
Typed-based Homeomorphic Embedding
for Online Termination

Elvira Albert1, John Gallagher2, Miguel Gómez-Zamalloa1, and Germán Puebla3

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 Computer Science, Roskilde University, DK-4000 Roskilde, Denmark

3 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. We introduce the type-based homeomorphic embedding relation
as an extension of the standard, untyped homeomorphic embedding which
allows us to obtain more precise results in the presence of infinite signatures
(e.g., the integers). In particular, we show how our type-based relation can be
used to improve the accuracy of online partial evaluation. For this purpose,
we outline an approach to constructing suitable types for partial evaluation
automatically, given an untyped program and a goal or set of goals. Our
approach is based on existing analysis tools for constraint logic programs: (i)
inference of a well-typing of a program and goal, and (ii) bounds analysis for
numerical values. We argue that our work improves the state of the practice
of online termination and it is very relevant for instance in the context of the
specialization of interpreters.

1 Introduction

The homeomorphic embedding (HEm) relation [10–12] has become very popular to
ensure online termination of symbolic transformation and specialization methods
and it is essential to obtain powerful optimizations, for instance, in the context of
online Partial Evaluation (PE) [9]. Intuitively, HEm is a structural ordering under
which an expression t1 embeds expression t2, written as t2E t1, if t2 can be obtained
from t1 by deleting some operators, e.g., s(s(U+W)×(U+s(V))) embeds s(U×(U+V)).

The HEm relation can be used to guarantee termination because, assuming that
the set of constants and functors is finite, every infinite sequence of expressions
t1, t2, . . . , contains at least a pair of elements ti and tj with i < j s.t. tiE tj . There-
fore, when iteratively computing a sequence t1, t2, . . . , tn, finiteness of the sequence
can be guaranteed by using HEm as a “whistle”. Whenever a new expression tn+1 is
to be added to the sequence, we first check whether ti 6E tn+1 for all i s.t. 1 ≤ i ≤ n.
If that is the case, finiteness is guaranteed and computation can proceed. Other-
wise, HEm is not capable of guaranteeing finiteness and the computation has to be
stopped. The intuition is that computation can proceed as long as the new expres-
sion is not larger than any of the previously computed ones since that is a sign of
potential non-termination. The success of HEm is due to the fact that sequences can
usually grow considerably large before the whistle blows, when compared to other
online approaches to guaranteeing termination.

While HEm has been proved very powerful for symbolic computations, some
difficulties remain in the presence of infinite signatures such as the numbers. In the
case of logic programs, infinite signatures appear as soon as certain Prolog built-ins
such is/2, functor/3 and name/2 are used. HEm relations over infinite signatures
have been defined (e.g. [11, 2]), but they tend to be too conservative in practice
(“whistling” too early).



A starting point of our work is the observation that, even if an expression is
defined over an infinite signature, it might then only take a finite set of values over
such domain for each computation. In this paper, we introduce the type-based home-
omorphic embedding (TbHEm) relation on typed atoms and typed terms, which by
taking context information into account provides more precise results in the presence
of infinite signatures. For this, our typed relation is defined on types structured into
a (possibly empty) finite part and a (possibly empty) infinite partition. Intuitively,
TbHEm allows expanding sequences as long as, whenever we compare sub-terms from
an infinite type, the concrete values which appear in the expression remain within
the finite part of the type.

The benefits of TbHEm are illustrated in the context of online Partial Evaluation
(PE) [9]. In particular, we use a simplified bytecode interpreter in Prolog whose
specialization (if successful) allows decompiling simple bytecode programs to Pro-
log. For the interpreter, we show how to automatically construct typings which are
appropriate to be combined with TbHEm. They are inferred by relying on exist-
ing analysis techniques, namely on the inference of well-typings [5]. Moreover, we
outline how analysis of numeric bounds can also be used to infer useful informa-
tion for TbHEm. Such analysis makes over-approximations of the set of values that
the program arguments can have. Intuitively, when we can prove that such set of
values is bounded, then we know that the infinite partition of the type is empty
and, hence, we can safely apply traditional HEm (and improve the effectiveness of
PE). Although further experimentation is required, we believe that the examples
we present already show the benefits of our approach for the specialization of logic
programs with infinite signatures.

2 Embedding in Partial Evaluation with Infinite Signatures

This section intends to illustrate the challenges that infinite signatures pose to online
termination based on HEm. For the sake of concreteness, we present our ideas in the
context of online PE, but they can be also applied to other online transformation
and specialization methods (see [11]). We start by recalling the definition of HEm,
which can be found for instance in Leuschel’s work [13].

Definition 1 (E). Given two atoms A = p(t1, . . . , tn) and B = p(s1, . . . , sn), we
say that A is embedded by B, written A E B, if ti E si for all i s.t. 1 ≤ i ≤ n. The
embedding relation over terms, also written E is defined by the following rules:

1. Y E X for all variables X, Y .
2. sE f(t1, . . . , tn) if s E ti for some i.
3. f(s1, . . . , sn)E f(t1, . . . , tn) if si E ti for all i, 1 ≤ i ≤ n.

Online PE [9] is a semantics-based program transformation technique which special-
izes a program w.r.t. a given input data, hence, it is often called program special-
ization. Essentially, partial evaluators are non-standard interpreters which evaluate
expressions while termination is guaranteed and specialization is considered prof-
itable. In PE of logic programs, such evaluation basically consists in building a
partial SLD tree for a given atom. How to construct the evaluations and when to
stop them is determined by the local control (also referred to as unfolding rule). In
state-of-the-art partial evaluators, HEm is used to guarantee termination by ensuring
that the sequence of covering ancestors of the atom selected for further unfolding

2



main(InArgs,Top) :-

build_init_state(InArgs,S0),

execute(S0,st(_,[Top|_],_)).

execute(S,S):-

S = st(PC,_,_),

bytecode(PC,return,_).

execute(S1,Sf) :-

S1 = st(PC,_,_),

bytecode(PC,Inst,_),

step(Inst,S1,S2),

execute(S2,Sf).

step(const(_T,Z),st(PC,S,L),S2) :-

next(PC,PCp),

S2 = st(PCp,[Z|S],L).

step(istore(X),st(PC,[I|S],L),S2) :-

next(PC,PCp),

localVar_update(L,X,I,Lb),

S2 = st(PCp,S,Lb).

step(goto(O),st(PC,S,L),S2) :-

PCp is PC+O,

S2 = st(PCp,S,L).

....

....

next(PC,PCp) :-

bytecode(PC,_,N),

PCp is PC + N.

Fig. 1. Fragment of simplified bytecode interpreter

remains finite (see, e.g., [15]). When the embedding whistle blows, evaluation is ter-
minated and the selected atom is passed to the global control, whose role is to ensure
that we do not try to specialize an infinite number of atoms. Here again, HEm can
be applied to guarantee finiteness of the set of atoms which are specialized. Now, if
the whistle blows, the atom is generalized so that it no longer embeds any of the
previous atoms.

As an example, in Fig. 1 we show a fragment of a simplified imperative byte-
code interpreter implemented in Prolog. If the partial evaluator is powerful enough,
given a bytecode program we can obtain a decompiled version of it in Prolog (see
e.g. [1]). For brevity, we omit the code of some predicates like build init state/2
(whose purpose is explained below) and localVar update/4 which simply updates
the value of a local variable. We only show the definition of step/3 for a reduced set
of instructions. Furthermore, we have removed the frame stack and therefore only
intra-procedural executions are considered. The bytecode to be decompiled is repre-
sented as a set of facts bytecode(PC,Inst,NumBytes) where PC contains the pro-
gram counter position, Inst the particular bytecode instruction, and NumBytes the
number of bytes the instruction takes up. A state is of the form st(PC,Stack,Local)
where Stack represents the operand stack and Local the list of local variables.
The predicate main/2, given the input method arguments InArgs, first builds the
initial state by means of predicate build init state/2 and then calls predicate
execute/2. In turn, execute/2 first calls predicate step/3, which produces S2, the
state after executing the corresponding bytecode, and then calls predicate execute/3
recursively with S2 until we reach a return instruction.

Now, we want to decompile a method which receives an integer and executes
a loop where a counter (initialized to “0”) is incremented by one at each iteration
until the counter reaches the value of the input parameter. For this, we partially
evaluate the interpreter w.r.t. the bytecode of this method by specializing the atom:
main([N],I), where N is the input parameter and I represents the returned value
(i.e. the top of the stack at the end of the computation).

3



Let us first consider an online partial evaluator4 which uses HEm to control
termination both at the local and global control levels. We do not show the SLD
trees built by the partial evaluator nor the decompilation due to space limitations.
However, it suffices to know that in the bytecode program, the PC value “2” cor-
responds to the loop entry. By applying HEm, the evaluation contains a subse-
quence of atoms of the form: execute(st(2, [], [N, 0]), Sf), execute(st(2, [], [N, 1]), Sf),
execute(st(2, [], [N, 2]), Sf) . . . , which correspond to consecutive iterations of the
loop in which the control returns to the loop head with a value for the loop counter
(local variable at the second position in the resulting state) increased by one. This
sequence can grow infinitely, as the HEm does not flag it as potentially dangerous.
In order to get a quality decompilation we need to filter the value of the counter
(local variable) but not that of the PC. This would result in stopping the deriva-
tion when we hit the atom execute(st(2, [], [N, 1]), Sf) and its generalization into
execute(st(2, [], [N, X]), Sf).

A possible relatively straightforward solution in this case is to use the relation
Enum which is a slight adaptation of HEm which filters numeric values, i.e., any num-
ber embeds any other number. Under this relation, the atom execute(st(2, [], [N, 1]),
Sf) embeds execute(st(2, [], [N, 0]), Sf) and therefore we avoid non-termination. Un-
fortunately, this modification to HEm, though is too conservative and leads to ex-
cessive precision loss. For instance, at the beginning of the specialization process we
have the atom execute(st(0, [], [N, 0]), Sf) and, after one unfolding step, we obtain
the atom execute(st(1, [0], [N, 0]), Sf). By using Enum, the whistle blows at this
point and unfolding has to stop. Furthermore, the latter atom is generalized into
execute(st(X, Y, [N, 0]), Sf) before proceeding with the specialization. This turns out
not to be acceptable for specialization of our interpreter, since we lose track of what
is the next instruction to execute, which avoids eliminating the interpretation layer
and in many cases the residual program ends up containing the original interpreter.

Another solution is to use an extension of the embedding relation, as explained
in [11], which is based on a distinction between the finite number of symbols actually
occurring in the program and goal. Under this relation, the atom execute(st(1, [0],
[N, 0]), Sf) does not embed execute(st(0, [], [N, 0]), Sf), as the numbers 0 and 1 are
different static symbols which occur in the program. Hence, we are not forced to gen-
eralize them and lose the PC value. However, this extended embedding turns out not
to be optimal either since we have that execute(st(2, [], [N, 1]), Sf) does not embed
execute(st(2, [], [N, 0]), Sf). This means that we will not stop the unfolding process
after evaluating one iteration of the loop, i.e., we proceed with a second iteration of
the loop and so on. Although the process terminates once we have unfolded as many
iterations of the loop as distinct numbers appear in the program, we are not able
to achieve a quality decompilation. For obtaining a good decompilation, we need to
generalize the loop counter, i.e., the atom execute(st(2, [], [N, 1]), Sf) has to embed
execute(st(2, [], [N, 0]), Sf).

This suggests that embeddings that take context into account are needed: an
appropriate embedding handling PC values has to be different from one handling
numeric values in program variables such as the loop counter.

4 We assume that we have a partial evaluator which is able to accurately handle built-in
predicates and to safely perform non-leftmost unfolding [3].

4



3 Type-based Homeomorphic Embedding

In the presence of infinite signatures, a general method of defining homeomorphic
embedding relations exists; an extended homeomorphic embedding relation is defined
in [11] based on previous results by Kruskal [10] and by Dershowitz [6]. This solution
defines a family of embedding relations, where a subsidiary ordering on function
symbols plays an essential role. However, we argue that this does not really solve
the practical problem of finding an effective embedding relation, since there is no
automated mechanism for finding the “right” ordering relation on the functions in
the signature.

In this section, we propose typed-based homeomorphic embedding (TbHEm for
short), a relation which improves HEm by making use of additional information
provided in the form of types. We outline how this approach can be seen as a way of
generating program-specific instances of extended HEm as defined by Leuschel. Such
additional information is program-dependent and might also be goal-dependent; it
could be provided manually or be automatically inferred by program analysis, as we
will see in Section 4.

3.1 Types: preliminaries and notation

In the following, let P be a program and ΣP be a (possibly infinite) signature
including the functions and constants appearing in P and goals for P as well as
in computations of P . We adopt the syntax of Mercury [16] for type definitions.
Type expressions (types), elements of T , are constructed from an infinite set of type
variables (parameters) VT and an alphabet of ranked type symbols ΣT ; these are
disjoint from the set of variables V and the alphabet of functors ΣN

P of a given
program P respectively.

Definition 2 (type definition). A type rule for a type symbol h/n ∈ ΣT is of the
form h(T̄ ) −→ f1(τ̄1); . . . ; fk(τ̄k); . . . (k ≥ 1) where T̄ is a n-tuple of distinct type
variables, f1, . . . , fk, . . . are distinct function symbols from ΣP , τ̄i (i ≥ 1) are tuples
of corresponding arity from T , and type variables in the right hand side, if any, are
from T̄ .5 A type definition is a finite set of type rules where no two rules contain
the same type symbol on the left hand side, and there is a rule for each type symbol
occurring in the type rules.

As in Mercury [16], a function symbol can occur in several type rules. In the
definition above we allow type rules containing an infinite number of cases. Thus,
standard infinite types such as integer are permitted, defined by a rule with an
infinite number of cases containing the numeric constants. In order to define TbHEm
we introduce some extra annotation into type rules. We consider the right hand side
of each type rule to consist of two disjoint partitions, each possibly empty. More
precisely, we will structure a type rule as h(T̄ ) −→ F ; I, where the union F ∪ I are
the cases in the type rule, F ∪ I is non-empty, F is either empty or finite and I is
either empty or infinite. A type τ ∈ T is labelled (when necessary) with∞ denoting
infinite if I is non-empty in the rule defining τ . If a type τ is written with no label
then it could be either finite or infinite. Note that there could be different partitions
of the same type in different type definitions; for example nat −→ F ; I where F = ∅
and I = N, or F = {0, 1, 2} and I = N \ {0, 1, 2}, etc.
5 The last condition is known as transparency and is necessary to ensure that well-typed

programs cannot go wrong [14, 8].

5



A predicate signature for an n-ary predicate p is of the form p(τ̄) and declares a
type τi ∈ T for each argument of the predicate p/n. The standard concept of a well-
typed program is assumed, restricted to be monomorphic in the sense that the atoms
in a clause, and their sub-terms, can be assigned types such that the type assigned
to each head and body atom is a variant of the signature for its predicate, and
multiple occurrences of the same variable in the clause are assigned the same type.
A more general well-typing allows the types of the body atoms to be instances of the
signatures rather than variants. It suffices for our purpose to state that, given a well-
typed program and a well-typed atomic goal, then each atom arising in computations
of the goal (that is, in an SLD tree for the program and goal) has a type that is a
variant of its respective signature. In short, a well-typed program and goal generate
only well-typed atoms in computations. Furthermore, the monomorphic assumption
implies that only a finite number of types arises during computation.

3.2 Type-based Homeomorphic Embedding

We now define TbHEm (ET ). We first define a subsidiary relation on function symbols
paired with their associated types.

Definition 3. Let �F be the following relation on the set of pairs ΣP × T ; we
assume that T is finite and there is a set of type rules defining the types. ΣP is
possibly infinite, but we assume that the arity of the function symbols is bounded.
(f1, τ1) �F (f2, τ2) iff either f1 = f2 ∧ τ1 = τ2 or f1 and f2 have the same arity, the
rule defining τ2 is of form h(V̄ ) −→ F ; I, and f2 is in the infinite partition I.

Definition 4 (ET ). We write t :τ to mean that term t is of type τ . Given two typed
atoms A = p(t1, . . . , tn) and B = p(s1, . . . , sn), with predicate signature p(τ1, . . . , τn),
we say that A is embedded by B, written A ET B, if ti : τi ET si : τi for all i s.t.
1 ≤ i ≤ n. The embedding relation over typed terms, also written ET , is defined by
the following rules:

1. Y :τY ET X:τX for all variables X, Y .
2. s : τ ′ ET f(t1, . . . , tn) : τ if s : τ ′ ET ti : τi for some i, where τ1, . . . , τn are the

respective types of t1, . . . , tn.
3. f(s1, . . . , sn) : τ1 ET g(t1, . . . , tm) : τ2 if (f, τ1) �F (g, τ2), and si : τi ET ti :

τ ′i for all i, 1 ≤ i ≤ n, where τ1, . . . , τn, τ ′1, . . . , τ
′
n are the respective types of

s1, . . . sn, t1, . . . , tn.

Referring to Definition 3, rule 3 specifies that embedding can occur between
terms with different function symbols, where the function symbol of the “larger”
term is from the I partition of its type. However, as long as we compare distinct
terms from an infinite type and remain within the finite part F of the type, no
embedding (using rule 3) occurs since the condition (f, τ1) �F (g, τ2) does not hold.
For instance, consider the following predicate signature and type definition, p(τ) and
τ −→ F ; I. We have that p(1) ET p(2) if F = ∅ and I = N. However, p(1) 6ET p(2)
if F = {0, 1, 2} and I = N \ {0, 1, 2}.

Proposition 1. Given a type definition and set of signatures, there is no infinite
sequence of well-typed atoms A1, A2, . . . such that for all i, j where i < j, Ai 6ET Aj.

Proof. (Outline). The ordering defined above can be seen as a special case of the
“extended homeomorphic embedding” E∗ [11], which is defined for terms over infinite
signatures. The detailed proof shows that the relation �F is a well binary relation
on the set ΣP × T .

6



We remark that this could be seen as a refinement of the idea sketched in [11] to
build an extended homeomorphic embedding based on a distinction between the
finite number of symbols actually occurring in the program and goal (the static
symbols), and the rest (the dynamic symbols). However, the types allow a more
fine-grained control over the embedding than is possible with that approach. Also,
in Definition 3 functions have to have the same arity in order for the �F to hold.
This restriction could be relaxed, using an ordering on sequences as in the definition
of extended homeomorphic embedding [11].

Note that, if we assume an embedding relation based on a given set of types and
signatures that is a well-typing for a program, we are assured that the embedding
relation is well-defined for all pairs of atoms arising in computations of that program.

4 Automatic Inference of Well-Typings

In this section we outline an approach to constructing in an automatic way suitable
types to be used in online partial evaluation in combination with TbHEm, given
an untyped program and a goal or set of goals. The approach is based on existing
analysis tools for constraint logic programs.

We note first that the problem does not allow a precise, computable solution.
Determining the exact set of symbols that can appear at run-time at a specific
program point, and in particular determining whether the set is finite, is closely
related to termination detection and is thus undecidable. However, the better the
derived types are, the more aggressive partial evaluation can be without risking
non-termination. If the derived types have finite components that are too small, the
over-generalization is likely to result; if they are too large, then specialization might
be over-aggressive, producing unnecessary versions.

A procedure for constructing a monomorphic well-typing of an arbitrary logic
program was described by Bruynooghe et al. [5]6. The procedure scales well (roughly
linear in program size) and is robust, in that every program has a well-typing, and
the procedure works with partial programs (modules).

In the original type inference procedure, an externally defined predicate such
as is/2 is treated as if defined by a clause X is Y :- true and is thus implicitly
assumed not to generate any symbols not occurring elsewhere in the program. In
deriving types for partial evaluation, we provide a type for such built-ins in the form
of a dummy additional “fact” for is/2, namely num is num :- true. The constant
num (assumed not to occur elsewhere in the program) will thus propagate during type
inference into those types that unify with the types of the is predicate arguments.
In the resulting inferred types, we interpret occurrences of the constant num as being
an abbreviation for an infinite set of cases.

Example 1. A type is inferred for the bytecode interpreter sketched in Figure 1,
together with a particular bytecode program. Note that the program counter is
sometimes computed in the interpreter using the predicate is/2 as an offset from
the current program counter value and hence its type is in principle any number.

When the extra fact num is num :- true is added to the program, the inferred
type for the program counter argument PC is as follows.

t51 --> -8; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; num

This type can be naturally interpreted as consisting of a finite part (the named
constants) and an infinite part (the numbers other than the named constants). In
6 available on-line at http://wagner.ruc.dk/Tattoo/

7



other words, the partition F of the rule is {−8, 0, 1, 2, . . . , 14} and I = num \ F .
Using the rule structured in this way, the typed-homeomorphic embedding ensures
that the program counter is never abstracted away during partial evaluation, so
long as its value remains in the expected range (the named constants). In particu-
lar, the atom execute(st(1, [0], [N, 0])) does not embed execute(st(0, [], [N, 0])) by
using the type definition above, thus, the derivation can proceed. This avoids the
need for generalizing the PC what would prevent us from having a quality special-
ization (decompilation) as explained in Sect. 2. The derivation will either even-
tually end or the PC value will be repeated due to a backwards jump in the code
(loops). In this case, ET will flag the relevant atom as dangerous, e.g., execute(st(2,
[], [N, 0])) ET execute(st(2, [], [N, 1])). If however, a different value arose, perhaps due
to an addressing error, the infinite part of the type rule num is encountered and em-
bedding (followed by generalization of the program counter argument) would take
place.

5 Analysis of Numeric Bounds

It is important to note that TbHEm allows us to distinguish a finite set of functors
(the F component of the type rules) even in the case of infinite signatures. A non-
empty I component in type rules often arises during inference of well-typings. We
now consider performing additional dataflow analysis in order to infer that the I
component in type rules is empty. Indeed, we would like to infer whether a type τ
is a bounded interval, i.e., if the type rule for τ is of the form τ −→ F ; ∅ and F is a
finite set of values.

Given a logic program processing numeric values, analyses exist that make over-
approximations of the set of values that the program arguments can have. Polyhedral
analyses are perhaps the most widely known of these and they have successfully been
applied to constraint logic programs [4]. When we can prove that the set of values
that all program arguments can have is bounded, then we know that its infinite
partition is empty and, hence, we can safely apply traditional HEm (and improve
the effectiveness of PE).

Let us assume for the sake of this discussion that a polyhedral analysis can
return, for a given program and goal, an approximation to the set of calls to each
n-ary predicate p, in the form:

p(X1, . . . , Xn)← c(X1, . . . , Xn).

where the expression c(X1, . . . , Xn) is a set of linear constraints (describing a closed
polyhedron). From this information it can be determined whether each argument Xi

is bounded or not by projecting c(X1, . . . , Xn) onto Xi. If it is bounded (from above
and below), and it is known that the ith argument takes on integral values, then it
can take only a finite set of values.

Example 2. Consider the following clauses defining a procedure for computing an
exponential.

exp(Base,Exp,Res) :- exp (Base,Exp,1,Res).
exp ( ,0,Ac,Ac).
exp (Base,Exp,Ac,Res) :- Exp > 0, Exp′ is Exp-1, Ac′ is Ac*Base,

exp (Base,Exp′,Ac′,Res)

Type inference yields the following signature for the predicate exp /4.

8



exp (t24,t24,t24,t24)

with the type t24 --> 0; 1; num. A polyhedral analysis of the same program with
respect to the goal exp(Base,10,Res) yields the following approximation to the
queries to exp /4.

exp (Base,Exp,Ac,Res) :- Exp > -1, Exp =< 10.

The second argument is thus bounded. Combining this with the inferred type, we
obtain the signature exp (t24,s,t24,t24) with the types t24 --> 0; 1; num and s

--> 0..10 (we use the interval notation 0..10 as a shortcut to 0; 1; .. ; 10). Here
we assume that the second argument can take on only integer values. The finite type
0..10 implies that the typed-homeomorphic embedding will not abstract away the
value of the second argument of exp /4 and this allow maximum specialization to
be achieved.

6 Discussion and Related Work

Guaranteeing termination is essential in a number of tasks which have to deal
with possibly infinite computations. These tasks include partial evaluation, abstract
model checking, rewriting, etc. Broadly speaking, guaranteeing termination can be
tackled in an offline or an online fashion. The main difference between these two
perspectives is that in offline termination we aim at statically determining termi-
nation. This means that we do not have the concrete values of arguments at each
point of the computation but rather just abstractions of such values. Traditionally,
these abstractions refer to the size of values under some measure such as list length,
term size, numeric value for natural numbers, etc. In contrast, in online termination,
we aim at dynamically guaranteeing termination by supervising the computation in
such a way that it is not allowed to proceed as soon as we can no longer guarantee
termination. The main advantage of the offline approach is that if we can prove
termination statically, there is no longer any need to supervise the computation for
termination, which results in important performance gains. On the other hand, the
online approach is potentially more precise, since we have the concrete values at
hand, but also more expensive, because of the overhead introduced by the termina-
tion supervision.

In the context of partial evaluation, our problem in the online setting is simi-
lar to offline termination in that we have to find conditions for ensuring local and
global termination. In offline PE, the problem of termination of local unfolding has
been tackled by annotating arguments as “bounded static”. The work of Glenstrup
and Jones [7] is the main reference, though the idea of bounded static variation
goes back a long way. To detect bounded static arguments it is necessary to prove
some decrease in well-founded ordering (e.g. using size-change techniques). Quasi-
termination is a bit weaker than standard termination but still quite hard to prove.
There is Vidal’s recent work on this [17] as well as Glenstrup-Jones [7]. On the other
hand, ensuring termination in online PE is easier because we can use “dynamic”
termination detection based on supervisors of the computations such as for exam-
ple embeddings. This means that we do not need any well-founded orderings but
only well-quasi-orderings. In effect, in our technique it is only necessary to show
boundedness of an argument’s values instead of decrease.

9



References

1. E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java Byte-
code using Analysis and Transformation of Logic Programs. In Proc. PADL, number
4354 in LNCS, pages 124–139. Springer-Verlag, 2007.

2. E. Albert, M. Hanus, and G. Vidal. A practical partial evaluation scheme for
multi-paradigm declarative languages. Journal of Functional and Logic Programming,
2002(1), 2002.

3. E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Unfolding in Partial Evaluation
of Logic Programs with Impure Predicates. In Proc. of LOPSTR’05. Springer LNCS
3901, pages 115–132, April 2006.

4. F. Benoy and A. King. Inferring argument size relationships with CLP(R). In John P.
Gallagher, editor, Logic-Based Program Synthesis and Transformation (LOPSTR’96),
volume 1207 of Springer-Verlag LNCS, pages 204–223, August 1996.

5. Maurice Bruynooghe, John Gallagher, and Wouter Van Humbeeck. Inference of well-
typings for logic programs with application to termination analysis. LNCS 3672, pages
35–51, 2005.

6. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 243–320. Elsevier, 1990.

7. A. J. Glenstrup and N. D. Jones. Termination analysis and specialization-point inser-
tion in offline partial evaluation. ACM Trans. Program. Lang. Syst., 27(6):1147–1215,
2005.

8. Patricia M. Hill and Rodney W. Topor. A semantics for typed logic programs. In
Frank Pfenning, editor, Types in Logic Programming, pages 1–62. MIT Press, 1992.

9. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, New York, 1993.

10. J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans-
actions of the American Mathematical Society, 95:210–225, 1960.

11. M. Leuschel. Homeomorphic embedding for online termination of symbolic methods.
In The Essence of Computation, volume 2566 of LNCS, pages 379–403. Springer, 2002.

12. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduc-
tion: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–515,
July & September 2002.

13. Michael Leuschel. On the power of homeomorphic embedding for online termination.
In Giorgio Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503, pages
230–245, Pisa, Italy, September 1998. Springer-Verlag.

14. Alan Mycroft and Richard A. O’Keefe. A polymorphic type system for Prolog. Artif.
Intell., 23(3):295–307, 1984.

15. G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with Ancestor
Stacks for Full Prolog. In Proc. of LOPSTR’04, pages 149–165. Springer LNCS 3573,
2005.

16. Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of Mercury:
an Efficient Purely Declarative Logic Programming Language. JLP, 29(1–3), October
1996.

17. G. Vidal. Quasi-Terminating Logic Programs for Ensuring the Termination of Partial
Evaluation. In ACM PEPM’07, pages 51–60, 2007.

10


