written as follows (also in
Prolog):

:— prop compatible_with_intlist/1.

compatible_with_intlist(X) :- var(X).
compatible_with_intlist(X) :-
nonvar(X), compatible_with_intlist_aux(X).

compatible_with_intlist_aux([]).
compatible_with_intlist_aux([X|T]) :-
int_compat(X), compatible_with_intlist(T).

int_compat(X) :- var(X).
int_compat (X) :- nonvar(X), integer(X).
Note that these predicates meet the criteria for being properties and thus the prop/1 decla-
ration is correct.

Ensuring that a property meets the criteria for “not affecting the computation” can sometimes
make its coding somewhat tedious. In some ways, one would like to be able to write simply:

intlist([1).

intlist([X|R]) :- int(X), intlist(R).
(Incidentally, note that the above definition, provided that it suits the requirements for being a
property and that int/1 is a regular type, meets the criteria for being a regular type. Thus, it
could be declared :- regtype intlist/1.)

But note that (independently of the definition of int/1) the definition above is not the

correct instantiation check, since it would succeed for a call such as intlist(X). In fact, it is
not strictly correct as a compatibility property either, because, while it would fail or succeed

Chapter 6: Declaring regular types 49

as expected, it would perform instantiations (e.g., if called with intlist (X) it would bind X to
[]). In practice, it is convenient to provide some run-time support to aid in this task.

The run-time support of the Ciao system (see Chapter 9 [Run-time checking of assertions],
page 73) ensures that the execution of properties is performed in such a way that properties
written as above can be used directly as instantiation checks. Thus, writing:

:- calls sumlist(L,N) : intlist(L).

has the desired effect. Also, the same properties can often be used as compatibility checks by
writing them in the assertions as compat (Property) (basic_props:compat/1). Thus, writing:

:- success string_concat(A,B,C) => (compat(intlist(A)),
compat (intlist(B)),
compat (intlist(C))).

also has the desired effect.

As a general rule, the properties that can be used directly for checking for compatibility should
be downwards closed, i.e., once they hold they will keep on holding in every state accessible in
forwards execution. There are certain predicates which are inherently instantiation checks and
should not be used as compatibility properties nor appear in the definition of a property that
is to be used with compat. Examples of such predicates (for Prolog) are ==, ground, nonvar,
integer, atom, >, etc. as they require a certain instantiation degree of their arguments in order
to succeed.

In contrast with properties of execution states, properties of computations refer to the entire
execution of the call(s) that the assertion relates to. One such property is, for example, not_
fail/1 (note that although it has been used as in :- comp append(Xs,Ys,Zs) + not_fail,
it is in fact read as not_fail(append(Xs,Ys,Zs)); see assertions_props:complex_goal_
property/1). For this property, which should be interpreted as “execution of the predicate
either succeeds at least once or loops,” we can use the following predicate not_fail/1 for run-
time checking;:

not_fail(Goal) :-
if (call(Goal),
true, %% then
warning(Goal)). %% else
where the warning/1 (library) predicate simply prints a warning message.

In this simple case, implementation of the predicate is not very difficult using the (non-

standard) if/3 builtin predicate present in many Prolog systems.

However, it is not so easy to code predicates which check other properties of the computation
and we may in general need to program a meta-interpreter for this purpose.

50 The Ciao Prolog Preprocessor

6.2 Usage and interface (regtypes)

- N
Library usage:

:- use_package (regtypes) .
or
:- module(...,...,[regtypes]).
e New operators defined:
regtype/1 [1150,fx], regtype/2 [1150,xfx].
e New declarations defined:
regtype/1, regtype/2.
e Other modules used:
— System library modules:
assertions/assertions_props.
— Internal (engine) modules:
term_basic.

6.3 Documentation on new declarations (regtypes)

regtype/1: DECLARATION
This assertion is similar to a pred assertion but it flags that the predicate being documented
is also a “ regular type.” This allows for example checking whether it is in the class of types
supported by the type checking and inference modules. Currently, types are properties
whose definitions are regular programs.

A regular program is defined by a set of clauses, each of the form:
p(x, v_1, ..., v_n) :- body_1, ..., body_k.
where:

1. xis a term whose variables (which are called term variables) are unique, i.e., it is not
allowed to introduce equality constraints between the variables of x.

For example, p(£ (X, Y)) :- ... is valid, but p(£ (X, X)) :- ... is not.

2. in all clauses defining p/n+1 the terms x do not unify except maybe for one single
clause in which x is a variable.

3. n>= 0 and p/n is a parametric type functor (whereas the predicate defined by the
clauses is p/n+1).

4. v_1, ..., v_n are unique variables, which are called parametric variables.
5. FEach body_i is of the form:
1. t(z) where z is one of the term variables and t is a regular type expression;

2. q(y, t_1, ..., t_m) where m >= 0, g/m is a parametric type functor, not in the
set of functors =/2, /2, ./3.
t_1, ..., t_m are reqular type expressions, and y is a term variable.

6. Each term variable occurs at most once in the clause’s body (and should be as the
first argument of a literal).

A reqular type expression is either a parametric variable or a parametric type functor
applied to some of the parametric variables.

Chapter 6: Declaring regular types 51

A parametric type functor is a regular type, defined by a regular program, or a basic type.
Basic types are defined in Chapter 7 [Basic data types and properties], page 53.

The set of types is thus a well defined subset of the set of properties. Note that types
can be used to describe characteristics of arguments in assertions and they can also be
executed (called) as any other predicates.

Usage: :- regtype (AssertionBody).
— The following properties should hold at call time:
AssertionBody is an assertion body. (assrt_body/1)

regtype/2: DECLARATION
This assertion is similar to a regtype/1 assertion but it is explicitely qualified. Non-
qualified regtype/1 assertions are assumed the qualifier check. Note that checking regular
type definitions should be done with the ciaopp preprocessor.

Usage: :- regtype(AssertionStatus, AssertionBody).
— The following properties should hold at call time:
AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is an assertion body. (assrt_body/1)

52

The Ciao Prolog Preprocessor

Chapter 7: Basic data types and properties 53

7 Basic data types and properties

Author(s): Daniel Cabeza, Manuel Hermenegildo.
Version: 1114309 (2005/3/16, 16:41:12 CET)
Version of last change: 1.11#307 (2005/3/10, 13:35:50 CET)

This library contains the set of basic properties used by the builtin predicates, and which
constitute the basic data types and properties of the language. They can be used both as type
testing builtins within programs (by calling them explicitly) and as properties in assertions.

7.1 Usage and interface (basic_props)

e Library usage:
These predicates are builtin in Ciao, so nothing special has to be done to use them.
e Exports:
— Properties:

member/2, compat/2, inst/2, iso/1, not_further_inst/2, sideff/2, regtype/1,
native/1, native/2, eval/1, equiv/2.

— Regular Types:

term/1, int/1, nnegint/1, f1t/1, num/1, atm/1, struct/1, gnd/1, constant/1,
callable/1, operator_specifier/1, 1list/1, 1list/2, sequence/2, sequence_or_
list/2, character_code/1, string/1, predname/1, atm_or_atm_list/1.

e Other modules used:
— System library modules:
terms_check.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, mattr_global, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

7.2 Documentation on exports (basic_props)

term/1: REGTYPE

The most general type (includes all possible terms).
General properties: term(X)
— The following properties hold globally:

term(X) is side-effect free. (sideff/2)
term(X)
— The following properties hold globally:
term(X) is evaluable at compile-time. (eval/1)
term(X)

— The following properties hold globally:
term(X) is equivalent to true. (equiv/2)

Usage: term(X)

54 The Ciao Prolog Preprocessor

— Description: X is any term.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

int/1: REGTYPE
The type of integers. The range of integers is [-272147483616, 2°2147483616). Thus
for all practical purposes, the range of integers can be considered infinite.

General properties: int (T)
— The following properties hold globally:
int (T) is side-effect free. (sideff/2)

int (T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:
int (T) is evaluable at compile-time. (eval/1)

Usage: int (T)
— Description: T is an integer.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

nnegint/1: REGTYPE
The type of non-negative integers, i.e., natural numbers.

General properties: nnegint (T)
— The following properties hold globally:
nnegint (T) is side-effect free. (sideff/2)

nnegint (T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:
nnegint (T) is evaluable at compile-time. (eval/1)

nnegint (T)
— The following properties hold upon exit:
T is currently ground (it contains no variables). (ground/1)

Usage: nnegint (T)
— Description: T is a non-negative integer.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

Chapter 7: Basic data types and properties 55

fit/1: REGTYPE
The type of floating-point numbers. The range of floats is the one provided by the C
double type, typically [4.9e-324, 1.8e+308] (plus or minus). There are also three spe-
cial values: Infinity, either positive or negative, represented as 1.0e1000 and -1.0e1000;
and Not-a-number, which arises as the result of indeterminate operations, represented as
0.Nan

General properties: £1t(T)
— The following properties hold globally:
£1t(T) is side-effect free. (sideff/2)

£1t(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:
£1t(T) is evaluable at compile-time. (eval/1)

£f1£(T)
— The following properties hold upon exit:
T is currently ground (it contains no variables). (ground/1)

Usage: £1t(T)
— Description: T is a float.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

num/1: REGTYPE
The type of numbers, that is, integer or floating-point.

General properties: num(T)
— The following properties hold globally:
num(T) is side-effect free. (sideff/2)

num (T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:
num(T) is evaluable at compile-time. (eval/1)

Usage: num(T)
— Description: T is a number.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

atm/1: REGTYPE
The type of atoms, or non-numeric constants. The size of atoms is unbound.

General properties: atm(T)
— The following properties hold globally:
atm(T) is side-effect free. (sideff/2)

o6

atm(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.
then the following properties hold globally:
atm(T) is evaluable at compile-time.
atm(T)
— The following properties hold upon exit:
T is currently ground (it contains no variables).
Usage: atm(T)
— Description: T is an atom.
— The following properties hold globally:

This predicate is understood natively by CiaoPP.

struct /1:

The Ciao Prolog Preprocessor

(nonvar/1)

(eval/1)

(ground/1)

(native/1)

REGTYPE

The type of compound terms, or terms with non-zeroary functors. By now there is a limit

of 255 arguments.
General properties: struct(T)
— The following properties hold globally:
struct(T) is side-effect free.

struct(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.
then the following properties hold globally:
struct (T) is evaluable at compile-time.

struct (T)
— The following properties hold upon exit:
T is currently a term which is not a free variable.

Usage: struct (T)
— Description: T is a compound term.
— The following properties hold globally:

This predicate is understood natively by CiaoPP.

gnd/1:
The type of all terms without variables.
General properties: gnd (T)
— The following properties hold globally:
gnd (T) is side-effect free.

gnd (T)
— If the following properties hold at call time:
T is currently ground (it contains no variables).
then the following properties hold globally:
gnd (T) is evaluable at compile-time.

(sideff/2)

(nonvar/1)

(eval/1)

(nonvar/1)

(native/1)

REGTYPE

(sideff/2)

(ground/1)

(eval/1)

Chapter 7: Basic data types and properties

gnd(T)
— The following properties hold upon exit:
T is currently ground (it contains no variables).
Usage: gnd(T)
— Description: T is ground.
— The following properties hold globally:

This predicate is understood natively by CiaoPP.

constant /1:
General properties: constant (T)

— The following properties hold globally:
constant (T) is side-effect free.
constant (T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.
then the following properties hold globally:
constant (T) is evaluable at compile-time.

constant (T)
— The following properties hold upon exit:
T is currently ground (it contains no variables).

Usage: constant (T)

— Description: T is an atomic term (an atom or a number).

callable/1:
General properties: callable(T)

— The following properties hold globally:
callable(T) is side-effect free.
callable(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.
then the following properties hold globally:
callable(T) is evaluable at compile-time.
callable(T)
— The following properties hold upon exit:

T is currently a term which is not a free variable.

Usage: callable(T)

o7

(ground/1)

(native/1)

REGTYPE

(sideff/2)

(nonvar/1)

(eval/1)

(ground/1)

REGTYPE

(sideff/2)

(nonvar/1)

(eval/1)

(nonvar/1)

— Description: T is a term which represents a goal, i.e., an atom or a structure.

58 The Ciao Prolog Preprocessor

operator_specifier/1: REGTYPE
The type and associativity of an operator is described by the following mnemonic atoms:

xfx Infix, non-associative: it is a requirement that both of the two subexpressions
which are the arguments of the operator must be of lower precedence than
the operator itself.

xfy Infix, right-associative: only the first (left-hand) subexpression must be of
lower precedence; the right-hand subexpression can be of the same precedence
as the main operator.

yfx Infix, left-associative: same as above, but the other way around.

fx Prefix, non-associative: the subexpression must be of lower precedence than
the operator.

fy Prefix, associative: the subexpression can be of the same precedence as the
operator.

xf Postfix, non-associative: the subexpression must be of lower precedence than
the operator.

yf Postfix, associative: the subexpression can be of the same precedence as the
operator.

General properties: operator_specifier (X)
— The following properties hold globally:
operator_specifier(X) is side-effect free. (sideff/2)

operator_specifier (X)
— If the following properties hold at call time:
X is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:
operator_specifier(X) is evaluable at compile-time. (eval/1)
operator_specifier(T)
— The following properties hold upon exit:
T is currently ground (it contains no variables). (ground/1)
Usage: operator_specifier(X)
— Description: X specifies the type and associativity of an operator.

list/1: REGTYPE
A list is formed with successive applications of the functor ’.’/2, and its end is the atom
[1. Defined as

list([]).
list([_1IL]) :-
list(L).

General properties: 1ist (L)
— The following properties hold globally:
list (L) is side-effect free. (sideff/2)

list (L)

Chapter 7: Basic data types and properties

— If the following properties hold at call time:
L is currently ground (it contains no variables).
then the following properties hold globally:
list (L) is evaluable at compile-time.

1ist(T)
— The following properties hold upon exit:

T is currently a term which is not a free variable.

Usage: 1ist (L)
— Description: L is a list.

list /2:
list(L, T)
L is a list, and for all its elements, T holds.
Meta-predicate with arguments: 1ist(?7,pred(1)).
General properties: 1ist (L, T)
— The following properties hold globally:
list(L,T) is side-effect free.

list(L, T)
— If the following properties hold at call time:
L is currently ground (it contains no variables).
T is currently ground (it contains no variables).
then the following properties hold globally:
list(L,T) is evaluable at compile-time.

list(X, T)
— The following properties hold upon exit:

X is currently a term which is not a free variable.

T is currently ground (it contains no variables).

Usage: list(L, T)
— Description: L is a list of Ts.

member/2:
General properties: member (X, L)

— The following properties hold globally:
member (X,L) is side-effect free.
member (X, L)
— If the following properties hold at call time:
L is a list.
then the following properties hold globally:
member (X,L) is evaluable at compile-time.

member (_X, L)

59

(ground/1)

(eval/1)

(nonvar/1)

REGTYPE

(sideff/2)

(ground/1)
(ground/1)

(eval/1)

(nonvar/1)
(ground/1)

PROPERTY

(sideff/2)

(1ist/1)

(eval/1)

60 The Ciao Prolog Preprocessor

— The following properties hold upon exit:
L is currently a term which is not a free variable. (nonvar/1)

Usage: member (X, L)
— Description: X is an element of L.

sequence/2: REGTYPE
A sequence is formed with zero, one or more occurrences of the operator ’,’/2. For
example, a, b, c is a sequence of three atoms, a is a sequence of one atom.

Meta-predicate with arguments: sequence(?,pred(1)).
General properties: sequence(S, T)
— The following properties hold globally:
sequence (8,T) is side-effect free. (sideff/2)

sequence(S, T)
— If the following properties hold at call time:
S is currently ground (it contains no variables). (ground/1)
T is currently ground (it contains no variables). (ground/1)
then the following properties hold globally:
sequence (S, T) is evaluable at compile-time. (eval/1)

sequence (E, T)
— The following properties hold upon exit:
E is currently a term which is not a free variable. (nonvar/1)
T is currently ground (it contains no variables). (ground/1)

Usage: sequence(S, T)
— Description: S is a sequence of Ts.

sequence_or _list /2: REGTYPE
Meta-predicate with arguments: sequence_or_list(?,pred(1)).

General properties: sequence_or_list(S, T)
— The following properties hold globally:
sequence_or_list(S,T) is side-effect free. (sideff/2)

sequence_or_list(S, T)
— If the following properties hold at call time:
S is currently ground (it contains no variables). (ground/1)
T is currently ground (it contains no variables). (ground/1)
then the following properties hold globally:
sequence_or_list(S,T) is evaluable at compile-time. (eval/l)
sequence_or_list(E, T)
— The following properties hold upon exit:
E is currently a term which is not a free variable. (nonvar/1)
T is currently ground (it contains no variables). (ground/1)
Usage: sequence_or_list(S, T)
— Description: S is a sequence or list of Ts.

Chapter 7: Basic data types and properties

character_code/1:

General properties: character_code(T)
— The following properties hold upon exit:
T is an integer.

character_code(T)
— The following properties hold globally:
character_code(T) is side-effect free.

character_code(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.
then the following properties hold globally:
character_code(T) is evaluable at compile-time.

character_code(I)
— The following properties hold upon exit:
I is currently ground (it contains no variables).

Usage: character_code(T)

— Description: T is an integer which is a character code.

string/1:

61

REGTYPE

(int/1)

(sideff/2)

(nonvar/1)

(eval/1)

(ground/1)

REGTYPE

A string is a list of character codes. The usual syntax for strings "string" is allowed, which
is equivalent to [0’s,0°t,0°’r,0°1,0’n,0’g] or [115,116,114,105,110,103]. There

is also a special Ciao syntax when the list is not complete:

[0°s,0°t|R].
General properties: string(T)
— The following properties hold upon exit:
T is a list of character_codes.

string(T)
— The following properties hold globally:
string(T) is side-effect free.

string(T)
— If the following properties hold at call time:
T is currently ground (it contains no variables).
then the following properties hold globally:
string(T) is evaluable at compile-time.

string(T)
— The following properties hold upon exit:
T is currently a term which is not a free variable.

Usage: string(T)

— Description: T is a string (a list of character codes).

"st"| |R is equivalent to

(1ist/2)

(sideff/2)

(ground/1)

(eval/1)

(nonvar/1)

62

predname/1:
General properties: predname (P)

— The following properties hold globally:
predname (P) is side-effect free.

predname (P)
— If the following properties hold at call time:
P is currently ground (it contains no variables).
then the following properties hold globally:
predname (P) is evaluable at compile-time.

predname (P)
— The following properties hold upon exit:
P is currently ground (it contains no variables).

Usage: predname (P)

The Ciao Prolog Preprocessor

REGTYPE

(sideff/2)

(ground/1)

(eval/1)

(ground/1)

— Description: P is a Name/Arity structure denoting a predicate name:

predname (P/A) :-
atm(P),
nnegint (A).

atm_or_atm_list/1:
General properties: atm_or_atm_list(T)

— The following properties hold globally:
atm_or_atm_list(T) is side-effect free.

atm_or_atm_list(T)
— If the following properties hold at call time:
T is currently ground (it contains no variables).
then the following properties hold globally:

atm_or_atm_list (T) is evaluable at compile-time.

atm_or_atm_list(T)
— The following properties hold upon exit:
T is currently ground (it contains no variables).
Usage: atm_or_atm_list(T)
— Description: T is an atom or a list of atoms.

compat /2:

REGTYPE

(sideff/2)

(ground/1)

(eval/1)

(ground/1)

PROPERTY

This property captures the notion of type or property compatibility. The instantiation
or constraint state of the term is compatible with the given property, in the sense that
assuming that imposing that property on the term does not render the store inconsistent.
For example, terms X (i.e., a free variable), [Y|Z], and [Y,Z] are all compatible with the
regular type 1ist/1, whereas the terms f(a) and [1]2] are not.

Meta-predicate with arguments: compat(?,pred(1)).
General properties: compat (Term, Prop)

Chapter 7: Basic data types and properties

— If the following properties hold at call time:

Term is currently ground (it contains no variables).
Prop is currently ground (it contains no variables).

then the following properties hold globally:
compat (Term,Prop) is evaluable at compile-time.

Usage: compat (Term, Prop)
— Description: Term is compatible with Prop

inst /2:
Meta-predicate with arguments: inst(?,pred(1)).
General properties: inst(Term, Prop)
— The following properties hold globally:
inst (Term,Prop) is side-effect free.

inst(Term, Prop)
— If the following properties hold at call time:

Term is currently ground (it contains no variables).
Prop is currently ground (it contains no variables).

then the following properties hold globally:
inst (Term,Prop) is evaluable at compile-time.

Usage: inst(Term, Prop)

— Description: Term is instantiated enough to satisfy Prop.

iso/1:
General properties: iso(G)
— The following properties hold globally:
iso(G) is side-effect free.

Usage: iso(G)

— Description: Complies with the ISO-Prolog standard.

not_further_inst /2:
General properties: not_further_inst (G, V)

— The following properties hold globally:
not_further_inst(G,V) is side-effect free.
Usage: not_further_inst (G, V)
— Description: V is not further instantiated.

63

(ground/1)
(ground/1)

(eval/1)

PROPERTY

(sideff/2)

(ground/1)
(ground/1)

(eval/1)

PROPERTY

(sideff/2)

PROPERTY

(sideff/2)

64 The Ciao Prolog Preprocessor

sideff/2: PROPERTY
sideff (G, X)

Declares that G is side-effect free (if its execution has no observable result other than its
success, its failure, or its abortion), soft (if its execution may have other observable results
which, however, do not affect subsequent execution, e.g., input/output), or hard (e.g.,
assert /retract).

Meta-predicate with arguments: sideff (goal,?).
General properties: sideff (G, X)
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)
sideff (G,X) is side-effect free. (sideff/2)

Usage: sideff (G, X)
— Description: G is side-effect X.
— If the following properties should hold at call time:
X is an element of [free,soft,hard]. (member/2)

regtype/1: PROPERTY
Meta-predicate with arguments: regtype (goal).

General properties: regtype (G)
— The following properties hold globally:
regtype (G) is side-effect free. (sideff/2)

Usage: regtype(G)
— Description: Defines a regular type.

native/1: PROPERTY
Meta-predicate with arguments: native(goal).

General properties: native(P)
— The following properties hold globally:
native(P) is side-effect free. (sideff/2)

Usage: native (Pred)
— Description: This predicate is understood natively by CiaoPP.

native/2: PROPERTY

Meta-predicate with arguments: native(goal,?).
General properties: native (P, K)
— The following properties hold globally:
native(P,K) is side-effect free. (sideff/2)

Usage: native(Pred, Key)
— Description: This predicate is understood natively by CiaoPP as Key.

Chapter 7: Basic data types and properties

eval/1:
Usage: eval (Prop)

— Description: Prop is evaluable at compile-time.

equiv/2:
Meta-predicate with arguments: equiv(?,goal).
Usage: equiv(Propl, Prop2)
— Description: Propl is equivalent to Prop2.

65

PROPERTY

PROPERTY

66

The Ciao Prolog Preprocessor

Chapter 8: Properties which are native to analyzers 67

8 Properties which are native to analyzers

Author(s): Francisco Bueno, Manuel Hermenegildo, Pedro Lopez.
Version: 1.11#309 (2005/3/16, 16:41:12 CET)
Version of last change: 1.11#144 (2003/12/31, 19:2:9 CET)

This library contains a set of properties which are natively understood by the different pro-
gram analyzers of ciaopp. They are used by ciaopp on output and they can also be used as
properties in assertions.

8.1 Usage and interface (native_props)

e Library usage:
:- use_module(library(’assertions/native_props’))
or also as a package :- use_package(nativeprops).
Note the different names of the library and the package.
e Exports:
— Properties:
covered/2, linear/1, mshare/1, nonground/1, fails/1, not_fails/1, possibly_
fails/1, covered/1, not_covered/1, is_det/1, non_det/1, possibly_nondet/1,
mut_exclusive/1, not_mut_exclusive/1, size_1b/2, size_ub/2, size/2, size_o/2,
steps_1b/2, steps_ub/2, steps/2, steps_o/2, finite_solutions/1, terminates/1.
e Other modules used:
— System library modules:
andprolog/andprolog_rt, terms_check, terms_vars, sort, lists.
— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, attributes, mattr_global, basic_props,
basiccontrol, data_facts, exceptions, io_aux, io_basic, prolog_flags,
streams_basic, system_info, term_compare, term_typing, hiord_rt, debugger_
support.

8.2 Documentation on exports (native_props)

covered/2: PROPERTY
covered(X, Y)

All variables occuring in X occur also in Y.
Usage: covered(X, Y)
— Description: X is covered by Y.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

linear/1: PROPERTY
linear (X)

68 The Ciao Prolog Preprocessor

X is bound to a term which is linear, i.e., if it contains any variables, such variables appear
only once in the term. For example, [1,2,3] and £(A,B) are linear terms, while £ (A,A)
is not.

Usage: linear (X)
— Description: X is instantiated to a linear term.
— The following properties hold globally:

This predicate is understood natively by CiaoPP. (native/1)
mshare/1: PROPERTY
mshare (X)

X contains all sharing sets [JL88,MH89b] which specify the possible variable occurrences
in the terms to which the variables involved in the clause may be bound. Sharing sets are a
compact way of representing groundness of variables and dependencies between variables.
This representation is however generally difficult to read for humans. For this reason, this
information is often translated to ground/1, indep/1 and indep/2 properties, which are
easier to read.

Usage: mshare (X)
— Description: The sharing pattern is X.
— The following properties should hold globally:
This predicate is understood natively by CiaoPP as sharing(X). (native/2)

nonground/1: PROPERTY
Usage: nonground (X)

— Description: X is not ground.
— The following properties should hold globally:
This predicate is understood natively by CiaoPP as not_ground(X). (native/2)

fails / 1: PROPERTY
fails(X)

Calls of the form X fail.
Usage: fails(X)
— Description: Calls of the form X fail.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

not _fails/1: PROPERTY
not_fails(X)

Calls of the form X produce at least one solution, or not terminate [DLGH97].
Usage: not_fails(X)
— Description: All the calls of the form X do not fail.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

Chapter 8: Properties which are native to analyzers 69

possibly _fails/1: PROPERTY
possibly_fails(X)
Non-failure is not ensured for any call of the form X [DLGH97]. In other words, nothing
can be ensured about non-failure nor termination of such calls.
Usage: possibly_fails(X)

— Description: Non-failure is not ensured for calls of the form X.

covered/1: PROPERTY

covered (X)
For any call of the form X there is at least one clause whose test succeeds (i.e. all the calls
of the form X are covered.) [DLGH97].

Usage: covered(X)
— Description: All the calls of the form X are covered.

not_covered/1: PROPERTY

not_covered(X)
There is some call of the form X for which there is not any clause whose test succeeds
[DLGH97].
Usage: not_covered (X)
— Description: Not all of the calls of the form X are covered.

is_det/1: PROPERTY
is_det (X)
All calls of the form X are deterministic, i.e. produce at most one solution, or not terminate.
Usage: is_det(X)
— Description: All calls of the form X are deterministic.

non_det/1: PROPERTY

non_det (X)
All calls of the form X are not deterministic, i.e., produce several solutions.

Usage: non_det (X)
— Description: All calls of the form X are not deterministic.

possibly _nondet/1: PROPERTY

possibly_nondet (X)
Non-determinism is not ensured for all calls of the form X. In other words, nothing can
be ensured about determinacy nor termination of such calls.

Usage: possibly_nondet (X)
— Description: Non-determinism is not ensured for calls of the form X.

70 The Ciao Prolog Preprocessor

mut_exclusive/1: PROPERTY
mut_exclusive (X)

For any call of the form X at most one clause succeeds, i.e. clauses are pairwise exclusive.
Usage: mut_exclusive(X)
— Description: For any call of the form X at most one clause succeeds.

not_mut_exclusive/1: PROPERTY
not_mut_exclusive(X)

Not for all calls of the form X at most one clause succeeds. l.e. clauses are not disjoint for
some call.

Usage: not_mut_exclusive(X)

— Description: Not for all calls of the form X at most one clause succeeds.

Size_lb/2: PROPERTY
size_1b(X, Y)

The minimum size of the terms to which the argument Y is bound to is given by the
expression Y. Various measures can be used to determine the size of an argument, e.g.,
list-length, term-size, term-depth, integer-value, etc. [DL9I3].

Usage: size_1b(X, Y)
— Description: Y is a lower bound on the size of argument X.

size_ub/2: PROPERTY
size_ub(X, Y)

The maximum size of the terms to which the argument Y is bound to is given by the
expression Y. Various measures can be used to determine the size of an argument, e.g.,
list-length, term-size, term-depth, integer-value, etc. [DL93].

Usage: size_ub(X, Y)
— Description: Y is a upper bound on the size of argument X.

size/2: PROPERTY
Usage: size(X, Y)

— Description: Y is the size of argument X.

size_o/2: PROPERTY
Usage: size_o(X, Y)

— Description: The size of argument X is in the order of Y.

Chapter 8: Properties which are native to analyzers 71

steps_1b/2: PROPERTY
steps_1b(X, Y)

The minimum computation time (in resolution steps) spent by any call of the form X is
given by the expression Y [DLGHL97,LGHD96b]

Usage: steps_1b(X, Y)
— Description: Y is a lower bound on the cost of any call of the form X.

steps_ub/2: PROPERTY
steps_ub(X, Y)

The maximum computation time (in resolution steps) spent by any call of the form X is
given by the expression Y [DL93,LGHD96b]

Usage: steps_ub(X, Y)
— Description: Y is a upper bound on the cost of any call of the form X.

steps/2: PROPERTY
steps(X, Y)
The time (in resolution steps) spent by any call of the form X is given by the expression Y
Usage: steps(X, Y)
— Description: Y is the cost (number of resolution steps) of any call of the form X.

steps_o/2: PROPERTY
Usage: steps_o(X, Y)
— Description: Y is the complexity order of the cost of any call of the form X.

finite_solutions/1: PROPERTY

finite_solutions(X)
Calls of the form X produce a finite number of solutions [DLGH97].
Usage: finite_solutions(X)
— Description: All the calls of the form X have a finite number of solutions.

terminates/1: PROPERTY

terminates (X)
Calls of the form X always terminate [DLGH97].
Usage: terminates (X)

— Description: All the calls of the form X terminate.

indep/1: PROPERTY
Usage: indep(X)
— Description: The variables in pairs in X are pairwise independent.
— The following properties hold globally:
This predicate is understood natively by CiaoPP as indep(X). (native/2)

72 The Ciao Prolog Preprocessor

indep/2: PROPERTY
Usage: indep(X, Y)

— Description: X and Y do not have variables in common.
— The following properties hold globally:
This predicate is understood natively by CiaoPP as indep([[X,Y]]). (native/2)

instance/2: PROPERTY
Usage: instance(Terml, Term?2)

— Description: Terml is an instance of Term?2.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

Chapter 9: Run-time checking of assertions 73

9 Run-time checking of assertions

Author(s): David Trallero Mena.
Version: 1.11#309 (2005/3/16, 16:41:12 CET)

This library package can be used to perform run-time checking of assertions. Properties are
checked during execution of the program and errors found (when the property does not hold)
are reported.

9.1 Usage and interface (rtchecks)

s

or

e Library usage:
:- use_package (rtchecks) .

:— module(...,...,[rtchecks]).
e Exports:

e Other modules used:

Predicates:
check/1.

System library modules:
assertions/assertions_props.
Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, mattr_global, basic_props,
basiccontrol, data_facts, exceptions, io_aux, io_basic, prolog_flags,
streams_basic, system_info, term_compare, term_typing, hiord_rt, debugger_
support.

J

9.2 Documentation on exports (rtchecks)

check/1: PREDICATE
See Chapter 4 [The Ciao assertion package|, page 31.

Usage: check(Prop)

Description: Prop is checked. If it fails, an exception is raised.

The following properties should hold at call time:

Prop is either a term or a conjunction of terms. The main functor and arity of each
of those terms corresponds to the definition of a property. The first argument of each
such term is a variable which appears as a head argument. (property_
conjunction/1)

74

The Ciao Prolog Preprocessor

References 75

References

[BCC04] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. L\’opez-Garc\’\ia, and
G."Puebla (Eds.).
The Ciao System. Reference Manual (v1.10).
Technical Report CLIP3/97.1.10(04), School of Computer Science (UPM), August
2004.
Available at \texttthttp://clip.dia.fi.upm.es/Software/Ciao/.

[BCHP96] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla.
Global Analysis of Standard Prolog Programs.
In Furopean Symposium on Programming, number 1058 in LNCS, pages 108-124,
Sweden, April 1996. Springer-Verlag.

[BdIBH94] F. Bueno, M.”Garc\’\ia de"la Banda, and M. Hermenegildo.
The PLAI Abstract Interpretation System.
Technical Report CLIP2/94.0, Computer Science Dept., Technical U. of Madrid
(UPM), Facultad Informatica UPM, 28660-Boadilla del Monte, Madrid-Spain,
February 1994.

[BLGHO04] F. Bueno, P. L\’opez-Garc\’\ia, and M. Hermenegildo.
Multivariant Non-Failure Analysis via Standard Abstract Interpretation.
In 7th International Symposium on Functional and Logic Programming (FLOPS
2004), number 2998 in LNCS, pages 100-116, Heidelberg, Germany, April 2004.
Springer-Verlag.

[CH94| D. Cabeza and M. Hermenegildo.
Extracting Non-strict Independent And-parallelism Using Sharing and Freeness In-
formation.
In 199/ International Static Analysis Symposium, number 864 in LNCS, pages 297—
313, Namur, Belgium, September 1994. Springer-Verlag.

[CMB93] M. Codish, A. Mulkers, M. Bruynooghe, M.”Garc\’\ia de~la Banda, and M.
Hermenegildo.
Improving Abstract Interpretations by Combining Domains.
In Proc. ACM SIGPLAN Symposium on Partial Fvaluation and Semantics Based
Program Manipulation, pages 194-206. ACM, June 1993.

[COS96] The COSYTEC Team.
CHIP System Documentation, April 1996.

[DEDC96] P. Deransart, A. Ed-Dbali, and L. Cervoni.
Prolog: The Standard.
Springer-Verlag, 1996.

[DL93] S.K. Debray and N.W. Lin.
Cost analysis of logic programs.
ACM Transactions on Programming Languages and Systems, 15(5):826-875,
November 1993.

[dIBHMOO0]
M.~ Garc\’\ia de~la Banda, M. Hermenegildo, and K. Marriott.
Independence in CLP Languages.
ACM Transactions on Programming Languages and Systems, 22(2):269-339, March
2000.

[DLGH97] S.K. Debray, P. L\’opez-Garc\’\ia, and M. Hermenegildo.
Non-Failure Analysis for Logic Programs.
In 1997 International Conference on Logic Programming, pages 4862, Cambridge,
MA, June 1997. MIT Press, Cambridge, MA.

76 The Ciao Prolog Preprocessor

[DLGHL97]
S.K. Debray, P. L\’opez-Garc\’\ia, M. Hermenegildo, and N.-W. Lin.
Lower Bound Cost Estimation for Logic Programs.
In 1997 International Logic Programming Symposium, pages 291-305. MIT Press,
Cambridge, MA, October 1997.

[Dum94] Veroniek Dumortier.
Freeness and Related Analyses of Constraint Logic Programs Using Abstract Inter-
pretation.
PhD thesis, K.U.Leuven, Dept. of Computer Science, October 1994.

[GAW94] J.P. Gallagher and D.A. de Waal.
Fast and precise regular approximations of logic programs.
In Pascal Van~Hentenryck, editor, Proc.”of the 11th International Conference on
Logic Programming, pages 599-613. MIT Press, 1994.

[Her99] M. Hermenegildo.
A Documentation Generator for Logic Programming Systems.
Technical Report CLIP10/99.0, Facultad de Inform\’atica, UPM, September 1999.

[HPMSO00] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey.
Incremental Analysis of Constraint Logic Programs.
ACM Transactions on Programming Languages and Systems, 22(2):187-223, March
2000.

[HR95] M. Hermenegildo and F. Rossi.
Strict and Non-Strict Independent And-Parallelism in Logic Programs: Correctness,
Efficiency, and Compile-Time Conditions.
Journal of Logic Programming, 22(1):1-45, 1995.

[JB92] G. Janssens and M. Bruynooghe.
Deriving Descriptions of Possible Values of Program Variables by means of Abstract
Interpretation.
Journal of Logic Programming, 13(2 and 3):205-258, July 1992.

[JL88] D. Jacobs and A. Langen.

Compilation of Logic Programs for Restricted And-Parallelism.
In Furopean Symposium on Programming, pages 284-297, 1988.

[Knu84] D. Knuth.
Literate programming.
Computer Journal, 27:97-111, 1984.

[LGHD96a]
P. L\’opez-Garc\’\ia, M. Hermenegildo, and S.K. Debray.
A Methodology for Granularity Based Control of Parallelism in Logic Programs.
J. of Symbolic Computation, Special Issue on Parallel Symbolic Computation,
22:715-734, 1996.

[LGHD96D)]
P. L\’opez-Garc\'\ia, M. Hermenegildo, and S.K. Debray.
A Methodology for Granularity Based Control of Parallelism in Logic Programs.
Journal of Symbolic Computation, Special Issue on Parallel Symbolic Computation,

22:715-734, 1996.

[MBdIBH99]
K. Muthukumar, F. Bueno, M.~ Garc\’\ia de~la Banda, and M. Hermenegildo.
Automatic Compile-time Parallelization of Logic Programs for Restricted, Goal-
level, Independent And-parallelism.
Journal of Logic Programming, 38(2):165-218, February 1999.

References

[MHB89a]

[MHS89b]

[MH91]

[MH92]

[MS94]

[PAHO4]

[PBHY7]

[PRO]

[SGo4]

[Son86]

[VB02]

7

K. Muthukumar and M. Hermenegildo.

Determination of Variable Dependence Information at Compile-Time Through Ab-
stract Interpretation.

Technical Report ACA-ST-232-89, Microelectronics and Computer Technology Cor-
poration (MCC), Austin, TX 78759, March 1989.

K. Muthukumar and M. Hermenegildo.

Determination of Variable Dependence Information at Compile-Time Through Ab-
stract Interpretation.

In 1989 North American Conference on Logic Programming, pages 166-189. MIT
Press, October 1989.

K. Muthukumar and M. Hermenegildo.

Combined Determination of Sharing and Freeness of Program Variables Through
Abstract Interpretation.

In 1991 International Conference on Logic Programming, pages 49—-63. MIT Press,
June 1991.

K. Muthukumar and M. Hermenegildo.
Compile-time Derivation of Variable Dependency Using Abstract Interpretation.
Journal of Logic Programming, 13(2/3):315-347, July 1992.

K. Marriott and P. Stuckey.
Approximating Interaction Between Linear Arithmetic Constraints.

In 1994 International Symposium on Logic Programming, pages 571-585. MIT
Press, 1994.

G. Puebla, E. Albert, and M. Hermenegildo.

Abstract Interpretation with Specialized Definitions.

Technical Report CLIP12/2004.0, Technical University of Madrid, School of Com-
puter Science, UPM, September 2004.

G. Puebla, F. Bueno, and M. Hermenegildo.

An Assertion Language for Debugging of Constraint Logic Programs.

In Proceedings of the ILPS’97 Workshop on Tools and Environments for (Con-
straint) Logic Programming, October 1997.

Available from \htmladdnor-
mallink\tt ftp://clip.dia.fi.upm.es/pub/papers/assert_lang_tr_discipldeliv.ps.gz
ftp://clip.dia.fi.upm.es/pub/papers/assert\ lang\ _tr_discipldeliv.ps.gz as technical
report CLIP2/97.1.

The PROLOG IV Team.
PROLOG IV Manual.

H. Saglam and J. Gallagher.

Approximating logic programs using types and regular descriptions.

Technical Report CSTR-94-19, Department of Computer Science, University of Bris-
tol, Bristol BS8 1TR, 1994.

H. Sondergaard.

An application of abstract interpretation of logic programs: occur check reduction.
In Furopean Symposium on Programming, LNCS 123, pages 327-338. Springer-
Verlag, 1986.

C. Vaucheret and F. Bueno.

More precise yet efficient type inference for logic programs.

In International Static Analysis Symposium, number 2477 in LNCS, pages 102-116.
Springer-Verlag, September 2002.

78

[VHCLC95]

P. Van~Hentenryck, A. Cortesi, and B. Le~Charlier.
Type analysis of prolog using type graphs.
Journal of Logic Programming, 22(3):179-209, 1995.

The Ciao Prolog Preprocessor

Predicate/Method Definition Index

Predicate/Method Definition Index

A

acheck/0 . ..o 8
again/0o 19
analyze/l.......... .. 9
auto_analyze/1 18
auto_check_assert/1........... 18
auto_optimize/1 18

C

check/ 1. . o 37,73
current_pp_flag/2 il 6
customize/1. 18
customize_and_exec/1........ 19
F

false/l 38

G

79
oUtPUL/0 ..ot t 9
output/1 9
P
pop_pp_flag/l.. 6
PP_flag/l .. 6
push_pp_flag/2 ..., 6
remove_menu_config/1.............. 19
restore_menu_config/1........................ 19
save_menu_config/1 19
set_pp_flag/2..... i 6
show_menu_config/1........................... 20
show_menu_configs/0.......................... 19
T
transform/1.............l 8
true/l 37
TTUSE/L oo 37

80

The Ciao Prolog Preprocessor

Regular Type Definition Index

Regular Type Definition Index

assrt_body/1...... ... 39
assrt_status/1 44
assrt_type/l. ... 44
atm/ 1 .. 55
atm_or_atm_list/1 62
c_assrt_body/1 42
callable/l. ... 57
character_code/1 61
complex_arg_property/1....................... 41
complex_goal_property/1...................... 42
constant/1........... i 57
D

dictionary/l..........o it 42
F

FLt/ L 54
g_assrt_body/1 43
gnd/1 .. 56
I

81
L
List/L e 58
A8t/ 2 e 59
N
nnegint/1............ i 54
num/l ... 55
operator_specifier/1......................... 57
P
predfunctor/1...... 44
predname/1........ 61
property_conjunction/1....................... 41
property_starterm/1.......... 41
propfunctor/1......... 44
s_assrt_body/1 43
SeqUEeNCe/2. 60
sequence_or_list/2................ 60
string/1 61
struct/1 ... 56
T
term/1 53

82

The Ciao Prolog Preprocessor

Concept Definition Index

Concept Definition Index

A

acceptable modes 40
assertion body syntax 39, 42, 43
assertion checking oo oLl 5

C

calls assertion............. ..., 33
check assertion............... 37
comment assertion 36
comments, machine readable.................... 31
comp assertion.......... ... 34
compatibility properties 47

D

data declaration.................... 27
debugging 5
declassertion, 36
dynamic declaration............... 27

E

entry assertion................ i 35
entry declaration.............. oL 27

F

false assertion................ 38
formatting commands oL 31

I

instantiation properties................... 47
ISO-Prolog 21

83
module declaration............................. 28
parametric type functor 50
pred assertion 32, 33
program transformations......................... 5
prop assertion............ oL 34, 35
properties of computations...................... 47
properties of execution states 47
properties, basic 53
properties, native L. 67
regtype assertion 50, 51
regular type expression 50
run-time tests........ 5
sharing sets......... 68
specificationsol 5
static debugging il 5
success assertion............. ..., 33, 34
true assertion.................. 37
trust assertion 37
trust assertions, 26

84

The Ciao Prolog Preprocessor

Global Index

Global Index

85

This is a global index containing pointers to places where concepts, predicates, modes, prop-
erties, types, applications, etc., are referred to in the text of the document. Note that due
to limitations of the info format unfortunately only the first reference will appear in online

versions of the document.

acceptablemodes................
acheck/0t
add_action/1...... ...

again/O.o

AEETeGAtes it
analysis/1........
analyze/1.............

analyzer output

andprolog/andprolog rt....................
arithmetic............. 5, 18, 32, 33, 39, 53,
assertion body syntax.................. 39,
assertion checking.........................

assertion language

assertions.............. 31,
assertions/assertions_props........... 32,

assrt_body/1.........
assrt_status/1l.......... ..

attributes
auto_analyze/1...............

auto_check_assert/1........... ...

5, 18, 32, 39, 53,
5, 18, 32, 39, 53,

.. 1,3

53, 62
67, 73
67, 73
17, 18

auto_check_assertions/1 17,19
auto_interface(auto_help) 5
auto_interface(auto_interface) 5
auto_optimize/1........................ 17,18, 19
B

basic_props................... 5, 18, 32, 39, 67, 73
basic_props:regtype/1........................ 47
basiccontrol 5, 18, 32, 39, 53, 67, 73

C

c_assrt_body/1........ 39, 42
call/l .. 42
callable/1oouniiiii .. 53, 57
calls assertion................... 33
calls/1 ..o 32, 33, 35
Calls/ 2. . 32, 33
character string................ 31
character_code/1.......... 53, 61
check assertion.................. 37
check/1..... 32, 37, 38, 73
checking the assertions..................... 1,3
ClaoPp ..ot 5, 67
ciaopp(driver) 5,18
ciaopp(menu_generator) 18
ciaopp(preprocess_flags) 5, 18
ciaopp(printer) 5, 18
CIAOPPSETTINGS.pl ..ot 3
comment assertion.................. 36
comment string...................... 40, 42, 43, 44
comment/2 ...t 32, 36
comments, machine readable 31
comp assertion................. ... 34
comp/l ..o 32, 34, 43
COMP/2. et 32, 34
compat/2...... ... 53, 62
compatibility properties..................... 47
compatible.............oiiiiiii 40
complex argument property.......... 40, 41, 42, 43
complex goal property.................. 40, 42, 43
complex_arg_property/1......... 39, 40, 41, 42, 43
complex_goal_property/1 39, 40, 42, 43
computational cost 1,3

constant/1ci i 53, 57

86

covered/1 67, 69
COVeTed/2 . ottt 67
current_pp_flag/2 6
customize/1.t 18
customize_and_exec/1.................. 17, 18, 19
D

data declaration...............c..ooiiiniii... 27
data_facts 5, 18, 32, 39, 53, 67, 73
dcg_expansion...............iiiiiiiiiiia.. 39
debugger_support.......... 5, 18, 32, 39, 53, 67, 73
debugging 5
declassertion............... 36
decl/1 .. oo 32, 36, 39
AeCl/2. .o 32, 36
determinacy i 1,3
dictionary/1oiiiiiiiiiii... 39, 42
docstring/1.................. 31, 39, 40, 42, 43, 44
AriVer . .ot 8, 17
dynamic declaration 27
E

CIMACS & e ot et ettt e e e e e 17
entry assertion................... 35
entry declaration............................. 27
entry/1 32, 35, 42
equiv/2. ... 53, 65
eval/l. . 53, 64
exceptions 5, 18, 32, 39, 53, 67, 73
exXit/ L. o 32, 36
XAt/ 2. i 32, 36
F

fails/1.. ..o 67, 68
falseassertion.............. 38
false/l. .. oo 32, 38
finite_solutions/1........................ 67, 71
F1t/1 . 53, 54
formatting commands 31
func/1 43

The Ciao Prolog Preprocessor

G

g_assrt_body/1........... 39, 43
get_menu_configs/1......... 19
gnd/1. ... 53, 56
GNU general public license 1,3
granularity control 1,3
ground/1..... i 68
H

head pattern........................... 39, 40, 43
head_pattern/1......................... 39, 40, 43
NELIP/O et 14
hiord_rt................... 5, 18, 32, 39, 53, 67, 73
I

indep/l... .o 68, 71
INdep/2. . 68, 72
infer(infer)t 5
Inference of properties..................... 1,3
INSt/2. 53, 63
instance/2.o 72
instantiation properties..................... 47
Ant/ L. 53, 54
integer/1... 41
inter-modular analysis....................... 14
10_AUX ..ot 5, 18, 32, 39, 53, 67, 73
io_basic................... 5, 18, 32, 39, 53, 67, 73
is_det/1 67, 69
ISO-Prolog. ..ot 21
180/ 53, 63
L

library(basicmodes) 40
library(isomodes) 40
linear/l . ..ot 67
list/1 ... 53, 58, 62
1ist/2 oo 41, 53, 59
lists. ... 18, 32, 34, 67

IPAOC oo 1, 3, 31, 36, 40, 45

Global Index

M

mattr_global 5, 18, 32, 39, 53, 67, 73
member/2. 53, 59
MESSAZES . . ettt ettt e 5, 18
MO . o\ e ettt e e e 32, 40
modedef/1 32, 35, 40
MOAES . ottt ettt 1,3
module declaration 28
module/ L 8
mshare/l. 67, 68
mut_exclusive/1....... 67, 69

N

n_assrt_body/5...........l 43, 44
nabody/1...........l 39, 42
native/l.o 53, 64
native/2. ... 53, 64
nnegint/1 53, 54
non-failure i, 1,3
non_det/1 67, 69
nonground/1 L 67, 68
not_covered/1 67, 69
not_fails/1 ... 67, 68
not_further_inst/1, 42
not_further_inst/2........................ 53, 63
not_mut_exclusive/1.......... 67, 70
num/d .. 53, 55

operator_specifier/1...................... 53, b7
oUtPUL/0 ..o 9
output/1 9

P

parametric type functor 50
Partial deduction............................. 16
partial evaluation....................... 1, 3, 16
pop_pp_flag/l.. 6
possibly_fails/1.......................... 67, 69
possibly_nondet/1......................... 67, 69
PP_flag/l 6
pred assertion 32, 33

87
Pred/2. .o 32, 33
predfunctor/1............... 39, 44
predname/1.......... 40, 53, 61
printer....... ... 17
program assertions 31
program parallelization..................... 1,3
program specialization...................... 1,3
program transformations 1,3,5
program(P_asr)iiiiiiiiiiii 5
prolog_flags.............. 5, 18, 32, 39, 53, 67, 73
prop assertion 34, 35
Prop/l .o 32, 34, 35
PLODP/2 e i e ettt e 32, 35
properties of computations................... 47
properties of execution states 47
properties, basic............. L 53
properties, native 67
PTOPEILY .ottt 34
property compatibility....................... 62
property_conjunction/1 39, 41
property_starterm/1....................... 39, 41
propfunctor/1, 39, 44
providing information to the compiler..... 35, 37
push_pp_flag/2 ..., 6
R
regtype assertion......................... 50, 51
regtype/l.. .. 50, 51, 53, 64
Tegtype/2 ..o 50, 51
regular type......... ...t 50
regular type definitions 47
regular type expression 50
regular typest 47
remove_action/1 8
remove_menu_config/1.............. 19
restore_menu_config/1........................ 19
run-time checks............. 35
run-time tests 1,3,5

88

S

s_assrt_body/1............. 39, 43
save_menu_config/1............... 19, 20
sequence/2 ... 53, 60
sequence_or_list/2............... 53, 60
set_pp_flag/2....... i 6
sharing sets............... 68
show_menu_config/1 20
show_menu_configs/0.......................... 19
sideff/2. ... o 53, 63
size/2. 67, 70
sizZe_1b/2 . 67, 70
S1Ze_0/2. . i 67, 70
Size_ub/2 ... 67, 70
sizesof terms......... oLl 1,3
SOTL .o 67
specifications 1, 3,5,31
static debugging.................. 1,3,5
SEepPS/2. .. 67, 71
steps_1b/2 ... 67, 70
StepS_0/2 .. 67, 71
steps_ub/2 67, 71
streams_basic............. 5, 18, 32, 39, 53, 67, 73
string/1........ i 53, 61
stringcommand/1 36, 40, 42, 43, 44, 45
Struct/L. ... 53, 56
success assertion......................... 33, 34
success/1 ... 32, 33, 34
SUCCESS/2 oo vttt 32, 34
syntax of regular types....................... 47

The Ciao Prolog Preprocessor

system_info 5, 18, 32, 39, 53, 67, 73

T

term/1 .. 53
term_basic............. 5, 18, 32, 39, 50, 53, 67, 73
term_compare 5, 18, 32, 39, 53, 67, 73
term_typing 5, 18, 32, 39, 53, 67, 73
terminates/1 67, 71
terms_check i 53, 67
BeIMS_VarsSoovi i 67
transform/1..t 8
transformation/1, 12
true assertion......... 37
true/l. ... 32, 37
trust assertion.......... L. 37
trust assertions.............. 26
trusSt/L. . 32, 37
BYPeS oo 1,3
typeslib(typeslib) 5

valid_flag value/2ovveeeeeoo.. 7
var/l .. 41
variable instantiation.................... 1,3,5
variable names...............iiiiiiiia 31

