
On the Pract ica l i ty of Global Flow Analysis
of Logic P r o g r a m s

Richard Warren
Manuel Ilermenegildo

Advanced Computer Architecture
Microelectronics and Computer Technology Corporation
Austin, TX 78759

Saumya K. Debray

Department of Computer Science
University of Arizona
Tucson, AZ 85721

ABSTRACT
This paper addresses the issue of the practicality of global flow analysis in
logic program compilation, in terms of both speed and precision of
analysis. It discusses design and implementation aspects of two practical
abstract interpretation-based flow analysis systems: MA3, the MOO And-
parallel Analyzer and Annotator; and Ms, an experimental mode inference
system developed for SB-Prolog. The paper also provides performance
data obtained from these implementations. Based on these results, it is
concluded that the overhead of global flow analysis is not prohibitive,
while the results of analysis can be quite precise and useful.

1. Introduction

The extensive use of advanced compilation techniques [1,23,21], coupled
with parallel execution [5,7,13,16,25], appears to be a very promising
approach to achieving improved performance in logic programming sys­
tems. Existing systems are based largely on local analysis (i.e. clause-level
or, at most, procedure-level, as in the WAM). Such techniques have
already brought substantial performance improvements to popular Prolog
systems [11,21,22]. However, global analysis offers the potential to attain
substantially higher execution speeds. This has given rise to a great deal
of research in flow analysis-based optimization of logic programs (e.g. see
[3,9,17,18]). These theoretical studies have proven the correctness of
different types of analysis and their termination properties. However, in
order that the analysis and optimization of large programs be practical, it
is necessary that such analysis algorithms be both precise and efficient.
The question remains then about whether flow analysis can actually be
done routinely with useful precision in a reasonable amount, of time, and,

if so, what implementation techniques might be used to achieve this goal.

This paper addresses the issue of the practicality and implementabil-
ity of flow analysis of Prolog programs. It reports on the design, imple­
mentation, and performance of two practical abstract interpretation-based
flow analysis systems: MA3, the MCC And-parallel Analy zer and Annota-
tor; and Ms ("Mode system"), an experimental flow analysis system
developed for SB-Prolog. Section 2 briefly introduces the concept of
"abstract compilation" used in these two systems while Section 3
discusses various implementation approaches and their tradeoffs. Section 4
presents a sample application of the mode information obtained and Sec­
tion 5 offers performance figures and a discussion of these results. Finally,
Section 6 summarizes our conclusions which indicate that quite good pre­
cision can be attained and at a reasonable cost.

2. Preliminaries

2 .1 . Dataflow Analysis of Logic Programs

The purpose of dataflow analysis is to determine, at compile time, proper­
ties of the terms that variables can be bound to, at runtime, at different
points in a program. Since most "interesting" properties of programs are
undccidable, the information obtained via such static analyses is typically
conservative. Nevertheless it can be used in many cases to improve the
quality of code generated for the program.

Most of the flow analyses that have been proposed for logic program­
ming languages are based on a technique called abstract interpretation [6].
The essential idea here is to give finite descriptions of the behavior of the
program by symbolically executing the program over an "abstract
domain," which is usually a complete lattice or cpo of finite height. Ele­
ments of the abstract domain and those of the actual computational
domain are related via a pair of monotone, adjoint functions referred to as
the abstraction (a) and concretization (7) functions. In addition, each
primitive operation / of the language is abstracted to an operation / '
over the abstract domain. Soundness of the analysis requires that the
concrete operation / and the corresponding abstract operation / ' be
related as follows: for every x in the concrete computational domain,
7(/>(*))) < Ax).

2.2. Abstract Compilation

A naive implementation of a global flow analysis system, based on the
technique suggested by the name "abstract interpretation," might proceed
by modifying a standard mcta-circular interpreter to compute over the
abstract domain. An alternative is to specialize such an abstract inter­
preter to deal with only the program under consideration. This can be

done by m a k i n g a single pass over the p r o g r a m P t o be analyzed and pro­

duc ing a t r ans fo rmed p r o g r a m r{P) which, when executed, yields precisely

the desired flow informat ion a b o u t the original p r o g r a m P (see F igure l) . 1

T h e t r a n s f o r m a t i o n r is de te rmined by the flow informat ion desired. T h e

prac t ica l benefit of th i s approach is t h a t since the flow informat ion is

o b t a i n e d by execut ing the t r ans fo rmed p r o g r a m direct ly, ins tead of hav ing

the under ly ing sys tem execute the a b s t r a c t in te rpre te r which in t u rn sym­

bolically executes t he original p rogram, one level of i n t e rp re t a t ion is

avoided d u r i n g the i te ra t ive fixpoint c o m p u t a t i o n charac ter i s t ic of

da taf low analyses . Since much of the cost of global flow analyses is in

these i te ra t ive fixpoint c o m p u t a t i o n s , th is resul ts in significantly more

efficient analyses . T h e technique, which for lack of a be t t e r n a m e we refer

t o as " a b s t r a c t compi l a t i on , " was (to t he best of our knowledge) first sug-

in [91.

3 . I m p l e m e n t a t i o n I s s u e s

T h o u g h the idea of a b s t r a c t i n t e rp re t a t ion has been applied to logic pro­

g r a m s by va r ious researchers [2, 15, 19], its imp lemen ta t ion has often been

regarded as c o m p u t a t i o n a l l y expensive. As a result , few pract ical imple­

m e n t a t i o n s have actual ly been repor ted in the l i t e ra ture . W e argue, how­

ever, t h a t th is percept ion is no t justified, and t h a t if properly imple­

men ted , global flow analysis sy s t ems for logic p r o g r a m s need no t be overly

expensive. In th is sect ion, we concen t r a t e on va r ious implementa t ion

issues for efficient global dataf low analysis sys tems .

Source Program
P

Semantics fi

transformation
T

"Approximate" Program Semantics ft

Source Meaning
M

Simplified Meaning

F igure 1: Analys is , abs t rac t ion and " a p p r o x i m a t e " p rog rams

1 That this transformation can be thought of as a partial evaluation of the

abstract interpreter was suggested to us by Mike Codish [4]; see also [14].

3.1 . Implementation of Extension Tables

An important component of a flow analysis system is the extension table,
which is a memo structure that records dataflow information during
analysis. A central issue in the design of the program transformation sys­
tem, discussed in the previous section, is the implementation of this table:
while the extension table module may appear to be a rather small com­
ponent of the entire flow analysis system, design and implementation deci­
sions made for this component can have profound repercussions on the
design, implementation and performance of the remainder of the system.
For this reason, the issues and tradeoffs involved are discussed at some
length. It is assumed that the flow analysis system is being implemented
on top of, rather than as part of, a conventional Prolog system. This
means that there are two basic approaches to implementing the extension
table: (i) as part of the Prolog database, with operations on the table
effected via side effects, through assert and retract; and (ii) using Prolog
terms as the data structures representing the table, with table operations
affected via unification.

There arc several advantages to implementing the extension table as
part of the Prolog database. The most important of these is that the pro­
gram transformation is simplified considerably: firstly, the table becomes a
global structure that does not have to be passed around explicitly; more
importantly, all execution paths in the program can be explored in a rela­
tively straightforward way. For the analysis of a program to be sound, it
is necessary that every execution path that can be taken at runtime be
explored during analysis. If operations on the table are persistent across
backtracking, then this can be effected simply by adding a fail literal at
the end of each transformed clause. The effect of this, when the
transformed clause is executed, is that after the body has been processed,
execution is forced to backtrack into the next possible execution path. In
this manner, every execution path in the program is considered during
analysis (cuts in the source program are discarded during transformation,
so they do not pose a problem). Moreover, once the transformed program
lias been implemented in this manner, another advantage becomes
apparent: because execution is made to fail back as soon as an execution
path has been explored, space used on the various Prolog stacks during
the analysis of that path can be reclaimed relatively efficiently. The MA
system currently uses the Prolog database for extension table implementa­
tion.

The principal disadvantage in implementing the extension table as
part of the Prolog database is that operations on the table use assert and
retract, which arc relatively expensive (e.g. in three representative sys­
tems, asserting a unit clause is between two and three orders of

System

Quin tus 1.6

SB-Prolog 2.3

Sicstus 0.5

unification

1.0

1.0

1.0

assert

544-1477

3038-6075

359-678

accessing asserted code

300-930

103-144

308-639

Table 1: Normalized costs of some operations in representative Prolog systems
(abstracted from the results of a. benchmark suite due to Fernando Percira [20])

m a g n i t u d e slower t h a n doing a s imple unification, see T a b l e 1). T h i s

migh t be less of a problem if access to asserted clauses were very fast.

Unfo r tuna t e ly , as can be seen from T a b l e 1, accessing asserted code is also

relatively expensive in most cu r ren t Pro log sys tems . The re is also a hid­

den cost in the failure-driven explorat ion of execution pa th s : this approach

rccjuires t h a t choice po in t s be created a t the en t rance to predicates with

more t h a n one appl icable clause. T h e r e could be a significant cost

incurred in this , since the creat ion of a choice point is typically relatively

expensive. T h e tradeoffs here, however, are more complex: for example, it

is difficult to compare the cost incurred in crea t ing these choice poin ts

with the t ime saved in failure-driven space reclamat ion as compared to

ga rbage collection.

A n o t h e r app roach is to implement the extension table as a Prolog

t e rm, wi th ope ra t ions on the table effected via unification. T h e principal

a d v a n t a g e of this approach is t h a t assert and retract are no t necessary for

m a n i p u l a t i n g the table . Ins tead , unification -which, as ment ioned above,

is two to three o rders of m a g n i t u d e f a s t e r - is used. T h e principal disad­

v a n t a g e of th is approach is t h a t because ope ra t ions on the table are

undone on failure and back t r ack ing , the p rogram t rans fo rmat ion m u s t

explicitly force all execution p a t h s to be explored. T h i s makes the

t r ans fo rma t ion more complex. T h e fact t h a t the extension table has to be

passed a round explicitly as a p a r a m e t e r to all re levant predicates also

adds to the size of the t ransformed p rog ram.

In t he Ms analysis sys tem, the extension table is current ly main­

ta ined as a Prolog s t r u c t u r e , and the explorat ion of every execution pa th

in the p r o g r a m is gua ran t eed as follows: each t ransformed clause is given

an ex t r a a r g u m e n t , the clause number. Cor re spond ing to each predica te

there is a dr iver which calls each n u m b e r e d clause in t u r n , collects the

resul ts , and r e t u r n s a s u m m a r y (in this case, their least upper bound) to

the caller. T h u s , the t rans formed predica tes for a predica te p with m

clauses look s o m e t h i n g like

p$pred(InMode, ExtTbl. OutMode) :-
p$cl(l,InMode, ExtTbl, OutModej),

p$cl(m,lnMode, ExtTbl, Ou tModeJ ,
lub([OutMode,, . . ., OutMode 1, OutMode).

\ i 1' ' m J l '

p$cl(l, InMode, ExtTbl, OutMode) :- . . .

p$cl(m, InMode, ExtTbl, OutMode) :- . . .

In systems that support indexing on asserted clauses, an index will be
created on the first argument (corresponding to the clause number) of the
transformed predicate p$cl. This has the advantage that selection of the
different clauses then becomes deterministic, so no choice points need to be
created for the different p$cl calls. This, in turn, leads to space and time
savings. On the other hand, this approach does not permit failure-driven
space reclamation.

3.2. Handling Aliasing

Aliasing refers to the situation where two or more variables co-refer. An
early approach to handling aliasing involved reasoning about the "safety"
of variable bindings |9]; while sound, this was highly conservative. More
recently, researchers have suggested a uniform treatment of the problem
based on associating explicit dependency sets with variables [2, 10]. In
either ease, efficiency suffers because of the cost of having to explicitly
maintain and propagate dependency sets.

An alternate approach, used in the MA system and presented
herein, is to retain the logic variable representation for unbound variables,
rather than mapping them to special symbols such as " - " or " ? " as in
other mode inference systems [9, 17]. This has an advantage over other
approaches in that unification in the underlying Prolog system can be
used to keep track of aliasing between variables. Only ground terms are
reduced to their "canonical" form, represented by a special (Prolog) con­
stant '$ground', denoted herein for brevity by the symbol "A" . Nonvari-
able terms are processed recursively, resulting in a pseudo-canonical form.
Thus, the term f(a, g(l, X)) simplifies to /(A, g(A, X)).

Abstract unification in MA3 is defined as follows: if either term being
unified is a variable, then they arc unified using standard unification; oth­
erwise, if one of them is ground (i.e. is either a ground term, or is bound
to the special constant A), then as a result of abstract unification all vari­
ables occurring in the second term become instantiated to A, representing
the fact that they are ground as well; otherwise they must both be non-
variable terms different from A: in this case, if their principal functors

match, the arguments are processed recursively; otherwise, abstract
unification fails. A call is processed as follows: it is first simplified as far
as possible (e.g. by replacing ground terms by A). The calling pattern is
then checked against the extension table to see whether there is a more
general entry in the table. If such an entry exists, and has an associated
success pattern, then this success pattern is returned. If there is a more
general calling pattern in the extension table but no associated success
pattern, execution fails. Otherwise, the calling pattern is entered into the
extension table. Each clause for the called predicate is then processed
with a fresh copy of the calling pattern, with variables renamed: abstract
unification of the call with the head of the clause is carried out, the body
of the clause processed, and a success pattern determined. The success
patterns for the different clauses are then collected, and the least upper
bound computed and associated with the calling pattern entry in the
extension table. The process can be illustrated by the following example.
Consider the program

:- module(test, [p/3]). % Exporting p / 3 .
:- imode p(V,f(W,W), A). % The call specification.

p(X,f(X,Z),g(Y)) :- q(X,Y,Z).
q(U,U,V).

The current output of the MA analyzer for the above program is:

Input

qfv.A.v)

p(v,nv,A)

Call

q(_409,A,_409)

p(_409,f(_413,_413),A)

Output(s)

[q(A,A,A)|

[p(A,A,A)l

where " v " represents an unbound variable and "nv" a nonvariable term.
Abstract unification of the call with the head of the clause for p /3 causes
(i) X and Z to become unified; and (ii) Y to become instantiated to A.
The calling pattern for q is therefore obtained as q(X, A, X). The predi­
cate <//3 is now processed with this calling pattern. The reader may verify
that the success pattern obtained for q is < A , A, A > . At this point, the
terms in the head of the clause are bound to < A , /(A, A), g(A)>. These
are then simplified to yield the tuple < A , A, A > , which is the success
pattern for the clause.

This technique exploits Prolog's unification and logical variables to
propagate aliases in a natural manner, avoiding the complications of hav­
ing to maintain and update dependency sets at every stage. An added
benefit is that because of the way the abstract unification is defined, the
precision of analysis improves significantly. Despite these advantages,
however, this technique suffers from one shortcoming: since Prolog vari­
ables are used to represent both the elements "free" and "unknown" in

the abstract domain, they are overloaded. As a result, two passes over a
program are required to infer the " ? " ("any," or "unknown") mode: the
first using a "worst-case" representation of terms, the second using a
"best case" binding. There is also the overhead associated with creating
copies of terms repeatedly, but as the results reported in Section 5 indi­
cate, these overheads are not unduly large (in any case, whereas the
maintenance of dependency sets requires taking transitive closures, which
costs 0(n) for a tuple of size n, a term can be copied in time proportional
to its size). If the extension table is implemented using assert, then these
copies can be created by simply using call/1; if it is implemented as a Pro­
log term, then copies must be created explicitly.

3.3. Other Optimizations

Because of the high cost of assert, it is advantageous to shift as much
work as possible from within asserted code to within compiled code, so as
to reduce the amount of asserting necessary. For example, it is substan­
tially cheaper not to create and assert the p%pred clause shown at the end
of Section 3.1, with m\-\ literals in the body, directly as given. Instead,
we define a compiled predicate mode_iterate that takes a template of the
p%cl goals and the number of clauses m, invokes each of the p%cl goals, col­
lects their individual output modes, computes the least upper bound of
these and returns it as the overall output mode. This reduces the size
(and cost) of asserting the p$pred clause significantly. The p%pred clause
that is asserted now looks simply like

p$pred(InMode, ExtTbl, OutMode) :-
mode_iterate(p$cl(_ , InMode, ExtTbl, _) , OutMode).

While this makes some extra term copying necessary at runtime (m copies
of the p$cl template have to be created), the overhead involved (depending
on the cost of assert) is usually more than offset by the savings in assert.

Another optimization that can result in significant reductions in the
amount of code asserted, and cause substantial improvements in the speed
of the system, is to check "database" predicates, i.e. predicates defined
entirely by unit clauses, and eliminate clauses that are redundant with
respect to success pattern computation.

3.4. Effects of Program "Cleanness" on Flow Analysis

While "impure" language features such as var/l, nonvar/1, cut, etc., can
be handled without any trouble, a significant problem in reliable flow
analysis is the use of features such as call/1, not/1, etc., where the argu­
ment appearing in the program text is a variable. Such goals are difficult
and expensive to analyze correctly, and can affect the precision and
efficiency of analysis significantly. A similar problem arises with assert

and retract. Neither of the two flow analysis systems described here
address these problems at this time. What is curious is that in almost
every program containing such "dir ty" features that we looked at, their
use was not really necessary, and seemed to be a hangover from an
imperative programming style. Our experience indicates that (i) "clean"
programs are desirable not only for their aesthetic and semantic appeal,
but also for the very pragmatic reason that such programs arc much more
amenable to compiler analysis and optimization; and (ii) "unclean"
features can often be avoided with a little effort during coding.

4. An Applicat ion: AND-paral le l ism Detection

As an example, this section discusses the application of mode infereneing
to the generation of Conditional Graph Expressions (CGEs) [13] for AND-
parallel execution, one of the major current applications of the MA sys­
tem [26]. Note, however, that the application of mode information is in
general much broader, ranging from other high-level applications, such as
the improvement of Prolog's backtracking behavior, to low-level applica­
tions relating to details of code generation in Prolog compilers. Together,
they underscore the importance of mode information at all levels in optim­
izing compilers for high-performance logic programming systems.

CGEs are a mechanism (derived from DeGroot's ECEs [7]) for the
generation and control of parallelism in Independent/Restricted AND-
parallelism [7, 13] —an efficient type of parallelism in which only indepen­
dent goals are executed in parallel. CCEs appear in the bodies of Horn
clauses and augment such clauses with conditions which determine the
independence of goals and provide control over the spawning and syn­
chronization of such independent goals during parallel forward execution
and backtracking. A CGE is defined as an independence condition i_cond,
followed by a conjunction of goals, i.e.:

(i_cond J/ goal & goal., & ... & goal)

i_cond is a sufficient condition (to be checked at run-time) which when
met guarantees the independence of the goals in the conjunction. Opera­
tionally, goal through goal can be run in parallel if i_cond is met; other­
wise they are run sequentially. Goals in a CGE may themselves be either
standard Prolog goals or other CGEs so that complex execution graphs
can be encoded. Such execution graphs and expressions can be generated
by the user, but a more desirable situation is, of course, that they be gen­
erated automatically by the compiler. DeGroot [8], Chang ct al. [3], and
Warren and llermenegildo (26,13] have addressed this subject. The two
main issues involved in the CGE generation process are how to associate
the goals in a clause into groups for parallel execution (each group being
the body of a CGI'] —goal grouping) and how to determine conditions for

independence for each group (i_cond generation). Given a particular goal
grouping, and considering only local analysis (i.e. restricting the analysis
to a single clause) a sufficient i_cond can be trivially given by the conjunc­
tion [13]:

gYOund(list_of_variables), \ndep{list_of_tuples)

where list_of_vartables is the set of all variables which appear in more
than one conjunct contained within the CGE, and list_of_tuples is the
minimal set of pairs of non-shared variables which appear in different con-
juncts. The ground check succeeds if every variable in list_of_variables is
instantiated to a ground term when the test is made at runtime; the
"indep" check succeeds if for all pairs in list_of_tuples the two variables in
each pair are bound to terms which do not share variables.

The conditions above are sufficient but not necessary in the majority
of cases. Since the "indep" and "ground" checks can be expensive (e.g. if
the checks are performed on deeply nested structures) it is imperative to
reduce them to the minimum. A limited number of checks can be elim­
inated by additional local analysis, using knowledge about the modes of
builtins and the fact that first occurrences of variables are always
unbound. However, local analysis proves relatively limited. On the other
hand, our experience with the MA3 system shows that, given a global
analyzer capable of inferring groundness and independence of variables2

CGE checks can be significantly reduced and sometimes eliminated alto­
gether at compile time through partial evaluation with the mode informa­
tion.

Table 2 summarizes some of our preliminary experiments in applying
inferred mode information to CGE generation: the number of checks is
significantly reduced and in some cases CGEs are generated with no
checks, resulting in parallel execution with no independence detection

Bench mark
queens
qplan
saltmust
deriv

Total CGEs
3

20

8

4

ground chks
4/2

13/5
8/2

4/0

indep chks
3/2

57/17
30/10
16/4

CCEs w/no chks
0/1
0/7

0/6

0 /0

Table 2 : Statistics on Conditional checks contained by CGEs
{without mode information/u>(7/i generated mode information)

L This information can also be supplied, if so desired, in the form of .-imode
and :-omode directives (e.g. by the user) and then only local analysis is required.

overhead. Note, however, that the results presented in Table 2 represent
lower bounds on CGE optimization and are expected to improve as our
tools mature. Most significantly, the results presented are based on MA3

inferring term groundness only. The system is currently being extended to
also use variable independence information, generated using the techniques
presented in section 3.2, and this and other refinements should continue to
optimize the CGEs, further improving runtime performance.

Although we have concentrated on the issue of i_cond determination,
the groundness and independence mode information is also essential in the
goal grouping process, mode analysis therefore representing an important
tool for the efficient implementation of AND-parallelism. I addition, the
same techniques can be applied to the generation of other types of (non
CGE-based) execution graphs and to other types of AND- and OR-parallel
execution. For example, the knowledge that variables are ground (and
therefore, read-only) could be used to selectively avoid multiple binding
environment maintenance overheads in OR-parallel systems.

5. Performance

In this section we offer timings and other statistics obtained from the two
inference systems presented in this paper (MA and Ms). These figures
support our claim that global program analysis need not be computation­
ally overwhelming: the cost fraction corresponding to a flow analysis pass
added to a typical Prolog compiler would seem to be of the order of 30-
80%.

Tables 3 and 4 give two different performance perspectives, efficiency
and precision. The benchmark programs used were the following: asm,
the SB-Prolog assembler; boyer, from the Gabriel benchmarks, by Evan
Tick; browse, from the Gabriel benchmarks, by Tep Dobry and Herve
Touati; June, a functionality inference system written for SB-Prolog;
projgeom, a program due to William Older; peephole, the peephole optim­
izer used in SB-Prolog; preprocess, a source-level preprocessor used in the
SB-Prolog compiler; queens, a program for the n-queens problem; read, the
public-domain Prolog parser by Richard O'Keefe and D. H. D. Warren;
and serialize, by D. H. D. Warren. They constitute a set of "real" pro­
grams representing a wide mix of application areas, characteristics, and
coding styles.

Table 3 gives analysis vs. compile times: as can be seen, (low analysis
takes up 27-50% of the total compilation time in the Ms system (actual
analysis time of a benchmark is compared to the time taken by the SB-
Prolog compiler to compile the benchmark), and from 50-82% in the MA
system (idem, with respect to the Quintus compiler). In each case, most
of the time charged to mode inference is in fact taken up in asserting the

Benchmark

asm

boyer

browse

func

peephole

preprocess

projgeom

queens

read

serialize

Analysis Time T

60.50

23.13

31.55

36.80

22.52

73.17

3.25

2.67

60.18

4.15

Total Compile Time T

93.73

42.19

38.27

53.90

38.90

96.21

6.07

5.47

78.11

7.17

vn
0.65

0.55

0.82

0.68

0.58

0.76

0.50

0.49

0.77

0.58

Table 3(a): MA3 Compile vs. Analysis times (sees, using Quintus 2.2, Sun 3/50)

Benchmark

asm

boyer

browse

func

peephole

preprocess

projgeom

queens

read

serialize

Analysis Time T,

103.76

48.30

18.08

66.00

47.80

94.66

8.40

9.60

68.32

6.90

Total Compile Time T9

242.84

140.32

66.94

136.94

115.26

194.88

18.90

19.16

155.90

19.12

T IT

0.43

0.34

0.27

0.48

0.41

0.49

0.44

0.50

0.44

0.36

Table 3(b): Ms Compile vs. Analysis times (sees, using SB-Prolog 2.3.2, Sun 3/50)

" a p p r o x i m a t e " p rog ram. T h u s , all these n u m b e r s could be improved by

improving the efficiency of assert.

Unfor tuna te ly , we did not have the t ime to imp lemen t different

extension table s t ra tegies , as discussed in Section 3.1, wi th in t he s ame flow

analysis sys tem to test their relat ive performances . Whi le M A uses t h e

Prolog d a t a b a s e to implement the extension tab le and M s passes a round a

Prolog t e rm, we would caut ion agains t using the figures in T a b l e 3 t o

d raw conclusions regarding the relat ive efficiencies of these t w o

approaches , since the speeds of the under ly ing Prolog sys t ems and com­

pilers were very different. It is also ou r in tu i t ion t h a t if a combina t i on of

the techniques used in both sys tems (and described in Section 3) is used,

subs tan t ia l ly be t t e r performance could be ob t a ined .

T a b l e 1 a t t e m p t s to character ize the "p rec i s ion" of the inference sys­

tems. T a b l e 4(a) gives the precision of the M A 3 sys tem, in t e r m s of the

Benchmark
asm

boyer

browse

func

peephole

preprocess

projgeom

queens

read

serialize

TAP

113

69

47

130

36

139

27

20

141

15

"h i t s "

92

38

37

81

33

116

23

20

126

13

% hits

81.4

55.0

78.7

62.3

91.6

83.4

85.2

100.0

89.3

86.6

Table 4(a) : Precision of the MA3 systemf

Benchmark

asm

boy er

browse

func

peephole

preprocess

projgeom

queens

read

serialize

TAP

96

61

42

118

34

131

27

21

147

14

LAP

69

35

30

87

21

92

24

17

85

7

"h i t s "

67

7

21

58

16

46

22

16

51

4

hits/IAP(%)

97.10

20.0

70.0

66.67

76.19

50.0

91.67

94.12

60.0

57.14

hi ts /TAP(%)

69.79

11.48

50.0

49.15

47.05

35.11

81.48

76.19

34.69

30.77

Table 4(b) : Precision of the Ms systemf
Key: TAP: Total # of argument positions; LAP: # of "interesting" arg. positions.

t Differences in the total number of argument positions in a program between
tables 4(a) and 4(b) arise from differences in the set of predicates considered to be
"bui l t ins" by the two mode inference systems.

percen tage of a r g u m e n t posi t ions whose modes were correctly inferred.

T h e values range from 5 5 % to 100%, in mos t cases lying in the 80%-90%

range . T h u s , M A 3 proves to be qui te precise, p resumably due to the

t r ack ing of var iable aliasing and s t ruc tu r e s of t e rms . T a b l e 1(b) gives the

precision figures for Ms. Unlike MA 3 , Ms uses an extremely simple

a b s t r a c t domain - " g r o u n d , " " n o n v a r i a b l e " and " u n k n o w n " -- and makes

no a t t e m p t to keep track of the s t r uc tu r e s of t e rms , relative posi t ions of

embedded var iab les within a te rm, etc. As a result , there are two sources

of imprecision: (?) due to the inabil i ty to reason abou t " f ree" a rgumen t s ;

and (ii) because no information is kept about term structures. In an
attempt to distinguish between loss of precision due to these two effects,
two different measures of precision are used: the relative precision,
expressed as the percentage of "interesting," i.e. non-free argument posi­
tions, whose modes are correctly inferred by the system; and the absolute
precision, expressed a.s the percentage of all argument positions whose
modes are correctly inferred. It can be seen that the relative precision of
the Ms system ranges, in most cases, from 70% to over 95%; for programs
that pass around a lot, of partially instantiated structures, such as June,
preprocess, read and serialize, the lack of information about term struc­
ture results in a drop in the relative precision to between 50% and 70%.
The boyer program is something of an anomaly, but the unusually low
precision of inference in this case can be traced to the inference system's
lack of sufficient knowledge about the builtins functor/3 and arg/3. As
might be expected in this case, the inability to represent and reason about
free variables results in somewhat lower absolute precision figures.

6. Conclusions

Global How analysis offers information which can be very useful both in
optimizing compilers and in the efficient exploitation of parallelism, the
combination of which currently appears to be the best approach towards
achieving increased performance in logic programming systems. Our
experiences with the implementation of two How analysis systems for Pro­
log (MA3, the MCC And-parallel Analyzer and Annotator and Ms, a flow
analysis system for SB-Prolog), as reported in this paper, show that the
perception that global flow analyzers are computationally too expensive to
be practical (assumed from the paucity of reports on actual implementa­
tions of such analysis systems) is unfounded. We have proposed novel
implementation techniques, shown an example of an actual application of
the information generated, and discussed some precision and performance
tradeoffs. In addition, we have provided performance data obtained from
the MA and Ms implementations analyzing sizeable programs. The
results showed that these systems are indeed practical tools: analysis time
typically increases conventional compilation time by about a factor of 2 to
3, and considerable flow information is obtained which can result in
significant speedups in program execution. Moreover, much of the current
overhead is due to having implemented only a particular subset of the
techniques presented herein and to inefficiencies in the underlying Prolog
implementations (e.g. in assert) which can be improved upon. Our con­
clusion is therefore that such techniques can be used to implement global
flow analysis systems that are quite precise, yet not overly expensive.
Therefore, it is argued that flow analysis has indeed reached the stage of
practicality.

rences

1. D. L. Bowen, NIP: New Implementation of Prolog, Dept. of Artificial
Intelligence, University of Edinburgh, May 1984. Unpublished
manuscript.

2. M. Bruynooghe, A Framework for the Abstract Interpretation of
Logic Programs, Research Report 62, Katholieke Universiteit,
Leuven, Belgium, Oct. 1987.

3. J. Chang, A. M. Despain and D. DeGroot, AND-Parallelism of Logic
Programs Based on A Static Data Dependency Analysis, in Digest of
Papers, Compcon 85, IEEE Computer Society, Feb. 1985.

4. M. Codish, personal communication, , July 1986.

5. J. S. Conery, Parallel Execution of Logic Programs, Kluwer
Academic Publishers, 1987.

6. P. Cousot and R. Cousot, Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints, Conf. Rec. 4th ACM Symp. on Prin. of
Programming Languages, , 1977, pp. 238-252.

7. D. DeGroot, Restricted AND-Parallelism, in Proc. Int. Conf. on Fifth
Generation Computer Systems, ICOT, Tokyo, 1984.

8. D. DeGroot, A Technique for Compiling Execution Graph
Expressions for Restricted AND-parallelism in Logic Programs, in
Proc. 1981 Int. Supercornputing Conf. , Athens, 1987. Springer-
Verlag.

9. S. K. Debray and D. S. Warren, Automatic Mode Inference for
Prolog Programs, in Proc. 1986 Int. Symp. on Logic Programming,
Salt Lake City, Utah, Sept. 1986, pp. 78-88.

10. S. K. Debray, Static Inference of Modes and Data Dependencies in
Logic Programs, Tech. Rep. 87-24, Dept. of Computer Science,
University of Arizona, Tucson, AZ, Aug. 1987.

11. S. K. Debray, The SB-Prolog System, Version 2.3.2: A User Manual,
Tech. Rep. 87-15, Department of Computer Science, University of
Arizona, Tucson, AZ, Mar. 1988.

12. W. Drabent, Do Logic Programs Resemble Programs in
Conventional Languages?, in Proc. Fourth IEEE Symposium, on
Logic Programming, San Francisco, CA, Sep. 1987, pp. 389-396.

13. M. V. Hermenegildo, in Independent/Restricted AND-parallel Prolog

and its Architecture, Norwell MA 02061, 1988. Kluwer Academic
Publishers.

14. N. D. Jones, P. Sestoft and H. Sondergaard, An Experiment in
Partial Evaluation; The Generation of a compiler generator, in Proc.

First International Conference on Rewriting Techniques and
Applications, Springer-Verlag LNCS vol. 202., Dijon, France, 1985.

N. D. Jones and II. Sondergaard, A Semantics-Based Framework for
the Abstract Interpretation of Prolog, in Abstract Interpretation of
Declarative Languages, S. Abramsky and C. Hankin (ed.), Ellis
Horwood, .

L. V. Kale, The REDUCE-OR Process Model for Parallel Evaluation
of Logic Programs, in Proc. Fourth International Conference on
Logic Programming, Melbourne, May 1987, pp. 616-632.

II. Mannila and E. Ukkonen, Flow Analysis of Prolog Programs, in
Proc. ^lh. IEEE Syrnp. on Logic Programming, San Francisco, CA,
Sep. 1987.

C. S. Mellish, Some Global Optimizations for a Prolog Compiler, / .
Logic Programming 2, 1 (Apr. 1985), 43-66.

C. S. Mellish, Abstract Interpretation of Prolog Programs, in Proc.
Third International Logic programming Conference, London, July
1986. Springer-Verlag LNCS vol. 225.

F. Pereira, Prolog Benchmarks, in Prolog Electronic Digest vol. 5,

no. 56, Aug. 1987.

Quintus Prolog Reference Manual, Quintus Computer Systems, Inc.,
Mountain View, CA, Apr. 1986.

SICStus Prolog User's Manual, Swedish Institute of Computer
Science, Sweden, Sep. 1987.

A. K. Turk, Compiler Optimizations for the WAM, in Proc. 3rd.
International Conference on Logic Programming, London, July 1986,
410-424. Springer-Verlag LNCS vol. 225.

P. Van Roy, B. Demoen and Y. D. Willems, Improving the
Execution Speed of Compiled Prolog with Modes, Clause Selection
and Determinism, in Proc. TAPSOFT 1987, Pisa, Italy, Mar. 1987.

D. H. D. Warren, OR-Parallel Execution Models of Prolog, in
Proceedings of TAPSOFT 87, March 1987. Springer-Verlag LNCS.

R. Warren and M. Hermenegildo, MA3 A System for Automatic
Generation of CGEs, MCC ACA-ST Technical Report,
Microelectronics and Computer Technology Corporation, 1988.

