
Profiling for Run-Time Checking
of Computational Properties and

Performance Debugging in Logic Programs

Edison Mera1 Teresa Trigo2 Pedro Lopez-Garćıa2,3 Manuel Hermenegildo2,4

edison@fdi.ucm.es herme@fi.upm.es

{teresa.trigo,pedro.lopez,manuel.hermenegildo}@imdea.org

1 Complutense University of Madrid (UCM), Spain
2 IMDEA Software Institute, Spain

3 Spanish Research Council (CSIC), Spain
4 School of Computer Science, Technical University of Madrid (UPM), Spain.

Abstract. Although several profiling techniques for identifying perfor-
mance bottlenecks in logic programs have been developed, they are gener-
ally not automatic and in most cases they do not provide enough informa-
tion for identifying the root causes of such bottlenecks. This complicates
using their results for guiding performance improvement. We present a
profiling method and tool that provides such explanations. Our profiler
associates cost centers to certain program elements and can measure dif-
ferent types of resource-related properties that affect performance, pre-
serving the precedence of cost centers in the call graph. It includes an
automatic method for detecting procedures that are performance bottle-
necks. The profiling tool has been integrated in a previously developed
run-time checking framework to allow verification of certain properties
when they cannot be verified statically. The approach allows checking
global computational properties which require complex instrumentation
tracking information about previous execution states, such as, e.g., that
the execution time accumulated by a given procedure is not greater than
a given bound. We have built a prototype implementation, integrated
it in the Ciao/CiaoPP system and successfully applied it to performance
improvement, automatic optimization (e.g., resource-aware specialization
of programs), run-time checking, and debugging of global computational
properties (e.g., resource usage) in Prolog programs.

Keywords: profiling, run-time checking, performance debugging, resource
usage estimation/verification, logic programming.

1 Introduction

Profilers have been developed in the context of several programming paradigms:
imperative [5, 16] (including object oriented [7]), functional [15, 14], logic [3, 9, 4],
or integrations of some of them, such as the functional logic languages Curry and
Toy [1]. In this paper we focus our attention on profilers for logic programs, and
in particular for the Prolog language. The implementation of Prolog profilers has

the added complexity w.r.t. more traditional paradigms of having to deal with
its specific features such as non-determinism and the possibility of failure, which
makes it necessary to deal with backtracking (and, hence, with choice points),
and search pruning operators (like the cut). There exist some implementations
of profilers for the Prolog language (e.g., [4, 3]). However, in order to fill some
gaps and to broaden the range of applications, we have developed a profiler for
Prolog that has the following original features:

1. It is based on the concept of cost center. We have adapted the cost center
definition of Morgan [14], developed in the context of functional program-
ming, to support the unique features of logic programming. A cost center, as
we will explain later in detail, is a program point (such as a procedure or a
call in a clause body) where data about computational events is accumulated
each time the point is reached by the program execution control flow. This
allows measuring accumulated execution time of program procedures that do
not overlap, i.e., the total resource usage of a program can be computed in
a compositional way, by adding the execution time associated to each cost
center. A cost center-based profiler with this property has been developed for
functional programming [15], however, as far as we know, no implementation
of this kind of profiler has been developed for logic programs.

2. It allows preserving the precedence of cost centers in the call graph. It pro-
vides separate accumulated resource usage information for a given procedure
depending on where it is called from, i.e., it is a call graph profiler for Prolog.
We have taken the call graph profiling approach of [16] as starting point and
we have adapted it in order to deal with the more complex execution model
of Prolog, taking failure, backtracking, and pruning operators into account.
The SWI profiler is to our knowledge the only Prolog profiler that keeps the
precedence between the caller and the callee, but it does not support the
concept of cost center.

3. It can measure a wide range of computational properties and events, such as
execution time, execution steps, numbers of calls, failures, exits, redos, choice
point creations, cut executions, choice points removed by the cut operator,
or the percentage of the accumulated cost of a predicate with respect to the
total cost of the program. We use in the rest of the paper the term “resources”
to refer to any of these properties. Although the current implementation is
not fully parametric w.r.t. resources, it can be easily generalized as it was
done with the static resource analysis integrated in CiaoPP [12].

4. It is used for run-time checking of computational properties. For this purpose,
it is tightly integrated in an advanced program development framework which
incorporates in a uniform way run-time checking, static verification, unit
testing, debugging, and optimization. To our knowledge, no profiler has been
used for this purpose or integrated in such an environment to date.

5. It includes a (configurable) automatic method for detecting procedures that
are performance bottlenecks following several heuristics. The method auto-
matically associates cost centers to procedures in an iterative process. Previ-
ous approaches are not automatic (e.g., [3, 15, 1]), so that the programmer is
responsible for configuring cost centers iteratively based on the information

returned by the profiler until the root cause of the bottleneck is detected.
We show that the configuration of cost centers can be automated, as we will
explain further, by exploring a (static or dynamically) generated call graph
until the root cause of the bottleneck is detected.

6. It is able to point at the part of the program that is responsible for the bottle-
neck, guided by any arbitrary resource (like time, event counts, etc.) and to
provide explanations at different granularity levels. This information includes
an automatically generated picture of (a sub-graph of) the call graph (see
Section 6). Existing profilers only provide information about where the bot-
tlenecks of the programs are without any kind of explanation about the root
causes, requiring that additional techniques be applied in order to identify
such causes.

7. It combines time profiling with count profiling, which has proved to be non-
trivial [9], and supports modularity, allowing the specification of which mod-
ules should be instrumented for profiling. This feature of our profiler is pos-
sible thanks to the usage of Ciao’s module system and the automatic code
transformation provided through Ciao’s semantic packages.

8. It uses global static analysis to reduce the overhead of the profiling process.

2 A Cost Center-Based Approach to Profiling

Fundamental to our approach to profiling is the concept of cost center, which is
inspired by the one defined by Morgan [14] in the context of functional languages.

A cost center for us is a program point where data about computational
events is accumulated each time the point is reached by the program execution
control flow. In our current implementation both predicates and literals in body
clauses can be marked as cost centers. However, for the sake of brevity, in this
paper we will only describe cost centers at the predicate level. We also introduce
a special cost center, named remainder cost center (denoted rcc), which is used
for accumulating data about events not corresponding to any defined cost center.

In order to deal with the control flow of Prolog, we adopt the “box model”
of Byrd [2], where predicates (procedures) are seen as “black boxes” in the usual
way. Since the simple call/return view of procedures is not enough to capture
backtracking, this model uses a “4-port box view.” Namely, given a goal (i.e., a
unique run-time call to a predicate), the four ports (events) in Prolog execution
are: (1) call (start to execute the goal), (2) exit (succeed in producing a solution
to the goal), (3) redo (attempt to find an alternative solution to the goal), and
(4) fail (exit with failure, if no further solutions to the goal are found). Thus,
there are two ports for “entering” the box (call and redo), and two ports for
“leaving” it (exit and fail).

Definition 1 (Calls relation). We define the calls relation between predicates
in a program as follows: p calls q, written p ; q, if and only if a literal with
predicate symbol q appears in the body of a clause defining p. Let ;+ denote the
transitive closure of ;.5

5 For simplicity we provide a static definition of the call graph. However, in practice,
it is dynamically built, and thus it deals safely with meta-calls.

Definition 2 (Cost center set). Given a program P to be profiled, the cost
center set for P (denoted CP), is defined as CP = {p | p is a predicate of P
marked as a cost center} ∪ {rcc}, where rcc is the remainder cost center.

Definition 3 (Cost center graph). The cost center graph of a program P
(denoted GP) is the graph defined by the set of nodes CP and the set of edges
E = E′ ∪ {(rcc, rcc)}, such that (p, q) ∈ E′ iff:

1. p is not the remainder cost center (i.e., p 6= rcc), q 6= rcc, and p ;+ q
through some path where all of its nodes (except the origin and destination)
are not in CP ; or

2. p = rcc and: (a) q is an entry point of program P such that q ∈ CP , or (b)
for some predicate r being an entry point of P , r ;+ q through some path
where all of its nodes (except the destination) are not in CP .

Definition 4 (Edge-accumulated resource usage). Each edge (c, d) ∈ GP

has a data structure Rcd, which contains the addition of resource usages over all
the times that the cost center d was entered from cost center c, until a new cost
center is entered or the computation finishes. This allows giving separate resource
usage information for a given procedure depending on where it is called from.

Our profiler is parametric w.r.t. the enter/leave ports, i.e., Rcd contains matri-
ces of the form Resource[enter][leave] (enter ∈ {call, redo}, leave ∈ {exit, fail}),
whose elements are counters to keep track of the usage of several resources for the
four possible “enter/leave” port combination (cf. the “4-port box” of node d). For
example we keep track of the number of times that each of the four “enter/leave”
port combination happens during program execution in Counts[enter][leave].
Execution times are also tracked in Ticks[enter][leave].

Example 1. We are going to illustrate how the resource usage information is
stored in the edges of the cost center graph during the profiling process. At any
time in this process, only one edge is active. When execution enters a predicate
which is defined as a cost center, the resource usage monitored so far is stored in
the active edge, it is deactivated, and then another edge is activated. Consider
program p, and its call graph and cost center graph in Figure 1. Before starting
program execution, the active edge is (rcc, rcc). Then, when execution starts,
the partial counters are reset and p is called. Since p is defined as a cost center,
the resource usage monitored so far in the partial counters is accumulated in
the active edge (rcc, rcc), the partial counters are reset, and the active edge
changes to (rcc, p). Then, the execution of the body of p starts by executing
q. Since q is not defined as a cost center, the active edge remains the same as
before, (rcc, p) (and the partial counters are not reset). When the execution
of q finishes, r is called. Since r is defined as a cost center, the resource us-
age monitored so far in the partial counters is accumulated in the active edge
(rcc, p), the partial counters are reset, and the active edge changes to (p, r).
Since r is the last call in the definition of p, when the execution of r finishes, the
resource usage monitored so far in the partial counters is accumulated in (p, r)

and program execution finishes.

:− cost center p/0 , r /0 .
p :− q , r . p q r rcc p r

Fig. 1. Source code, call graph and cost center graph for Example 1.

Fig. 2. The Ciao assertion framework (CiaoPP’s verification/testing architecture).

Definition 5 (Accumulated resource usage of a cost center). The accu-
mulated resource usage of a given cost center d (denoted Rd) is the sum of the
resource usage for all times cost center d is entered either in forwards (i.e., via
the call port) or backwards (i.e., via the redo port) execution, until a new cost
center is entered or the computation finishes.

The accumulated resource usage of a cost center can be obtained as the sum
of the accumulated resource usages of its incoming edges: Rd =

∑
(c,d)∈E Rcd.

Our definition of accumulated resource of a cost center is compositional, in the
sense that the total resource usage of a program P , denoted RP , is the addition
of the accumulated resource usage of all its cost centers: RP =

∑
c∈CP

Rc. In
contrast, in traditional profilers, the accumulated execution times for different
predicates may overlap (and thus adding them may yield a result greater than
their actual resource usage).

3 Integrating Profiling with Verification and Debugging

In this section we explain how our profiler is integrated within the Ciao/CiaoPP
verification/debugging framework, which incorporates in a uniform way run-time
checking, static verification, unit testing, debugging, and optimization [6, 10]. The
run-time checking of program state properties such as traditional types or modes
can be performed relatively easily. This is in part due to the fact that properties
are written in the source language and runnable (facilitated by the underlying
logic engine), which simplifies the program transformation that adds run-time
checks. However, the run-time checking of global computational properties re-
quires monitoring, which is performed by our profiler. Figure 2 gives an overall
view of such framework, placing the profiling tool in context. Hexagons repre-
sent the tools involved while arrows indicate the communication paths among
them. The process input is the user program, optionally including a set of asser-
tions that always includes the assertions present for predicates exported by any
libraries used (left part of Figure 2), and, optionally, it can include unit tests.

:− cost center qsor t1 /2 , qsor t2 /2 .

qsor t1 (A,B) :− qso r t (A,B) .
qsor t2 (A,B) :− qso r t (A,B) .

q so r t ([] , []) .
q so r t ([X|L] ,R):−

pa r t i t i o n (L ,X, L1 , L2) ,
q sor t1 (L1 ,R1) ,
q sor t2 (L2 ,R2) ,
append (R1 , [X|R2] ,R) .

p a r t i t i o n ([] , , [] , []) .
p a r t i t i o n ([H|L] ,X, [H|L1] , L2):−

H < X, ! ,
p a r t i t i o n (L ,X, L1 , L2) .

p a r t i t i o n ([H|L] ,X, L1 , [H|L2]) :−
H >= X,
pa r t i t i o n (L ,X, L1 , L2) .

append ([] , B,B) .
append ([H|A] ,B , [H|C]) :−

append (A,B,C) .

Fig. 3. Source code for qsort with cost center declarations (at predicate level).

In this paper we are interested in a subset of the versatile Ciao assertion
language which allows expressing global computational properties whose run-
time checking requires the use of our profiler. A detailed description of the full
assertion language can be found in [6]. For brevity, we only introduce the class of
pred assertions, which describes a particular predicate and, in general, follows

the schema: :- pred Pred [: Precond] [=> Postcond] [+ Comp-Props].

where Pred is a predicate symbol applied to distinct free variables and Precond
and Postcond are logic formulae about execution states. An execution state is
defined by the bindings of values to variables in a given execution step (in logic
programming terminology, a substitution). Precond is the precondition under
which the pred assertion is applicable. Postcond expresses that in any call to Pred,
if Precond holds in the calling state and the computation of the call succeeds, then
Postcond also holds in the success state. Finally, the Comp-Props field is used
to describe properties of the whole computation of the calls to predicate Pred
that meet Precond (e.g., resource usage properties). For example, the following
assertion for the quick-sort program in Figure 3:
:− pred qso r t (A,B) : (l i s t (A,num) ,var (B)) => (l i s t (A,num) , l i s t (B,num))

+(cost (ub , s teps , length (A)∗ l og (length (A))) , not fa i l s , i s det) .

states that for any call to predicate qsort/2 with the first argument bound to a
list of numbers and the second one a free variable, if the call succeeds, then the
second argument is also bound to a list of numbers. It also states that (for any of
such calls) an upper bound on the number of resolution steps required to execute
qsort/2, is length(A)×log(length(A)), a function on the length of list A. This is of
course false, but we will see later in this section how we can detect it using our pro-
filer. Additionally, not fails and is det express that the previous calls do not
finitely fail (i.e., they produce at least one solution or do not terminate) and are
deterministic (i.e., they produce at most one solution at most once), respectively.
The cost construct for expressing resource usages, as illustrated in the previous

sample assertion, follows the schema: cost(Approx, Res Name, Arith Expr)

where the Res Name field expresses which resource the assertion refers to. It is
a user-provided identifier which gives a name to each particular resource that
needs to be tracked, verified, or checked. Arith Expr is an arithmetic function
that expresses the resource usage of the predicate as a function of input data
sizes. The Approx field states, for example, whether Arith Expr is providing an
exact value (eq), an upper bound (ub), or a lower bound (lb).

Each assertion can be in a particular verification status, marked with the
keyword prefixes check, checked, false, trust or true (see the ellipses in Fig-

ure 2). The (default) status check determines that the assertion is to be checked.
checked and false express that the assertion has already been proved correct
or incorrect respectively by the system (a compile-time error is reported in the
last case). trust expresses that the assertion is to be trusted (it provides infor-
mation coming from the programmer), and true that the provided information
is the result of static analysis and thus correct (safely approximated). We herein
introduce a new status, obs, which means that an assertion expresses observed
information (in this case, by the profiler).

In this paper we focus on the run-time checking of computational (resource-
related) properties within the CiaoPP unified framework, giving an intuitive short
description using the following example.

Example 2. Assume that we want the CiaoPP system to check whether the follow-
ing assertion, which gives a logarithmic upper bound on the number of resolution
steps of qsort/2 as a function of the length of the input list, holds or not:
:− pred qso r t (A,B) : (l i s t (A,num) ,var (B))

+ cost (ub , s teps , length (A)∗ l og (length (A))) .

First, the CiaoPP system tries to statically verify the assertion. This is done by
running a static resource usage analysis (see [12]) that computes safe lower and
upper bounds on the resource usage (number of resolution steps in this case), and
then by comparing the analysis results with the specification given in the asser-
tion. A full description of the static verification of computational/resource-related
properties is given in [8]. The quick-sort program is of the kind of divide-and-
conquer programs that may cause the analysis to lose precision. As a consequence,
the assertion cannot be proved to be false, since the lower bound resource usage
function derived by the analysis (which is linear) is not greater than the upper
bound function given in the assertion. Conversely, the assertion cannot be proved
to hold, because the upper bound resource usage function derived by the analysis
(which is exponential) is not less or equal than the upper bound function given in
the assertion. Thus, the outcome of the static verification process is “unknown”
and the assertion status remains as check.6 However, if the run-time checking
option is selected, CiaoPP instruments the program with checks to be performed
at run-time for (parts of) assertions which cannot be verified statically. Failure
of these checks raises run-time errors referring to the corresponding assertion. In
our example, using input data automatically generated (or taken from existing
unit tests [10]) the profiler performs different calls to the quick-sort program. If
for some of these calls the computed number of steps is greater than the one
specified in the assertion, then such assertion is false (in fact, CiaoPP was easily
able to prove it).

4 Proposing New Computational Properties

In order to support cumulative properties, we extend the set of properties used in
the assertion language, starting with the addition of rel cost, which expresses
relative resource usages. For example, assuming that the qsort/2 procedure is
part of a given main program, the assertion (with no postcondition):

6 This can optionally produce a verification warning (also known as an “alarm”).

:− pred qso r t (A,B) : (l i s t (A,num) ,var (B)) + r e l c o s t (ub , exectime , 2 0) .

expresses that the execution time of qsort/2 is at most 20% of the total exe-
cution time of the main program. The rel cost construct follows the schema:

rel cost(Approx,Res Name,Percentage) where Approx is as before, denoting

an upper bound, a lower bound, or an exact value on the Percentage of the pro-
cedure resource (Res Name) usage with respect to the total resource usage of the
whole main program (from which the predicate is called) respectively.

We have also extended the cost and rel cost property constructs with an
extra argument Type specifying the kind of cost information we are interested in:

{cost,rel cost}(Approx,Type,Res Name,Arith Expr) defined as follows:

– sol(I): The cost of obtaining the I-th solution without considering the cost
of obtaining the previous one. By definition, if I is greater than the number
of solutions, then the related cost is zero.

– allsols: The cost of obtaining all the solutions. It is equivalent to the cost
of applying findall/3 over the given predicate, but subtracting the cost of
findall/3 itself.

– call: The cost of calling the predicate, regardless of whether it fails or suc-
ceeds (this is the value by default).

– call exit: The cost of calling the predicate when it succeeds.
– call fail: The cost of calling the predicate when it fails.
– redo: The cost of backtracking over the predicate, regardless of whether it

fails or succeeds.
– redo exit: The cost of backtracking over the predicate when it succeeds.
– redo fail: The cost of backtracking over the predicate when it fails.

The following example illustrates how the CiaoPP system (with our profiler
integrated and our extended run-time checking operations), monitors and checks
relative resource usages at run-time.

Example 3. Consider again the qsort/2 predicate in Figure 3, and assume that
we want to know how the execution times of its recursive calls are distributed.
Although as mentioned before it is possible to define cost centers at literal level,
for the sake of clarity we have defined two bridge predicates (qsort1/2 and
qsort2/2) that are used in place of the recursive calls of qsort/2, and have
marked them as cost centers using the following declaration:

:− cost center qsor t1 /2 , q sor t2 /2 .

Assume that we profile the execution of qsort/2 with an input list of 2500
randomly generated elements, and that our profiler outputs the assertions:

:− obs pred qsor t1 /2 + r e l c o s t (eq , exec t ime , 4 8) .
:− obs pred qsor t2 /2 + r e l c o s t (eq , exec t ime , 4 7) .

which mean that the observed execution times of qsort1/2 and qsort2/2 are
48% and 47% of the total execution time respectively.

Assume now that we want the CiaoPP system to check at run time whether
the two (recursive) calls in the body of the (original) qsort/2 are balanced (i.e.,
whether each recursive call consumes more or less 50% of the total execution
time). For this purpose, we write the following assertions:

Program Cost center transformation for profiling

:− module(ap , [append /3] ,
[p r o f i l e r]) .

:− cost center append /3 .

append ([] , B,B) .
append ([H|A] ,B , [H|C]) :−

append (A,B,C) .

’ cc ’ (ap , append , 3) .
append (E, L , R) :−

h c c c a l l (’ ap : append ’ , 3 , PrevCCE ,CutTo) ,
h c c f a i l (PrevCCE , ChPt0) ,
’ ccappend ’ (A,B,C) ,
h c c e x i t (PrevCCE , ActiveCCE , ChPt1) ,
hcc redo (ActiveCCE , ChPt0 , ChPt1 , CutTo) .

’ ccappend ’ ([] , B,B) .
’ ccappend ’ ([H|A] ,B , [H|C]) :−

’ ccappend ’ (A,B,C) .

Fig. 4. Cost center transformation for profiling (at predicate level).

:− check pred qsor t1 /2 + r e l c o s t (ub , exec t ime , 5 5) .
:− check pred qsor t2 /2 + r e l c o s t (ub , exec t ime , 5 5) .

Assume that we call qsort/2 with a non-uniformly distributed input list, and
that the execution accumulates 65.01% and 8.16% of the time in the two cost
centers associated to the two calls respectively. In this case, the CiaoPP dynamic
comparator will throw a run-time checking error informing that the assertion for
cost center qsort1/2 is violated (because the monitored execution time is greater
than the one expressed in the assertion), and, thus the two calls in the body of
qsort/2 are not balanced.

In contrast to non-cumulative global properties, the previously illustrated
kind of cumulative properties cannot be checked immediately at run-time, but
rather at the proper time instant in the program execution. In the current im-
plementation, such checking is done at the end of the program execution (when
the program control reaches an output port where there are no pending choice
points). However, some scenarios require other rules for expressing the time in-
stant in which the checking is performed. Consider for example a service that
requires the check to be made periodically at certain time intervals, or when a
certain number of client requests has been reached. Also, so far the operation for
accumulating resource usages has been addition. However, it is desirable to have
more complex operations. For example, old measurements could be discarded, or
the events weighted according to their ages or other properties.

5 Program Transformation for Profiling

Source-to-Source Transformation for (High-Level) Profiling. A predi-
cate marked as a cost center is transformed into an equivalent one that preserves
its semantics while intercepting occurrences of events inside it, by using some
instrumentation procedures introduced by the transformation. For example, the
predicate append/3 in Figure 4 is marked as a cost center (left hand side), and, in
its transformation (right hand side), it is uniquely renamed to ’ccappend’/3.
In order to avoid calls to instrumentation procedures along all recursive calls to
append/3, the body of the recursive clause of ’ccappend’/3 is transformed so
that it calls ’ccappend’/3 instead of append/3 (this also avoids the destruc-
tion of last call optimization.).

A brief description of the instrumentation predicates follows. They operate
on the cost center graph. Any edge in such graph (CC-edge in the following),
contains the already described (non backtrackable) arrays Counts[enter][leave]
and Ticks[enter][leave] (Section 2). An implicit stack whose elements are pairs

of CC-edges (variables PrevCCE and ActiveCCE) is used to keep the active CC-
edge, and to restore the previous CC-edge when the control flow leaves the active
one (so that the precedence of cost centers in the call graph is preserved):

– hcc call(+Name,+Arity,-PrevCCE,-CutTo): activates the CC-edge whose
destination is Name/Arity and origin the destination of the previous CC-
edge. Unifies PrevCCE with a pointer to the previous CC-edge. Sets the flag
named “entryport” (associated to the active CC-edge) to the value “call”,
in order to track that the predicate Name/Arity has been entered through
the call port. Unifies CutTo with a pointer to the top of the current choice
point stack.

– hcc fail(+PrevCCE,-ChPt0): pushes a choice point on the stack in or-
der to execute instrumentation code upon backtracking (after failure oc-
curs), and unifies ChPt0 with a pointer to such choice point. The instru-
mentation code executed upon backtracking increments by one the value of
Counts[entryport][fail] associated to the active CC-edge, 7 and changes the
active CC-edge to PrevCCE.

– hcc exit(+PrevCCE,-ActiveCCE,-ChPt1): increments by one the value of
Counts[entryport][exit] associated to the active CC-edge. Unifies ActiveCCE
with a pointer to the active CC-edge and ChPt1 with a pointer to the top of
the current choice point stack. Changes the active CC-edge to PrevCCE.

– hcc redo(+ActiveCCE,+ChPt0,+ChPt1,+CutTo): pushes a choice point on
the stack to execute instrumentation code upon backtracking. Checks whether
ChPt0 and ChPt1 point to the same choice point, in which case the goal is
deterministic (i.e., no choice points have been created during its execution),
and all choice points up to CutTo are removed (namely, the ones introduced
by hcc fail/2 and hcc redo/4 itself). The instrumentation code executed
upon backtracking sets the “entryport” flag (associated to the active CC-
edge) to the value “redo,” and changes the active CC-edge to ActiveCCE.

Static Cost Center Optimization using CiaoPP. The overhead introduced
by the transformation of cost centers described before can be reduced by us-
ing static analysis. There are situations where it can be ensured that some of
the instrumentation predicates (or combinations of them) introduced by such
transformation will never be reached. For example, when a predicate (or literal)
marked as a cost center does not introduce choice points, always succeeds, or
always fails. Thus, such unreachable instrumentation predicates can be removed.
Our profiler detects these situations by using the information inferred by the
CiaoPP analyzers [6] (such as non-determinism and non-failure). It also intro-
duces specialized versions for reachable combinations of instrumentation predi-
cates. Although these specialized versions increase the size of the instrumented
program, they can significantly reduce the overhead introduced by the profiler.
Figure 5 shows (right hand side) some of the optimized cost center transforma-
tions (which introduce specialized versions of the instrumentation predicates)
performed by using information inferred by CiaoPP analyzers, that is expressed
as assertions (left hand side).

7 Note that the entryport flag can take the values call or redo.

Assertion Specialized Cost Center Transformation

:− true pred Goal
+ (no choicepoint , not fa i l s) .

h c c c a l l n c n f (Name, Arity , PrevCCE) ,
ca l l (Goal) ,
h c c e x i t n cn f (PrevCCE) .

:− true pred Goal
+ no choicepoint .

h c c c a l l (Name, Arity , PrevCCE , CutTo) ,
h c c f a i l n c (PrevCCE) ,
ca l l (Goal) ,
h c c e x i t n c (PrevCCE ,CutTo) .

:− true pred Goal + not fa i l s .

h c c c a l l n f (Name, Arity , PrevCCE ,CutTo) ,
ca l l (Goal) ,
h c c e x i t (PrevCCE , ActiveCCE , ChPt1) ,
h c c r edo n f (ActiveCCE , ChPt1 , CutTo) .

Fig. 5. Cost center transformation optimization.

Enriching Information with Low-level Profiling. We set up several hooks
at some relevant points in the engine. Their implementation is located in a
separate module. To avoid run-time overhead, such hooks are made available
by compiling the engine with an option that enables them. For example, there
are hooks that are called when a fail causes the next choice point to be tried
(lph fail redo(wam)), when a cut is executed (lph cut(wam)), and when a
given predicate pred is called (lph exit call(wam, pred), where the variable
wam is a structure that represents the current state of the virtual machine).
Such hooks remain uninstantiated until the procedure profile/1 is used over
a given goal, in which case they are instantiated to actual functions that per-
form the profiling itself. The end of the profiling leaves the hooks uninstantiated
again. When performing low-level profiling, each edge of the cost center graph
contains the following (non backtrackable) data structures: (1) the already des-
cribed ones used in high-level profiling; (2) two matrices, Cuts[enter][leave] and
SCuts[enter][leave], that keep the number of cut executions that remove or do
not remove choice points respectively (which allows for example detecting useless
pruning operations and checking that a cut actually prunes branches); and (3) a
hash table used to track the execution of predicates. The key of each entry in the
table is a predicate name/arity, and its fields are: (a) two matrices similar to the
already described Counts[enter][leave] and Ticks[enter][leave]), but referred to
“predicate heads,” and (b) a counter (Skips) to keep the number of choice points
that are removed for that predicate by some pruning operator (cut) execution.

The low-level profiling allows tracking information on predicates that have not
been marked as cost centers (e.g., library predicates), and therefore, to detect that
certain low-level or library predicates are being used by our program without us
being aware (which could happen if syntactic expansions are used). It also allows
detecting backtracking in predicate heads (useful to detect predicates that do
not succeed in the first clause, or that are not indexed by the first argument).

6 Automatic Performance Bottleneck Detection

Defining cost centers by hand in order to detect performance bottlenecks is a
time-consuming task. As mentioned before, one of the original features of our
profiling tool is a method for identifying performance bottlenecks in an automatic
way, which uses an iterative process that defines cost centers at each iteration.
For space reasons, we give a high-level description of the algorithm and refer the
reader to [11] for details and examples. The method provides the sub-graph (a
tree in fact) of the cost center graph that is responsible for the performance leak.

It can be applied to modular programs and allows providing a list of modules
whose predicates must be taken into account. The input call graph to the method
is dynamically constructed (defining cost centers for all predicates in the selected
modules, and executing once with profiling activated).

Starting with the initial goal as the current predicate, at each iteration the
children of the current predicate in the call graph (i.e., its called predicates) are
computed. They and the previous cost centers in the current branch of the cost
center graph (including the current predicate), are marked as cost centers. Then,
the goal is profiled, and, after that, the set of cost centers called by the current
predicate and the amount of resource that each one consumes are computed. To
ensure termination, any predicate previously defined as a cost center (including
the current predicate) is removed from this set. If after this removal there are no
cost centers left in the set, then the process finishes returning the graph built so
far. Otherwise, it selects the relevant cost centers of the called cost centers set,
according to a heuristic (which is a parameter of the method), provided by the
user. Some examples of heuristic selection rules are: (1) select the N predicates
that consume more resources, (2) select the ones whose resource consumption
is larger than a given percentage of the total resource usage, or (3) select the
predicates whose number is not larger than a percentage X of the number of pro-
gram predicates, and which together consume a percentage of the total resource
usage greater than a given bound Y . Independently of the heuristic used, a given
predicate is selected at most once (and thus, the sub-graph returned is a tree).

We have also developed a method for drawing automatically the sub-graph of
the cost center graph that is responsible for the performance leak, where different
colors and sizes are used to express the accumulated resource usage in each cost
center.

7 Experimental Results

We have performed an experimental assessment of our profiler. The results are
shown in Table 1 for two different platforms with different processors and OS: an
Intel Core i7, 4 cores x 2.67GHz (2 threads per core), 12GB of RAM, Ubuntu
Linux 10.10 (kernel 2.6.35) and an UltraSparc-T1, 8 cores x 1GHz (4 threads
per core), 8GB of RAM, SunOS 5.10. In both platforms, the execution has been
locked to a single core in order to avoid erroneous execution time measurements.
The profiler measures execution times using a high-resolution timer, which al-
lows giving relevant values in situations where other methods would get a zero
value. The first and second columns of the table show the benchmarks used8

and the number of predicates defined in them respectively. For each platform,
the Obs column shows the observed execution time without profiling (given in
milliseconds). The following two columns grouped under (Est.Dev.) are meant
to assess the accuracy of our profiler in monitoring execution times. They show
the ratio between the execution time estimated by the profiler and Obs for two
levels of profiling instrumentation: hl, which only performs the high level source-
to-source transformation, and ll, which besides performing this transformation,

8 Source code for the examples is available at http://www.clip.dia.fi.upm.es/profiling/.

Program
#
P.

mem 5

guardians 9
color map 5
bignums 4

wumpus 65
solve jugs 6

qsort 4

sudoku 12
zebra 5

hanoi 3

flat 4
substitute 3

queens 16

Average

Intel

Obs
Est. Bot.D. Profiling Ov.

(ms)
Dev. # ovb Optim. N.Op.
hl ll it (%) hl ll hl ll

67 1.0 1.4 4 2.40 1.0 4.6 1.0 4.6

182 1.0 1.6 4 0.95 1.0 3.8 1.0 3.8

99 1.0 1.8 2 1.26 1.0 4.3 1.0 4.3
102 1.0 2.4 3 1.46 1.0 2.6 1.0 2.6

211 1.0 1.6 4 1.53 1.0 5.6 1.0 5.6

255 1.0 1.6 4 0.52 1.0 4.0 1.0 4.0
76 1.1 2.1 3 1.82 1.3 6.3 1.3 6.3

72 1.3 1.7 7 2.42 1.5 5.3 1.6 5.6

40 1.3 1.5 3 3.53 1.5 5.7 1.5 5.7
128 1.2 1.9 3 1.12 1.6 8.3 2.1 9.6

65 1.5 1.8 4 2.41 2.9 10.0 4.2 14.2

187 2.0 2.3 3 0.71 2.9 12.7 2.9 12.6
92 2.0 2.2 6 1.79 3.1 15.7 3.1 15.7

121 1.2 1.8 3 1.34 1.5 6.7 1.6 7.0

Sparc

Obs
Est. Bot.D. Profiling Ov.

(ms)
Dev. # ovb Optim. N.Op.
hl ll it (%) hl ll hl ll

377 1.0 1.4 4 4.65 1.0 7.8 1.0 7.8

959 1.0 1.3 4 1.31 1.0 6.1 1.0 6.1

558 1.0 1.3 2 2.24 1.0 6.4 1.0 6.4
2178 1.0 1.0 3 0.33 1.0 1.1 1.0 1.1

1018 1.0 1.7 4 1.56 1.0 11.4 1.0 11.4

1237 1.0 1.5 4 0.98 1.0 7.1 1.0 7.1
402 1.1 2.2 3 1.46 1.4 10.5 1.5 10.6

359 1.2 1.5 7 4.44 1.7 8.7 1.8 9.4

184 1.4 1.4 3 7.16 1.9 10.6 1.9 10.6
665 1.2 1.7 3 1.57 1.9 14.6 2.4 16.9

323 1.5 1.6 4 2.54 3.8 17.2 5.4 24.7

1102 2.0 2.0 3 0.51 3.4 19.6 3.4 19.7
429 2.3 1.9 6 4.30 4.4 28.4 4.4 28.4

753 1.2 1.5 3 1.59 1.6 9.5 1.7 10.0

Table 1. Experimental assessment of the profiler.

also introduces hooks in the engine (i.e., it also performs low-level profiling). The
columns grouped under Bot.D. refer to the automatic performance bottleneck
detection process (described in Section 6), where the performance is measured in
terms of execution time, the heuristic of selecting the goal with the largest execu-
tion time in each iteration has been followed, and the profiling has been performed
without engine hooks (since they do not improve execution time measurements).
Column #it shows the number of iterations needed to complete such process,
and column ovb shows its overhead, calculated as ovb =

Ttot−Tpr−Tco

#it×Obs , where the

total time due to executing the program with profiling (Tpr =
∑#it

i=1 Profi) and

the total time due to its compilation (Tco =
∑#it

i=1 Compi) have been subtracted
from the total time (Ttot) in order to isolate the time due to the bottleneck
detection process itself. Averages are also provided in the last row of the table.9

The columns under Profiling Ov. relate to the run-time overhead intro-
duced by the different program transformations/instrumentations described in
Section 5. They are grouped into two sub-columns, showing the results when the
instrumentation has been optimized using CiaoPP’s static analyzers (Optim.),
and without such optimization (N.Op.). In both cases we present the results
with (ll) and without (hl) engine hooks activated respectively. The overheads
(ll and hl) are given as a ratio Prof

Obs
, where Prof refers to the execution time

when the profiler is activated, with the cost centers assigned by the automatic
bottleneck detection process reported in the columns grouped under Bot.D. (the
number of selected cost centers is #it −1), and Obs is the value in the third co-
lumn described before. The overhead ratio hl is very close to 1 (i.e., almost no
overhead is introduced) for the first six programs in the table, while it is larger
for the rest. This is because the latter perform recursive calls between cost cen-
ters. As expected, the overhead ratios (for both platforms) grow as we increase
the degree of information that we want to obtain from the profiler.

9 Weighted average taking the observed execution time as weight in all cases.

It can be argued that the overhead introduced by our profiler is small for
a reasonable level of profiling information, and that global static analysis in-
deed reduces such overhead. Interestingly, if we compare our results with those
reported in [16] (which is the closest related previous work that we are aware
of for which there is available data, although applied to imperative programs),
the overheads of the hl columns under Profiling Ov./Optim. are of similar
magnitude to those reported therein: 2.95 in the worst case, while in our results
the worst overhead for the Intel platform is 3.1 (queens). However, our approach
provides a richer (and more detailed) variety data.

8 Discussion and Future Work

Since its development our profiler has proved to be quite useful in practice by
identifying the root causes of performance bottlenecks in several complex, real-
life situations. For example, it was the key for identifying a difficult to locate
performance bug in the (Ciao) CHR implementation (a complex and relatively
large piece of code): a dereferencing chain for the attribute of a variable was
constructed, instead of modifying the value of the attribute. Thus, the time
needed for getting the value of such attribute was directly proportional to the
number of times that the attribute was modified. Our profiler has also been suc-
cessfully applied to resource-aware poly-controlled partial evaluation [13]. This
technique combines different control strategies to obtain optimizations that can-
not be obtained using a single control technique. Once the optimizations have
been obtained they are compared using some values (called fitness values). Our
implementation has been successfully used for estimating such values.

Note that in some cases, bottlenecks can only be detected using the fine-grain
information provided by our low-level profiling (via engine hooks). For example,
assume that we have a read-only library which is responsible for lack of perfor-
mance. In this case we are unable to define cost centers on it to perform high-level
profiling. Alternatively, we can activate the engine hooks to track information
about all the subroutines invoked in such library, and use it to diagnose the per-
formance problem. Engine hooks can also profile more properties, like the number
of cut executions that remove (or do not remove) choice points, failures during
head unification, or choice points removed for a given predicate (see Section 5).

Although our profiler already supports several computational properties and
events, these are predefined. However, as future work, it should be straightfor-
ward to extend it to allow measuring user-defined resources, in the sense of the
static resource analysis currently integrated in the CiaoPP framework [12].

Acknowledgments: this research has been partially funded by the EU 7th. FP
NoE S-Cube 215483, FET IST-231620 HATS, MICINN TIN-2008-05624 DOVES
and CM project P2009/TIC/1465 PROMETIDOS. Teresa Trigo has been sup-
ported by CAM grant CPI/0621/2008.

References

1. B. Brassel, M. Hanus, F. Huch, J. Silva, and G. Vidal. Run-Time Profiling of
Functional Logic Programs. In Proc. of the Int’l. Symp. on Logic-based Program
Synthesis and Transformation (LOPSTR’04), pages 182–197. Springer LNCS 3573,
2005.

2. L. Byrd. Understanding the Control Flow of Prolog Programs. In S.-A. Tärnlund,
editor, Proceedings of the 1980 Logic Programming Workshop, pages 127–138, De-
brecen, Hungary, July 1980.

3. S. K. Debray. Profiling Prolog Programs. Software Practice and Experience,
18(9):821–839, 1983.

4. M. Ducassé and J. Noyé. Tracing Prolog Programs by Source Instrumentation is
Efficient Enough. Journal of Logic Programming, 43:157–172, 2000.

5. Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: a Call
Graph Execution Profiler. In SIGPLAN ’82: Proc. of the 1982 SIGPLAN Symp.
on Compiler Construction, pages 120–126, New York, NY, USA, 1982. ACM.

6. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2):115–140,
October 2005.

7. I. H. Kazi, D. P. Jose, B. Ben-Hamida, C. J. Hescott, C. Kwok, J. A. Konstan,
D. J. Lilja, and P.-C. Yew. JaViz: A Client/Server Java Profiling Tool. IBM Syst.
J., 39(1):96–117, 2000.

8. P. López-Garćıa, L. Darmawan, and F. Bueno. A Framework for Verification and
Debugging of Resource Usage Properties. In Technical Communications of ICLP,
volume 7 of LIPIcs, pages 104–113. Schloss Dagstuhl, July 2010.

9. A. B. Matos. A matrix model for the flow of control in prolog programs with
applications to profiling. Software Practice and Experience, 24(8):729–746, August
1994.

10. E. Mera, P. López-Garćıa, and M. Hermenegildo. Integrating Software Testing and
Run-Time Checking in an Assertion Verification Framework. In 25th International
Conference on Logic Programming (ICLP’09), number 5649 in LNCS, pages 281–
295. Springer-Verlag, July 2009.

11. E. Mera, T. Trigo, P. López-Garćıa, and M. Hermenegildo. An Approach to Pro-
filing for Run-Time Checking of Computational Properties and Performance De-
bugging. Technical Report CLIP3/2010.0, Technical University of Madrid (UPM),
School of Computer Science, UPM, March 2010.

12. J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-Definable Re-
source Bounds Analysis for Logic Programs. In 23rd International Conference on
Logic Programming (ICLP’07), number 4670 in LNCS, pages 348–363. Springer,
September 2007.

13. C. Ochoa and G. Puebla. Poly-Controlled Partial Evaluation in Practice. In ACM
Partial Evaluation and Program Manipulation (PEPM’07), pages 164–173. ACM
Press, January 2007.

14. S. A. Jarvis R. G. Morgan. Profiling large-scale lazy functional programs. Journal
of Functional Programing, 8(3):201–237, May 1998.

15. Patrick M. Sansom and Simon L. Peyton Jones. Formally Based Profiling for
Higher-Order Functional Languages. ACM Transactions on Programming Lan-
guages and Systems, 19(2):334–385, March 1997.

16. J. M. Spivey. Fast, accurate call graph profiling. Software Practice and Experience,
34(3):249–264, 2004.

