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Abstract. Partial deduction is a program transformation technique which
specializes a program w.r.t. its static data. If the program contains im-
pure predicates, it is known that unfolding steps for atoms which are not
leftmost is problematic. Impure predicates include those which may raise
errors, exceptions or side-effects, external predicates whose definition is
not available, etc. Existing proposals allow obtaining correct residual
programs while still allowing non-leftmost unfolding steps, but at the
cost of accuracy: bindings and failure are not propagated backwards to
predicates which are classified as impure. Motivated by recent develop-
ments in the backwards analysis of logic programs, we propose a partial
deduction algorithm which can handle impure features and non-leftmost
unfolding in a more accurate way. We outline by means of examples
some optimizations which are not feasible using existing partial deduc-
tion techniques. We argue that our proposal goes beyond existing ones
and is a) accurate, since the classification of pure vs impure is done at
the level of atoms instead of predicates, b) extensible, as the informa-
tion about purity can be added to programs using assertions which can
guide the partial deduction process, without having to modify the partial
deducer itself, and ¢) automatic, since backwards analysis can be used
to automatically infer the required assertions. Our approach has been
implemented in the context of CiaoPP, the abstract interpretation-based
preprocessor of the Ciao logic programming system.

1 Background

We assume some basic knowledge on the terminology of logic programming. See
for example [16] for details. Very briefly, an atom A is a syntactic construction
of the form p(ty,...,t,), where p/n, with n > 0, is a predicate symbol and
t1,...,t, are terms. The function pred applied to atom A, i.e., pred(A), returns
the predicate symbol p/n for A. A clause is of the form H «— B where its head
H is an atom and its body B is a conjunction of atoms. A definite program is a
finite set of clauses. A goal (or query) is a conjunction of atoms. The concept of
computation rule is used to select an atom within a goal for its evaluation. The
operational semantics of definite programs is based on derivations. Consider a
program P and a goal G of the form « Aj,..., AR,..., Ax. Let R be a compu-
tation rule such that R(G) =Ag. Let C = H <« Bq,..., By, be a renamed apart



clause in program P. Then 0(A1,...,Ar-1,B1,..., Bm, Ar+1, - .., Ax) is derived
from G and C via R where 0 = mgu(Ag, H). An SLD derivation for P U {G}
consists of a possibly infinite sequence G = Gy, G1,Ga, ... of goals, a sequence
C1,C5, ... of properly renamed apart clauses of P, and a sequence 64, 6s,... of
mgus such that each G;y; is derived from G; and C;;1 using 6;,1. A derivation
step can be non-deterministic when Apg unifies with several clauses in P, giving
rise to several possible SLD derivations for a given goal. Such SLD derivations
can be organized in SLD trees. A finite derivation G = Gy, G1,Ga,...,Gy is
called successful if G, is empty. In that case 8 = 616, ...6,, is called the com-
puted answer for goal GG. Such a derivation is called failed if it is not possible
to perform a derivation step with G,,. We will also allow incomplete derivations
in which, though possible, no further resolution step is performed. We refer to
SLD resolution restricted to the case of leftmost unfolding as LD resolution.

Partial Deduction (PD) [15, 8] is a program transformation technique which
specializes a program w.r.t. part of its known input data. Hence sometimes also
known as program specialization. Informally, given an input program and a set
of atoms, the PD algorithm applies an unfolding rule in order to compute finite
(possibly incomplete) SLD trees for these atoms. This process returns a set of
resultants (or residual rules), i.e., a residual program, associated to the root-to-
leaf derivations of these trees. Each unfolding step during partial deduction can
be conceptually divided into two steps. First, given a goal «— Ay,..., Ag, ..., A
the computation rule determines the selected atom Ag. Second, it must be de-
cided whether unfolding (or evaluation) of Ag is profitable. It must be noted
that the unfolding process requires the introduction of this profitability test in
order to guarantee that unfolding terminates. Also, unfolding usually continues
as long as some evidence is found that further unfolding will improve the quality
of the resultant program.

Most of real-life Prolog programs use predicates which are not defined in the
program (module) being developed. We will refer to such predicates as exter-
nal. Examples of external predicates are traditional “built-in” predicates such
as arithmetic operations (e.g., is/2, <, =<, etc.), basic input/output facilities,
and predicates defined in libraries. We will also consider as external predicates
those defined in a different module, predicates written in another language, etc.
The trivial computation rule which always returns the leftmost atom in a goal is
interesting in that it avoids several correctness and efficiency issues in the context
of PD of full Prolog programs. Such issues are discussed in depth throughout
this extended abstract. When a (leftmost) atom Apg is selected during PD, with
pred(Agr) = p/n being an external predicate, it may not be possible to unfold A
for several reasons. First, we may not have the code defining p/n and, even if we
have it, unfolding A may introduce in the residual program calls to predicates
which are private to the module where the p/n is defined. Also, it can be the
case that the execution of atoms for (external) predicates produces other out-
comes such as side-effects, errors, and exceptions. Note that this precludes the
evaluation of such atoms to be performed at PD time, since those effects need to
be performed at run-time. In spite of this, if the executable code for the external



predicate p/n is available, and under certain conditions, it can be possible to
fully evaluate AR at specialization time. The notion of evaluable atom [17] cap-
tures the requirements which allow executing external predicates at PD time.
Informally, an atom is evaluable if its execution satisfies four conditions: 1) it
universally terminates, 2) it does not produce side-effects, 3) it does not issue er-
rors and 4) it is binding insensitive. We use eval(E) to denote that the expression
FE is evaluable. We will discuss all these properties in depth in Section 3.

2 Non-Leftmost Unfolding in Partial Deduction

It is well-known that non-leftmost unfolding is essential in partial deduction in
some cases for the satisfactory propagation of static information (see, e.g., [14]).
Informally, given a goal « Ay,..., A,, it can happen that the profitable crite-
rion does not hold for the leftmost atom A;. For example, if Ay is an atom for
an internal predicate, it might not be profitable to select A; because 1) unfold-
ing A; endangers termination (for example, A; may homeomorphically embed
[13] some selected atom in its sequence of covering ancestors), or 2) the atom
A; unifies with several clause heads (for example, some unfolding rules do not
unfold non-deterministically for atoms other than the initial query). If A; is an
atom for an external predicate, it can happen that A; is not sufficiently instan-
tiated so as to be executed at this moment. It may nevertheless be profitable to
unfold atoms other than the leftmost. Therefore, it can be interesting to define
a computation rule which is able to detect the above circumstances and “jump
over” atoms whose profitability criterion is not satisfied in order to proceed with
the specialization of another atom in the goal as long as it is correct.

2.1 Non-Leftmost Unfolding and Impure Predicates

For pure logic programs without builtins, non-leftmost unfolding is safe thanks to
the independence of the computation rule (see for example [16]).# Unfortunately,
non-leftmost unfolding poses several problems in the context of full Prolog pro-
grams with émpure predicates, where such independence does not hold anymore.

For instance, var/1 is an impure predicate since, under LD resolution, the
goal var (X) ,X=a succeeds with computed answer X/a whereas X=a, var (X) fails.
They are not equivalent since the independence of the computation rule does not
hold. Thus, given the goal « var (X) ,X=a, if we allow the non-leftmost unfolding
step which binds the variable X, the goal will fail, either at specialization time
or at run-time, whereas the initial goal succeeds in LD resolution. The above
problem was early detected [18] and it is known as the problem of backpropaga-
tion of bindings. In addition to this, it is also problematic the backpropagation
of failure in the presence of impure predicates. There are atoms A for impure
predicates such that « A, fail behaves differently from « fail. For instance,

4 Although safe, non-leftmost unfolding presents problems with pure programs too
since it may introduce extra backtracking over the atoms to the left. We are not
concerned with such efficiency issues here.



we have to ensure that failure to the right of a call to write does not prevent
the generation of the residual call to write nor its execution at runtime.

There are satisfactory solutions in the literature (see, e.g.,[11, 4,1, 14]) which
allow unfolding non-leftmost atoms while avoiding the backpropagation of bind-
ings and failure. Basically, the common idea is to represent explicitly the bindings
by using unification [11] or residual case expressions [1] rather than backprop-
agating them (and thus applying them onto leftmost atoms). This guarantees
that the resulting program is correct, but it definitely introduces some inac-
curacy, since bindings (and failure) generated during unfolding of non-leftmost
atoms are hidden from atoms to the left of the selected one. It should be noted
that preventing backpropagation by introducing equalities can be a bad idea
from the performance point of view too (see, e.g., [19]). Thus, these solutions
should be applied only when it is really necessary, since backpropagation can
1) lead to early detection of failure, which may result in important speedups
and 2) make the profitability criterion for the leftmost atom to hold, which may
result in more aggressive unfolding. Thus, if backpropagation is disabled, some
interesting specializations can no longer be achieved.

It should also be noted that the backpropagation problem is very much re-
lated to that of reordering of atoms within a goal. Such reordering transfor-
mation can be of interest for achieving powerful optimizations like tupling, for
effectively handling the conjunction of atoms like conjunctive PD [3] and for the
use of efficient stack-based unfolding rules [17].

3 From Impure Predicates to Impure Atoms

As mentioned in Section 2.1 above, existing techniques for PD allow the unfolding
of non-leftmost atoms by combining a classification of predicates into pure and
impure with techniques for avoiding backpropagation of binding and failure in
the case of impure predicates. In order to classify predicates as pure or impure,
existing methods [14] are based on simple reachability analysis. As soon as an
impure predicate p can be reached from a predicate ¢, also ¢ is considered impure
and backpropagation is not allowed. In other words, impurity is defined at the
level of predicates. Unfortunately, this notion of impurity quickly expands from
a predicate to all predicates which use it.

Our work improves on existing techniques by providing a more refined notion
of impurity. Rather than being defined at the level of predicates, we define purity
at the level of individual atoms. This is of interest since it is often the case that
some atoms for a predicate are pure whereas others are impure. As an example,
the atom wvar(X) is impure (binding sensitive), whereas the atom wvar(f(X))
is not (it is no longer binding sensitive). This allows reducing substantially the
situations in which backpropagation has to be avoided. In the following, we
characterize three different classes of impurities: binding-sensitiveness, errors
and side effects.



3.1 Binding-sensitiveness

A binding-sensitive predicate is characterized by having a different success or
failure behaviour under leftmost execution if bindings are backpropagated onto
it. Examples of binding-sensitive predicates are var/1, nonvar/1, atom/1,
number/1, ground/1, ....However, rather than considering all atoms for such
predicates as binding-sensitive, we propose to define binding sensitiveness at the
atom level. The reason is that the fact that some atoms for the predicates above
are indeed binding sensitive does not necessarily mean that all atoms for such
predicates are. As we have seen above, the atom var(f(X)) is certainly not bind-
ing sensitive since its truth value is not changed by applying any substitution,
i.e., the atom will not succeed in any context.

Definition 1 (binding insensitive atom). An atom A is binding insensitive,
denoted bind_ins(A), if V sequence of variables (X1,...,Xg) s.t. X; € vars(A),
i=1,...,k and V sequence of terms (t1,...,tg), the goal — (X1 =t1,..., Xy =
ty, A) succeeds in LD resolution with computed answer o iff the goal — (A, X1 =
t1,..., Xk =tg) also succeeds in LD resolution with computed answer o.

Let us note that in the definition above we are only concerned with success-
ful derivations, which we aim at preserving. However, we are not in principle
concerned about preserving infinite failure. For example, «— (A, X = t) and
— (X = t,A) might have the same set of answers but a different termination
behaviour. In particular, the former might have an infinite derivation under LD
resolution while the second may finitely fail. More on this in Section 5.2.

If the atom contains no variables, binding insensitiveness trivially holds. The
following proposition directly follows from the definition of binding insensitive
atom.

Proposition 1. Let A be a ground atom. Then A is binding insensitive.

In spite of its simplicity, Proposition 1 can be quite useful in practice, since
it may allow considering a good number of atoms as binding insensitive even
if the predicate is in principle binding sensitive. All this without the need of
sophisticated analyses.

3.2 Side-effects

Predicates p for which 6(p(X1, ..., Xn)), fail and fail are not equivalent in LD
resolution are termed as “side-effects” in [18].

Definition 2 (side-effect-free atom). An atom A is side-effect free, denoted
sideff_free(A), if the run-time behaviour of «— A, fail is equivalent to that of
— fail.

Since side-effects have to be preserved in the residual program, we have to avoid
any kind of backpropagation which can anticipate failure and, therefore, hides
the existing side-effect.



3.3 Run-Time Errors

There are some predicates whose call patterns are expected to be of certain type
and/or instantiation state. If an atom A does not correspond to the intended call
pattern, the execution of A will issue some run-time errors. Since we consider
such run-time errors as part of the behaviour of a program, we will require
that partial deduction produces program whose behaviour w.r.t. run-time errors
is identical to that of the original program, i.e., run-time errors must not be
introduced to nor removed from the program.

For instance, the predefined predicate is/2 requires its second argument to
be an arithmetic expression. If that is detected not to be the case at run-time,
an error is issued. Clearly, backpropagation is dangerous in the context of atoms
which may issue run-time errors, since it can anticipate the failure of a call to
the left of is/2 (thus omitting the error), or it can make the call to is/2 not to
issue an error (if there is some free variable in the second argument which gets
instantiated to an arithmetic expression after backpropagation). The following
definition introduces the notion of error free atom.

Definition 3 (error-free atom). An atom A is error-free, denoted error free(A),
if the execution of A does mot issue any error.

Somewhat surprising this condition for PD corresponds to that used in [10] for
computing safe call patterns. Unfortunately, the way in which errors are issued
can be implementation dependent. Some systems may write error messages and
continue execution, others may write error messages and make the execution of
the atom fail, others may halt the execution, others may raise exceptions, etc.
Though errors are often handled using side-effects, we will make a distinction
between side-effects and errors for two reasons. First, side-effects can be an
expected outcome of the execution, whereas run-time errors should not occur in
successful executions. Second, it is often the case that predicates which contain
side-effects produce them for all (or most of) atoms for such predicate. However,
predicates which can generate run-time errors can be guaranteed not to issue
errors when certain preconditions about the call are satisfied, i.e., when the atom
is well-moded and well-typed. A practical implication of the above distinction
is that simple, reachability analysis will be used for propagating side-effects at
the level of predicates, whereas a more refined, atom-based classification will be
used in the case of error-freeness.

3.4 Pure and Evaluable Atoms

Given the definitions of binding insensitive, side-effect free, and error free atoms,
it is useful to define aggregate properties which summarize the effect of such
individual properties.

Definition 4 (pure atom). An atom A is pure, denoted pure(A), if

bind_ins(A) A error_free(A) A sideff_free(A)



pure |
eval
| predicate sideff_free] error_free | bind_ins | termin
var(X) true true nonvar(X) true
nonvar(X) true true nonvar(X) true
write(X) false true ground(X) true
assert(X) false nonvar(X) ground(X) true
Ais B true arithexp(B) ground(B) true
A<=B true |arithexp(A)Aarithexp(B)|ground(A)Aground(B) true
A>=B true |arithexp(A)Aarithexp(B)|ground(A)Aground(B) true
ground(X) true true ground(X) true
A=B true true true true
append(A,B,C)|| true true true list(A)Vlist(C)

Fig. 1. Purity conditions for some predefined predicates.

In order to provide a precise definition of evaluable atom, we need to introduce
first the notion of terminating atom.

Definition 5 (terminating atom). An atom A is terminating, denoted termin(A),

if the LD tree for «— A is finite.

The definition above is equivalent to universal termination, i.e., the search for
all solutions to the atom can be performed in finite time.

Definition 6 (evaluable atom). An atom A is evaluable, denoted eval(A), if
pure(A) A termin(A).

The notion of evaluable atoms can be extended in a natural way to boolean
expressions composed of conjunction and disjunctions of atoms.

Figure 1 presents sufficient conditions which guarantee that the atoms for
the corresponding predicates satisfy the purity properties discussed above, where
arithexp(X) stands for X being an arithmetic expression. For example, unification
is pure and evaluable, whereas the library predicate append/3 is pure but only
evaluable if either the first or third argument is bound to a list skeleton.

4 Assertions about Purity of Atoms

In this section, we provide the concrete syntax of the assertions we propose
to use to state the conditions under which atoms for a predicate are pure. Our
assertions may include sufficient conditions (SC') which are decidable and ensure
that, if the atom satisfies such conditions, then it meets the property.

We say that the execution of an atom A for p/n on a logic programming
system Sys (e.g., Ciao or Sicstus) in which the module M (where the exter-
nal predicate p/n is defined) has been loaded trivially succeeds, denoted by
triv_suc(Sys, M, A), when its execution terminates and succeeds only once with
the empty computed answer, that is, it performs no bindings.



Definition 7 (binding insensitive assertion). Let p/n be a predicate defined
in module M. The assertion “:- trust comp p(X1,...,Xn) : SC + bind.ins.”
in the code for M is a correct binding insensitive assertion for predicate p/n in
a logic programming system Sys if, V A s.t. A=0(p(X1,...,Xn)),

1. eval(0(S(C)), and
2. triv_suc(Sys, M, 0(SC)) = bind_ins(A).

The fourth column in Fig. 1 comprises the information stated in several binding
insensitive assertions for a few predefined builtins in Ciao. In particular, this
column represents the sufficient conditions (SC' in Def. 7) for the predicates in
the first column (p(X1, ..., Xn) in Def. 7). For instance, the predicate A is B is
bind_ins if ground(B).

Definition 8 (error-free assertion). Let p/n be a predicate defined in mod-
ule M. The assertion “:- trust comp p(X1,...,Xn) : SC + error_free.” in
the code for M s a correct error-free assertion for predicate p/n in a logic
programming system Sys if, VA s.t. A=0(p(X1,...,Xn)),

1. eval(8(SC)), and
2. trivsuc(Sys, M, 0(SC)) = error_free(A).

For instance, the SC for predicate is/2 states that the second argument is an
arithmetic expression. This condition guarantees error free calls to predicate
is/2.

Definition 9 (side-effect free assertion). Let p/n be an external predicate
defined in module M. The assertion : - trust comp p(X1,...,Xn) + sideff free.
in the code for M is a correct side-effect free assertion for predicate p/n in a
logic programming system Sys if, V0, the execution of 6(p(X1,...,Xn)) does not
produce any side effect.

In contrast to the two previous assertions, side-effect assertions are uncondi-
tional, i.e., their SC always takes the value true. For brevity, both in the text
and in the implementation we omit the SC from them.

Ezxample 1. The following assertions are predefined in Ciao for predicate ground/1:

:— trust comp ground(X) : true + error_free.
:— trust comp ground(X) + sideff_free.
:— trust comp ground(X) : ground(X) + bind_ins.

It can be seen that the third assertion for predicate ground/1 is indeed
redundant, since by Proposition 1 we already know that any atom which is
ground is binding insensitive.

An important thing to note is that rather than using the overall eval as-
sertions of [17], we prefer to have separate assertions for each of the different
properties required for an atom to be evaluable. There are several reasons for
this. On one hand, it will allow us the use of separate analysis for inferring each
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Fig. 2. Backwards Analysis in Non-leftmost Partial Deduction

of these properties (e.g., a simple reachability analysis is sufficient for uncon-
ditional side-effects while more elaborated analysis tools are needed for error
and binding sensitiveness). Also, it will allow reusing such assertions for other
purposes different from partial deduction. For instance, side-effect and error free
assertions are also interesting for other purposes (like, e.g., for program verifica-
tion, for automatic parallelization) and are frequently required by programmers
separately. Finally, eval assertions include termination which is not required for
ensuring correctness w.r.t. computed answers (see Sect. 3).

5 Automatic Inference of Assertions by Backwards
Analysis

Recent developments in backwards analysis of logic program [9, 7, 10] have pointed
out novel applications in termination analysis and inference of call patterns which

are guaranteed not to produce any runtime error. In this section, we outline a new

application of backwards analysis for automatically inferring binding insensitive,

error free and side-effect free annotations which are useful to this purpose. Auto-

matically figuring out when a substitution can be safely backpropagated onto a

call whose execution reaches an impure predicate has been considered a difficult

challenge and, to our knowledge, no accurate, satisfactory solution exists.

Fig. 2 illustrates the PD scheme based on assertions and backwards analy-
sis that we have implemented in CiaoPP. Initially, given a Program and a set of
Predefined Assertions for the external predicates, the Backwards Analyzer ob-
tains a Program w/ Assertions which includes error_free, sideff_free and bind_ins
assertions for all user predicates. Notice that this is a goal-independent process
which can be started in our system regardless PD being performed or not. Af-
terwards, and independently from the backwards analysis process, the user can
decide to partially evaluate the program. To do so, an initial call has to be
provided by means of an Entry Goal. A Partial Deducer is executed from such
program and entry with the only consideration that, whenever a non-leftmost
unfolding step needs to be performed, it will take into account the information
available in the generated assertions.



5.1 The Backwards Analyzer

Regarding the analyzer, we rely on the backwards analysis technique of [7]. In
this approach, the user first identifies a number of properties that are required
to hold at body atoms at specific program points. A meta-program is then au-
tomatically constructed, which captures the dependencies between initial goals
and the specified program points. This meta-program is based on the resultants
semantics of logic programs [6, 5], in which the meaning of a program is the set
of all pairs (A, R) where A = A’6 and there is an LD derivation from « A’
to < R with computed answer 6. An abstraction of the resultants semantics is
then defined, containing all pairs (A, B) such that A = A’ and there is an LD
derivation from < A’ to «— B, B1,...,B,, with computed answer 6, where B
corresponds to one of the specified program points. (This semantics is closely
related to the binary clause semantics defined by Codish and Taboch [2]). The
semantics is captured by a meta-program defining a meta-predicate d/2, such
that d(A4,B) is a consequence of the meta-program whenever a pair (A, B) as
defined above exists. Standard abstract interpretation techniques are applied to
the meta-program; from the results of the analysis, conditions on initial goals
can be derived which guarantee that all the given properties hold whenever the
specified program points are reached.

As indicated in Fig. 2, the analyzer starts from a program and an initial set
of assertions which state the properties of interest defined in Sect. 2 for the ex-
ternal predicates. Essentially, the analysis algorithm propagates this information
backwards in order to get the appropriate assertions for all predicates. The next
example illustrates the use of backwards analysis to derive binding-insensitive
assertions for an exported predicate, starting from the assertions on its imported
predicates.

Ezample 2. Consider the predicate vars/2 which computes the set of variables
in a term, given in Figure 3.

There are several binding-sensitive predicates in the program, namely var/1,
atomic/1, nonvar/1, \== and ==. We can give assertions for each of these,
indicating the conditions under which they are binding-insensitive, as follows:

:— trust comp var(X) : nonvar(X) + bind_ins.

:— trust comp nonvar(X) : nonvar(X) + bind_ins.

:- trust comp atomic(X) : nonvar(X) + bind_ins.

:— trust comp X==Y : ground(X), ground(Y) + bind_ins.
:— trust comp X\==Y : ground(X), ground(Y) + bind_ins.

After performing a backwards analysis with respect to the occurrences of these
predicates, over the abstract domain {ground, nonground}, we obtain the fol-
lowing model for the meta-predicate d/2.

d(vars(A,ground),\==(A,ground)),
d(vars(A,ground) ,==(A,ground)),
d(vars(A,nonground) ,\==(A,ground)),
d(vars(ground,A),\==(ground,ground)),

10



:— module(vars, [vars/2]).

vars(T,Vs) :- vars3(T,[],Vs).

vars3(X,Vs,Vsl) :- var(X), insertvar(X,Vs,Vsl).
vars3(X,Vs,Vs) :- atomic(X).
vars3(X,Vs,Vsl) :- nonvar(X), X =.. [_|Args], argvars(Args,Vs,Vsl).

argvars([],Q,Q).
argvars ([X|Xs],Vs,Vs2) :- vars3(X,Vs,Vsl), argvars(Xs,Vs1l,Vs2).

insertvar (X, [1,[X]).
insertvar (X, [Y|Vs],[YIVs]) :- X == Y.
insertvar(X, [Y|Vs], [YIVs1]) :- X \== Y, insertvar(X,Vs,Vsl).

Fig. 3. The vars/2 procedure

d(vars(ground,A) ,==(ground,ground)),
d(vars(A,ground) ,atomic(A)),
d(vars(ground,A) ,atomic(ground)),
d(vars(A,B),var(h)),

d(vars(A,B) ,nonvar(A)),
d(vars(nonground,A) ,\==(B,C)),
d(vars(nonground,A) ,==(B,C)),
d(vars(nonground,A) ,var(B)),
d(vars(nonground,A) ,nonvar(B)),
d(vars(nonground,A) ,atomic(B))

It can automatically be deduced from these facts that whenever vars(X,Y) is
called with X ground, then all the conditions for binding-insensitivity are satisfied
(noting that ground(X) implies nonvar (X)). Thus we can export the assertion
on binding-insensitivity of vars/2.

:— trust comp vars(X,Y) : ground(X) + bind_ins.

We next consider a small example (continued in Ex. 4) illustrating how back-
wards analysis can assist non-leftmost unfolding .

Ezxample 3. Consider the predefined assertions in Ciao for predicate ground/1
of Ex. 1 and the Ciao program in Fig. 4 whose modular structure appears to
the right. term_typing is the name of the module in Ciao where ground/1 is
defined (and thus where the assertions for ground/1 are).

Predicate long_comp/2 is externally defined in module comp where also these
predefined assertions for it are:

:- trust comp long_comp(X,Y) : true + error_free.
:- trust comp long_comp(X,Y) + sideff_free.
:— trust comp long_comp(X,Y) : ground(Y) + bind_ins.

11



:- module(main_prog, [main/2], [1).
:— use_module(comp, [long_comp/2],[1).

main(X,Y) :— problem(X,Y), q(X).
e ~

problem(a,Y) :- ground(Y),long_comp(a,Y).

problem(b,Y) :- ground(Y),long_comp(b,Y).

qa).

Fig. 4. Program from Example 3

From the program and the available assertions (for long_comp/2 and ground/1),
the backwards analyzer infers the following assertions for problem/2:

:=— trust comp problem(X,Y) : true + error_free.
:- trust comp problem(X,Y) + sideff_free.
:— trust comp problem(X,Y) : ground(Y) + bind_ins.

Backwards analysis of the above program, with analysis over a simple domain
with elements ground and nonground, yields the following dependencies, repre-
sented using the meta-predicate d(A,B) described above.

d(problem(X,ground), long_comp(ground,ground)).
d(problem(X,nonground), long_comp(ground,nonground)).

These facts imply that whenever a call problem(X,Y) is made where Y is ground,
any subsequent assertions concerning binding insensitivity are satisfied; specif-
ically, calls to long_comp(X,Y) satisfy the assertion ground(Y). Hence the last
assertion (binding insensitivity) on problem(X,Y) is established. The analysis
results for d/2 also clearly establish first two assertions on problem(X,Y), with
condition true, since any call to problem(X,Y) is guaranteed to satisfy all the
(trivial) error-freeness and side-effect-freeness assertions.

The last assertion indicates that calls performed to problem(X,Y) with the
second argument being ground are not binding sensitive. This will be very useful
information for the specializer.

5.2 The Partial Deducer

In our system, we use a standard partial deducer (like, e.g., the ECCE system
[12]), with the notable difference of using a observable-preserving unfolding rule.
The following definition introduces this idea.

Definition 10 (observable-preserving unfolding rule). Let AS be a set of
correct assertions. We say that an unfolding rule is observable-preserving w.r-t.
AS if, for any goal — G1,...,Gy, it always selects an atom Gy for unfolding
with k= 1,...,n such that all atoms G1,...,Gr_1 are binding insensitive, error
free and side-effect w.r.t. AS.
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The above definition allow us to ensure that our PD scheme is correct in the
sense that the partially evaluated program preserves the runtime behaviour (or
observables) of the original one w.r.t. the predefined assertions. Let us see an
example.

Ezample 4. Consider a deterministic unfolding rule (i.e., an unfolding rule which
cannot perform non-deterministic steps other than the first one). Given the
program of Ex. 3 and the entry goal: “ :- entry main(X,a).” The unfolding
rule performs an initial step and derives the goal problem(X,a),q(X). Now,
it cannot select the atom problem(X,a) because its execution performs a non
deterministic step. Fortunately, the assertions inferred for problem(X,Y) in Ex. 3
allow us to jump over this atom and specialize first q(X). In particular, the first
two assertions do not pose any restriction because their conditions are true, thus,
there is no problem related to errors or side-effects. From the last assertion, we
know that the above call is binding insensitive, since the condition “ground(a)”
trivially succeeds.

If atom q(X) is evaluated first, then variable X gets instantiated to a. Now,
the unfolding rule already can select the deterministic atom problem(a,a) and
obtain the fact “ main(a,a).” as partially evaluated program. The interesting
point ot note is that, without the use of assertions, the derivation is stopped when
the atom problem(X,a) is selected because any call to problem is considered
potentially dangerous since its execution reaches a binding sensitive predicate.
The specialized program in this case is:

main(X,a) :-problem(X,a),q(X).

Intuitively, this residual program is much less efficient than our specialization
since the execution of the call to long_comp has been totally performed at PD
time in our program while it remains residual in the above one.

As already mentioned in Section 1, our safety conditions for non-leftmost un-
folding preserve computed answers, but has the well-known implication that an
infinite failure can be transformed into a finite failure. However, in our frame-
work this will only happen for predicates which do not have side-effects, since
non-leftmost unfolding is only allowed in the presence of pure atoms. Neverthe-
less, our framework can be easily extended to preserve also infinite failure by
including termination as an additional property that non-leftmost unfolding has
to take into account, i.e. this implies requiring that all atoms to the left of the
selected atom should be avaluable and not only pure (see Section 3.4).

6 Conclusions

In the case of leftmost unfolding, eval assertions can be used in order to deter-
mine whether evaluation of atoms for external predicates can be fully evaluated
at specialization time or not. Such eval assertions should be present whenever
possible for all library (including builtin) predicates. Though the presence of
such assertions is not required, as the lack of assertions is interpreted as the
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predicate not being evaluable under any circumstances, the more eval assertions
are present for external predicates, the more profitable partial deduction will be.
Ideally, eval assertions can be provided by the system developers and the user
does not need to add any eval assertion.

If non-leftmost unfolding is allowed, the following conditions are required:
given a goal «— Aq,...,AR,...,A,, backpropagation of bindings and failure for
the execution of Ap is only allowed if pure(A;) A...Apure(Ar_1). An important
distinction w.r.t. the case of leftmost unfolding above is that pure assertions are
of interest not only for external predicates but also for internal, i.e., user-defined
predicates. As already mentioned, the lack of pure assertions must be interpreted
as the predicate not being pure, since impure atoms can be reached from them.
Thus, for non-leftmost unfolding to be able to “jump over” internal predicates,
it is required that such pure assertions are available not only for external pred-
icates, but also for predicates internal to the module. Such assertions can be
manually added by the user or, much more interestingly, as our system does, by
backwards analysis. Indeed, we believe that manual introduction of assertions
about purity of goals is too much of a burden for the user. Therefore, accu-
rate non-leftmost unfolding becomes a realistic possibility only thanks to the
availability of backwards analysis.
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