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Abstract

We discuss from a practical point of view a number of issues involved in writing Internet
and WWW applications using LP/CLP systems. We describe PiLLoW, an Internet and
WWW programming library for LP/CLP systems which we argue significantly simplifies
the process of writing such applications. PiLLoW provides facilities for generating HTML
structured documents, producing HTML forms, writing form handlers, accessing and parsing
WWW documents, and accessing code posted at HTTP addresses. We also describe the
architecture of some application classes, using a high-level model of client-server interaction,
active modules. Finally we describe an architecture for automatic LP/CLP code downloading
for local execution, using generic browsers. The PiLLoW library has been developed in the
context of the &-Prolog and CIAO systems, but it has been adapted to a number of popular
LP/CLP systems, supporting most of its functionality.
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1 Introduction

The wide diffusion of the Internet and the popularity of WWW (“World Wide Web” [1]) proto-
cols are effectively providing a novel platform that facilitates a new class of highly sophisticated
distributed applications. Good support for network connectivity and the protocols and communi-
cation architectures of this novel platform are obviously requirements for any programming tool to
be useful in this arena. However, this alone may not be enough. It seems natural that significant
parts of network applications will require symbolic and numeric capabilities which are not neces-
sarily related with distribution. Important such capabilites are, for example, high-level symbolic
information processing, dealing with combinatorial problems, and natural language processing
in general. Logic Programming (LP) [20, 9] and Constraint Logic Programming (CLP) systems
[18, 26, 10, 22, 11] have been shown particularly successful at tackling these issues (see, for exam-
ple, the proceedings of recent conferences on the “Practical Applications of Prolog” and “Practical
Applications of Constraint Technology”). It seems natural to study how LP /CLP technology fares
in developing applications which have to operate over the Internet.

In fact, Prolog, its concurrent and constraint based extensions, and logic programming lan-
guages in general have many characteristics which appear to set them particularly well placed
for making an impact on the development of practical networked applications, ranging from the
simple to the quite sophisticated. Notably, LP/CLP systems share many characteristics with
other recently proposed network programming tools, such as Java, including dynamic memory
management, well-behaved structure and pointer manipulation, robustness, and compilation to
architecture-independent bytecode. Furthermore, and unlike the scripting or application lan-
guages currently being proposed (e.g., shell scripts, Perl, Java, etc.), LP/CLP systems offer a
quite unique set of additional features including dynamic databases, search facilities, grammars,
sophisticated meta-programming, and well understood semantics.

In addition, most LP/CLP systems also already offer some kind of low level support for remote
communication using Internet protocols. This generally involves providing a sockets (or ports)



interface whereby it is possible to make remote data connections via the Internet’s native protocol,
TCP/IP. A few systems support higher level functionality layers on top of this interface including
linda-style blackboards (e.g., SICStus Prolog [7] and &-Prolog/CIAQO'[15, 16, 13], BinProlog/u*-
Prolog [25, 2], etc.) or shared variable based communication (e.g., KL1 [8], AKL [19], Oz [23],
&-Prolog/CIAOQ [14, 4], etc.). In some cases, this functionality is provided via libraries, building
on top of the basic TCP/IP primitives. This is the case, for example, of the SICStus (and CIAQ)
linda interface. In fact, as we have shown, shared variable based communication can also be
implemented in conventional systems via library predicates, by using attributed variables [14, 4].

WWW applications generally use higher level protocols (such as HTTP or FTP) and application
architectures (e.g., the cgi-bin interface) which are different from the shared variable or linda-based
protocols. In this paper we study how good support for such protocols and architectures can be
provided for LP/CLP systems, building on the basic, widely available TCP/IP protocols. Our
aim is to discuss from a practical point of view a number of the new issues involved in writing
Internet and WWW applications using LP/CLP systems, as well as the architecture of some
typical applications. In the process, we will describe PiLLoW (“Programming in Logic Languages
on the Web”), an Internet/ WWW programming library for LP /CLP systems which, we argue,
significantly simplifies the process of writing such applications. PilLLoW provides facilities for
generating HTML structured documents by handling them as Herbrand terms, producing HTML
forms, writing form handlers, accessing and parsing WWW documents, and accessing code posted
at HTTP addresses. We also describe the architecture of some relatively sophisticated application
classes, using a high-level model of client-server interaction, active modules [4]. Finally we describe
an architecture for automatic LP/CLP code downloading for local execution, using just the library
and generic browsers.

The argument throughout the paper is that, with only very small limitations in functionality
(which disappear when concurrency is added to the system, as in systems such as BinProlog/u?-
Prolog, AKL, Oz, KL1, and &-Prolog/CIAQ), it is possible to add an extremely useful Inter-
net/WWW programming layer to any LP/CLP system without making any significant changes
in the implementation. We argue that this layer can simplify the generation of applications in
LP/CLP systems including active WWW pages, search tools, content analyzers, indexers, software
demonstrators, collaboratve work systems, MUDs and MOOs, code distributors, etc.

The PiLLoW library has been developed in the context of the &-Prolog and CIAO systems,
but it has been adapted to a number of popular LP/CLP systems, supporting most of its function-
ality. This document can serve also as a WWW /HTML primer, containing sufficient information
for developing relatively high-complexity WWW applications in Prolog and other LP and CLP
languages.

2 Writing basic cgi-bin applications

The simplest way of writing WWW applications is through the use of the “Common Gateway
Interface” (CGI). A CGI executable is a standard executable file but such that the HT'TP server
can tell it in fact contains a program that is to be run, rather than a document text that is
to be sent to the client as usual. The file can be distinguished by belonging to a special di-
rectory, commonly named cgi-bin, or by a special filename ending, such as .cgi. The ba-
sic idea behind this interface is illustrated in Figure 1. When the user selects an address of a
CGI executable in a document, such as http://www.xxx.yyy/cgi-bin/hello_world (or perhaps
http://www.xxx.yyy/foo/hello_world.cgi) the browser issues a standard document request
(1). The HTTP server, recognizing that it is a CGI executable rather than a document, starts the
executable (2), and during such execution stores the output of the executable in a buffer (3). Upon
termination of the executable, the contents of the buffer (which should be in a format that the
browser can handle, such as HTML) are returned to the browser as if a normal page with that
content had been accessed (4).

1&-Prolog is an and-parallel version of Prolog. The &-Prolog extensions to Prolog (basically, the addition of
high-level concurrency and communication operators) allow exploitation of parallelism (a parallelizing compiler is
provided with the system) and basic forms of concurrent programming. CIAO is a set of libraries built on top of
the &-Prolog kernel which allow sophisticated concurrent and distributed programming, constraint solving, support
for several computation rules, etc.
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Figure 1: The CGI interface

The following is an example of how a very simple such executable can be written in an LP/CLP
language. The source might be as follows:2

main :-
write(’Content-type: text/html’), nl, nl,
write(’<HTML>’),
write(’Hello world.’),
write(’</HTML>’).

And the actual executable could be generated as a saved state at the system prompt in the
standard way. E.g., for most Edinburgh-style systems:

?7:- compile(’hello_world.pl’),
save(’/usr/local/etc/htppd/cgi-bin/hello_world’), main.

The address of the executable in machine www.xxx.yyy would then be
http://wuw.xxx.yyy/cgi-bin/hello_world.

In some systems, saved states have the disadvantage of their generally large size, but many
systems have other ways of producing reasonably-sized executables. For example, in the &-
Prolog/CIAO system compiled executables can be generated which are generally of smaller size
than the source program.

3 LP/CLP Scripts for CGI Applications

CGI executables are often small- to medium-sized programs that do relatively simple tasks. This,
added to the slow speed of the network connection in comparison with that of executing a program
(which makes program execution speed less important) has made scripting languages (such as shell
scripts or Perl) very popular for writing these scripts. The popularity is due to the fact that no
compilation is necessary (extensive string handling capabilities also play an important role in the
case of Perl), and thus changes and updates to the program imply only editing the source file.

Logic languages are, a priori, excellent candidates to be used as scripting languages®. However,
the relative complication in making executables (needing in most systems to start the system,
compile or consult the file, and make a saved state) and the often large size of the resulting
executables may deter CGI application programmers. It appears convenient to provide a means
for LP/CLP programs to be executable as scripts, even if with reduced performance.

2Note that in the examples presented the HTML may be slightly simplified, and thus may not be completely
standard (however, the examples can be used as is with all popular browsers).

3For example, the built-in grammars and databases greatly simplify many typical script-based applications.
Note that grammars are much more powerful than regular expresions, often found in other scripting languages,
which in general can only provide an approximation to the solution.
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It is generally relatively easy to support scripts with the same functionality in most LP/CLP
systems (see [12] for an example developed for the CTAO system and adapted to SICStus). Let’s
assume that 1pshell is a version of the LP/CLP system (for example, a saved state), which first
loads the file given to it as the first argument (but excluding the first line and routing all loading
messages away from the standard output) and then starts execution at main/1 (the argument
provides the list of command line options). Then, for example, in a Unix system, the following
program can be run directly as a script without any need for compilation:

#!/usr/local/bin/lpshell

main(_) :-
write(’Content-type: text/html’), nl,
write(’<HTML>’),
write(’Hello world.’),
write(’</HTML>’).

4 Form Handling in HTTP

Since CGI executables only produce output, and this output is not a funtion of the input, CGI
executables by themselves are only of limited interest. However, they become most useful when
combined with HTML forms. HTML forms are HTML documents (or parts of HTML documents)
which include special fields such as text areas, menus, radio buttons, etc. The steps involved
in the handling of the input contained in a form are illustrated in Figure 2. When a document
containing a form is accessed via a form-capable browser (Mosaic, Netscape, Lynx, etc.), the
browser displays the input fields, buttons, menus, etc. indicated in the document, and locally
allows the user to perform input by modifying such fields. However, this input is not ultimately
handled by the browser. Instead, it will be sent to a “handler” program, which can be anywhere
on the net, and whose address must be given in the form itself (1). Forms generally have a
“submit” button such that, when pressed, the input provided through the menus, text areas,
etc. is sent by the browser to the HTTP server corresponding to the handler (2). Two methods
for sending this input exist: “GET” and “POST”. In the meantime, the sending browser waits
for a response from that program, which should come in the form of a new HTML document.
The handler program is invoked in much the same way as a cgi-bin application (3), except that
the information from the form is supplied to the handler (in different ways depending on the
system, the method of invocation and the content type) (4). This information is encoded in a
predefined format, which relates each piece of information to the corresponding field in the form,
by means of a keyword associated with each field. The handler then identifies the information
corresponding to each field in the original form, processes it, and then responds by writing an
HTML document to its standard output (5), which is forwarded by the server to the waiting



browser when the handler terminates (6). An important point to be noted is that, as with simple
cgi-bin applications, the handler is started and should terminate for each transaction. The reader
is referred, for example, to http://kuhttp.cc.ukans.edu/info/forms/forms-intro.html for a
more complete introduction to CGI scripts and HTML forms.

5

The

Writing Form Handlers with P:LLoW

PiLLoW library provides some predicates which simplify the task of getting the input from

a form. As we said before, this input can be provided in several ways, depending on the system
and the method used to invoke the form, and is encoded with escape sequences. The principal
predicates provided are:

get_form_input (Dic) Translates input from the form (with either the POST or GET meth-
ods, or ENCTYPE multipart/form-data) to a dictionary Dic of attribute=value pairs. It
translates empty values (which indicate only the presence of an attribute) to ’$empty’, val-
ues with more than one line (from text areas or files) to a list of lines as strings, the rest to
atoms or numbers. This is implemented using DCG parsers.

get_form_value(Dic, Var, Val) Gets value Val for attribute Var in dictionary Dic. Does
not fail: value is ’? if not found (this simplifies merging form producers and form handlers,
see later).

text_lines(Val, Lines) Transforms a value given by a dictionary to a list of lines, for data
coming from a text area.

form_empty_value (V) Useful to check that a value V from a text area is empty (can have
spaces, newlines and linefeeds).

form_default (Val, Default, NewVal) Useful when a form is only partially filled (and also
in the first invocation of a combined form handler/producer — see Section 7). If the value of
Val is empty then NewVal=Default, else NewVal=Val.

my_url (URL) Returns in URL the Uniform Resource Locator (WWW address) of this cgi
executable.

form_request_method ((Method)) Returns in (Method) the method of invocation of the
form handler (“GET” or “POST”).

For example, suppose we want to make a handler which implements a database of telephone
numbers and is queried by a form including a single entry field with name person_name. The
handler might be coded as follows:

#!/usr/local/bin/lpshell

:- use_module(’/usr/local/src/pillow/pillow.pl’).

main(_) :-

get_form_input (Input),
get_form_value(Input,person_name,Name),
write(’Content-type: text/html’), nl, nl,
write(’<HTML><TITLE>Telephone database</TITLE>’), nl,
write(’<IMG SRC="phone.gif">’),

write(’<H2>Telephone database</H2><HR>’),
write_info(Name),

write(’</HTML>’).

write_info(Name) :-

form_empty_value(Name) ->
write(’You have to provide a name.’)



; phone(Name, Phone) ->
write(’Telephone number of <B>’),
write(Name),
write(’</B>: ),
write(Phone)
; write(’No telephone number available for <B>’),
write(Name),
write(’</B>.7%).

phone(daniel, ’336-7448’).
phone (manuel, ’336-7435’).
phone(sacha, ’543-53167).

The code above is quite simple. On the other hand, the interspersion throughout the text of
calls to write with HTML markup inside makes the code somewhat inelegant. Also, there is no
separation between computation and input/output, as is normally desirable. It would be much
preferable to have an encoding of HTML code as Prolog terms, which could then be manipulated
easily in a more elegant way, and a predicate to translate such terms to HTML for output. This
facility, provided by the PiLLoW library, is presented in the next section.

6 Handling HTML as Prolog Terms

Since LP/CLP systems perform symbolic processing using Herbrand terms, it seems natural to be
able to handle HTML code directly as terms. Then, such structures only need to be translated by
appropriate predicates to HTML code when they need to be output. In general, this relationship
between HTML code and Prolog terms allows viewing any WWW page as a Herbrand term. The
predicates which provide this functionality in PiLLoW are:

e output_html(F) Accepts in F an HTML term (or a list of HTML terms) and sends to the
standard output the text which is the rendering of the term(s) in HTML format.

e html2terms (Chars, Terms) Relates a list of HTML terms and a list of ASCII characters
which are the rendering of the terms in HTML format. This predicate is reversible (see later),
output_html/2 uses it to transform HTML terms in characters. Again, this is implemented
via DCG parsing.

In an HTML term certain atoms and structures represent special functionality at the HTML
level. An HTML term can be recursively a list of HTML terms. The following are legal HTML
terms:

hello
[hello, worldl]
["This is an ", em(’HTML’), " term"]

When converting HTML terms to characters, htm12terms/2 translates special structures into
the corresponding format in HTML, applying itself recursively to their arguments. Strings are
always leaved unchanged. HTML terms may contain logic variables, provided they are instantiated
before the term is translated or output. This allows creating documents piecemeal, backpatching
of references in documents, etc.

In the following sections we list the meaning of the principal Prolog structures that represent
special functionality at the HTML level. Only special atoms are translated, the rest are assumed
to be normal text and will be passed through to the HTML document.

6.1 General Structures

Basically, HTML has two kinds of components: HTML elements and HTML environments. An
HTML element has the form “<NAME Attributes >” were NAME is the name of the element and



Attributes is a (possibly empty) sequence of attributes, each of them being either an attribute
name or an attribute assignment as name="Value".

An HTML environment has the form “<NAME Attributes > Text </NAME>” were NAME is the
name of the environment an Attributes has the same form as before.

The general Prolog structures that represent these two HTML constructions are:

e Name$Atts (‘4/2’ is defined as an infix, binary operator.) Represents an HTML element of
name Name and attributes Atts, were Atts is a (possibly empty) list of attributes, each of
them being either an atom or a structure name=value. For example, the term

img$ [src=’images/map.gif’,alt="A map",ismap]
is translated into the HTML source
<img src="images/map.gif" alt="A map" ismap>
Note that HTML is not case-sensitive, so we can use lower-case atoms.

e name(Text) (A term with functor name/1 and argument Text) Represents an HTML envi-
ronment of name name and included text Text. For example, the term

address(’clip@dia.fi.upm.es’)
is translated into the HTML source
<address>clip@dia.fi.upm.es</address>

e name(Atts, Text) (This is a term with functor name/2 and arguments Atts and Text) Rep-
resents an HTML environment of name name, attributes Atts and included text Text. For
example, the term

a([href="http://www.clip.dia.fi.upm.es/’],"Clip home")
represents the HTML source
<a href="http://www.clip.dia.fi.upm.es/">Clip home</a>
e env(Name, Atts, Text) Equivalent to Name(Atts, Text).

e begin(Tag, Atts) It translates to the start of an HTML environment of name Tag and
attributes Atts. There exists also a begin(Tag) structure. Useful, in conjunction with the
next structure, when including in a document output generated by an existing piece of code
(e.g. Tag = pre). Its use is otherwise discouraged.

e end(Tag) Translates to the end of an HTML environment of name Tag.
Now we can rewrite the previous example as follows:

#!/usr/local/bin/1pshell
:— use_module(’/usr/local/src/pillow/pillow.pl’).

main(_) :-
get_form_input (Input),
get_form_value (Input,person_name,Name),
response (Name ,,Response) ,
output_html ([
’Content-type: text/html’,
html ([title(’Telephone database’),
img$ [src="phone.gif’],
h2(’Telephone database’),
hr$[],
Response)]) .



response(Name, Response) :-
form_empty_value(Name) ->
Response = ’You have to provide a name.’
; phone(Name, Phone) ->
Response = [’Telephone number of ’,b(Name),’: ’,Phone]
; Response = [’No telephone number available for ’,b(Name),’.’].

phone(daniel, ’336-7448’).
phone (manuel, ’336-7435’).
phone(sacha, ’543-53167).

Any HTML construction can be represented with these structures (except comments and decla-
rations, which could be included as atoms or strings), but the PiLLoW library provides additional,
specific structures to simplify HTML creation.

6.2 Specific Structures

In this section we will list the special structures for HTML which PiLLoW understands. A predi-
cate html_expansion/2 is provided to define new structures.

e start Used at the beginning of a document (translates to <html>).

e end Used at the end of a document (translates to </html>).

e —-- Produces a horizontal rule (translates to <hr>).

e \\ Produces a line break (translates to <br>).

e $ Produces a paragraph break (translates to <p>).

e comment (Comment) Used to insert an HTML comment (translates to <!-- Comment -->).
e declare(Decl) Used to insert an HTML declaration — seldom used (translates to <!Decl>).

e image(Addr) Used to include an image of address (URL) Addr (translates to an <img>
element).

e image (Addr, Atts) As above with the list of attributes Atts.

e ref (Addr, Text) Produces a hypertext link, Addr is the URL of the referenced resource,
Text is the text of the reference (translates to <a href="Addr">Text</a>).

e label (Label, Text) Labels Text as a target destination with label Label (translates to
<a name="Label">Text</a>).

e heading(N, Text) Produces a heading of level N (1 < N < 6), Text is the text to be used
as heading — useful when one wants a heading level relative to another heading (translates
to a <hN> environment).

e itemize (Items) Produces a list of bulleted items, Items is a list of corresponding HTML
terms (translates to a <ul> environment).

e enumerate (Items) Produces a list of numbered items, Items is a list of corresponding HTML
terms (translates to an <ol> environment).

e description(Defs) Produces a list of defined items, Defs is a list whose elements are def-
initions, each of them being a Prolog sequence (composed by ’,’/2 operators). The last
element of the sequence is the definition, the other (if any) are the defined terms (translates
to an <d1> environment).

e nice_itemize (Img, Items) Produces a list of bulleted items, using the image Img as bullet.
The predicate icon_address/2 provides a colored bullet.



e preformatted(Text) Used to include preformatted text, Text is a list of HTML terms, each
element of the list being a line of the resulting document (translates to a <pre> environment).

e entity(Name) Includes the entity of name Name (ISO-8859-1 special character).

e verbatim(Text) Used to include text verbatim, special HTML characters (<,>,&,") are
translated into its quoted HTML equivalent.

e nl Used to include a newline in the HTML source (just to improve human readability).

e cgi_reply This is not HTML, rather, the CGI protocol requires this content descriptor
to be used by CGI executables (including form handlers) when replying (translates to
“Content-type: text/html”).

e pr Includes in the page a graphical logo with the message “Developed using the PiLLoW
Web programming library”, which points to the manual and library source.

With these additional structures, we can rewrite the previous example as follows (note that in
this particular example the use of heading/2 or h2/1 is equally suitable):

#!/usr/local/bin/lpshell
:- use_module(’/usr/local/src/pillow/pillow.pl’).

main(_) :-
get_form_input (Input),
get_form_value (Input,person_name,Name),
response (Name ,,Response) ,
output_html ([
cgi_reply,
start,
title(’Telephone database’),
image (’phone.gif’),
heading(2,’Telephone database’),

3
Response,

end]).

response(Name, Response) :-
form_empty_value(Name) ->

Response = ’You have to provide a name.’
; phone(Name, Phone) ->
Response = [’Telephone number of ’,b(Name),’: ’,Phone]
; Response = [’No telephone number available for ’,b(Name),’.’].

phone(daniel, ’336-7448’).
phone (manuel, ’336-7435’).
phone(sacha, ’543-53167).

We have not included above the specific structures for creating forms, they are included and
explained in the following section.

6.3 Specific Structures for Forms

In this section we explain the structures which represent the various input elements that provide
forms.

e start_form(Addr|, Atts]) Specifies the beginning of a form. Addr is the address (URL) of
the program that will handle the form, and Atts other attributes of the form, as the method
used to invoke it. If Atts is not present the method defaults to POST. (Translates to
<form action="Addr" Atts >.)



e start_form Specifies the beginning of a form without assigning address to the handler, so
that the form handler will be the cgi-bin executable producing the form.

e end_form Specifies the end of a form (translates to </form>).

e checkbox (Name, State) Specifies an input of type checkbox with name Name, State=on if
the checkbox is initially checked (translates to an <input> element).

e radio(Name, Value, Selected) Specifies an input of type radio with name Name (several
radio buttons which are interlocked must share their name), Value is the the value returned
by the button, if Selected=Value the button is initially checked (translates to an <input>
element).

e input(Type, Atts) Specifies an input of type Type with a list of attributes Atts. Possible
values of Type are text, hidden, submit, reset, ... (translates to an <input> element).

e textinput (Name, Atts, Text) Specifies an input text area of name Name. Text provides
the default text to be shown in the area, Atts a list of attributes (translates to a <textarea>
environment).

e menu(Name, Atts, Items) Specifies a menu of name Name, list of attributes Atts and list of
options Items. The elements of the list Items are marked with the prefix operator ‘$’ to
indicate that they are selected (translates to a <select> environment).

For example, in order to generate a form suitable for sending input to the previously described
phone database handler one could type at a Prolog prompt:

?7:- [?/usr/local/src/pillow/pillow.pl’],
output_html ([

start,
title(’Telephone database’),
heading(2,’Telephone database’),
$,
start_form(’http://www.clip.dia.fi.upm.es/cgi-bin/phone_db.pl’),
’Click here, enter name of clip member, and press Return:’,
\\,
input (text, [name=person_name,size=20]),
end_form,
end]) .

Of course, one could have also simply written directly the resulting HTML document:

<html>

<title>Telephone database</title>

<h2>Telephone database</h2>

<p>

<form method="POST"
action="http://www.clip.dia.fi.upm.es/cgi-bin/phone_db.pl">

Click here, enter name of clip member, and press Return:
<br>

<input type="text" name="person_name" size="20">
</form>

</html>

7 Merging the Form Producer and the Handler
An interesting practice when producing HTML forms and handlers is to merge the operation of the

form producer and the handler into the same program. The idea is to produce a generalized handler
which receives the form input, parses it, computes the answer, and produces a new document which

10



contains the answer to the input, as well as a new form. A special case must be made for the first
invocation, in which the input would be empty, and then only the form should be generated. The
following is an example which merges the producer and the handler for the phones database:

#!/usr/local/bin/lpshell
:- use_module(’/usr/local/src/pillow/pillow.pl’).

main(_) :-
get_form_input (Input),
get_form_value(Input,person_name,Name),
response (Name ,Response) ,
output_html ([
cgi_reply,
start,
title(’Telephone database’),
image (’phone.gif’),
heading(2,’Telephone database’),

3
Response,

start_form,

’Click here, enter name of clip member, and press Return:’,
\\,

input (text, [name=person_name,size=20]),

end_form,

end]) .

response(Name, Response) :-
form_empty_value (Name) ->
Response = []
; phone(Name, Phone) ->
Response = [’Telephone number of ’,b(Name),’: ’,Phone,$]
; Response = [’No telephone number available for ’,b(Name),’.’,$].

phone(daniel, ’336-7448’).
phone (manuel, ’336-7435’).
phone(sacha, ’543-53167).

This combination of the form producer and the handler allows producing applications that give
the impression of being interactive, even if each step involves starting and running the handler to
completion. Note that forms can contain fields which are not displayed and are passed as input to
the next invocation of the handler. This allows passing state from one invocation of the handler
to the next one.

8 Accessing WWW documents

The facilities presented in the previous sections allow generating HTML documents, including
forms, and handling the input coming from forms. In many applications such as search tools,
content analyzers, etc., it is also desirable to be able to access documents on the Internet. Such
access is generally done through protocols such as FTP and HTTP which are built on top of TCP /IP.
In LP/CLP systems which have TCP /IP connectivity (i.e., a sockets/ports interface) the required
protocols can be easily coded in the source language using such facilities and DCG parsers. At
present, only the HT'TP protocol is supported by PiLLoW. As with HTML code, the library uses
an internal representation of Uniform Resource Locators (URLs), and provides predicates which
translate between the internal representation and the textual form. The facilities provided by
PiLLoW for accessing WWW documents include the following predicates:
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e url_info(URL,Info) Translates a URL URL to an internal structure Info which details its
various components and vice-versa. For now non-HTTP URLs make the predicate fail. E.g.
url_info(’http://www.foo.com/bar/scooby.txt’,Info)
gives Info = http(’www.foo.com’,80,"/bar/scooby.txt"),
url_info(URL, http(’www.foo.com’,2000,"/bar/scooby.txt")
gives URL = "http://www.foo.com:2000/bar/scooby.txt" (a string).

e url_info_relative (URL, Baselnfo, Info) Translates a relative URL URL which appears
in the HTML page refered to by Baselnfo (given as an url_info structure) to a complete
url_info structure Info. Absolute URLs are translated as with the previous predicate. E.g.
url_info_relative("/guu/intro.html",
http(’www.foo.com’,80,"/bar/scoob.html"), Info)
gives Info = http(’www.foo.com’,80,"/guu/intro.html")
url_info_relative("dadu.html", http(’www.foo.com’,80,"/bar/scoob.html"),
Info)
gives Info = http(’www.foo.com’,80,"/bar/dadu.html").

e url_query(Dic, Args) Translates a list of attribute=value pairs Dic (in the same form as
the dictionary returned by get_form_input/1) to a string Args for appending to a URL
pointing to a form handler.

e fetch_url(URL, Request, Response) Fetches a document from the Internet. URL is the
Uniform Resource Locator of the document, given as a url_info structure. Request is a list
of options which specify the parameters of the request, Response is a list which includes the
parameters of the response. The request parameters available are:
head To specify that we are only interested in the header.

timeout (Time) Time specifies the maximum period of time (in seconds) to wait for a re-
sponse. The predicate fails on timeout.

if_modified_since(Date) Get document only if newer than Date. An example of a struc-
ture that represents a date is date (’Tuesday’,15,’January’,1985,°06:14:02°).

user_agent (Name) Provide a user-agent field.

authorization(Scheme, Params) Provides an authentication field when accessing re-
stricted sites.

name(Param) Any other functor translates to a field of the same name (e.g.

from(’user@machine’)).

The parameters wich can be returned in the response list include (see the HTTP /1.0 defini-
tion for more information):
content (Content) Returns in Content the actual document text, as a list of characters.

status(Type, Code, Phrase) Gives the status of the response. Type can be any
of informational, success, redirection, request_error, server_error or
extension_code, Code is the status code and Phrase is a textual explanation of the
status.

pragma(Data) Miscellaneous data.

message_date (Date) The time at which the message was sent.
location(URL) Where has moved the document.
http_server(Server) Identifies the server responding.
allow(methods) List of methods allowed by the server.

last_modified(Date) Date/time at which the sender believes the resource was last modi-
fied.

expires(Date) Date/time after which the entity should be considered stale.
content_type (Type, Subtype, Params) Returns the MIME type/subtype of the document.
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content_encoding(Type) Encoding of the document (if any).
content_length (Length) Length is the size of the document, in bytes.

authenticate (Challenges) Request for authentication.

e html2terms (Chars, Terms) We have already explained how this predicate transforms HTML
terms to HTML format. Used on the other way it can parse HTML code, for example
retrieved by fetch_url. The resulting list of HTML terms Terms is normalized: it contains
only comment/1, declare/1, env/3 and $/2 structures.

For example, a simple fetch of a document can be done as follows:
url_info(’http://www.foo.com’,UI), fetch_url(UI,[],R), member(content(C),R).

Note that if an error occurs (the document does not exist or has moved, for example) this will
simply fail. The following call retrieves a document if it has been modified since October 2, 1996:

fetch_url (http(’www.foo.com’,80,"/doc.html"),
[if _modified_since(’Wednesday’,2,’0ctober’,1996,’00:00:00°)],R).

This last one retrieves the header of a document (with a timeout of 10 seconds) to get its last
modified date:

fetch_url (http(’www.foo.com’,80,"/last_news.html"), [head,timeout (10)],R),
member (last_modified(Date) ,R).

The following is a simple application illustrating the use of fetch_url and html2terms.
The example defines check_links (URL,BadLinks). The predicate fetches the HTML docu-
ment pointed to by URL and scours it to check for links which produce errors when followed.
The list BadLinks contains all the bad links found, stored as compound terms of the form:
badlink (Link,Error) where Link is the problematic link and Error is the error explanation
given by the server.

check_links (URL,BadLinks) :-
url_info(URL,URLInfo),
fetch_url(URLInfo, [],Response),
member (content_type(text,html,_) ,Response),
member (content (Content) ,Response) ,
html2terms (Content,Terms),
check_source_links(Terms,URLInfo, [],BadLinks).

check_source_links([],_,BL,BL).

check_source_links([E|Es] ,BaseURL,BLO,BL) :-
check_source_links1(E,BaseURL,BLO,BL1),
check_source_links(Es,BaseURL,BL1,BL).

check_source_links1(env(a,AnchorAtts,_) ,BaseURL,BLO,BL) :-

member ( (href=URL) ,AnchorAtts), !,

check_link (URL,BaseURL,BLO,BL).
check_source_links1(env(_Name,_Atts,Env_html) ,BaseURL,BLO,BL) :- !,

check_source_links(Env_html,BaseURL,BLO,BL).
check_source_links1(_,_,BL,BL).

check_link (URL,BaseURL,BLO,BL) :-
url_info_relative (URL,BaseURL,URLInfo), !,
fetch_url_status(URLInfo,Status,Phrase),
( Status \== success —>
name (P ,Phrase),
name(U,URL),
BL = [badlink(U,P) |BLO]

13



: BL = BLO
).
check_link(_,_,BL,BL).

fetch_url_status(URL,Status,Phrase) :-
fetch_url(URL, [head,timeout (20)],Response), !,
member (status(Status, _,Phrase) ,Response) .
fetch_url_status(_,timeout,timeout).

9 Providing Code Through the WWW

A facility which can be easily built on top of the primitives presented so far is that of “remote
WWW modules,” i.e., program modules which reside on the net at a particular HTTP address in
the same way that normal program modules reside in a particular location in the local file system.
This allows for example always fetching the most recent version of a given library (e.g., PiLLoW)
when a program is compiled. The CIAO library provides an extended use_module declaration
which is identical to the one used in standard systems (e.g., SICStus) but allows using http and
ftp addresses when referring to files. For example, the form handler of Section 6.1, if rewritten as

#!/usr/local/bin/1lpshell
:- use_module(’http://www.clip.dia.fi.upm.es/1ib/pillow.pl’).

main(_) :-
get_form_input (Input),
get_form_value(Input,person_name,Name),

would load the current version of the library each time it is executed. This generalized module
declaration is just syntactic sugar, using expand_term, for a document fetch, using fetch_url,
followed by a standard use_module declaration. It is obviously interesting to combine this facility
with caching strategies. An interesting (and straightforward to implement) additional feature is
to fetch remote byte-code (as generally done by use_module), if available, but this is only possible
if the two systems use the same byte-code (this can normally be checked easily in the bytecode
itself). Also, it may be interesting to combine this type of code downloading with WWW document
accesses, so that code is downloaded automatically when a particular document is fetched. This
issue is addressed in Section 11. Finally, there are obvious security issues related to downloading
code in general, which can be addressed with standard techniques such as security signatures.

10 A High-Level Model of Client-Server Interaction: Ac-
tive Modules

Despite its power, the cgi-bin interface also has some shortcomings. The most serious is perhaps
the fact that the handler is started and expected to terminate for each interaction. This has two
disadvantages. First, no state is preserved from one query to the next. However, as mentioned
before, this can be fixed by passing the state through the form or also by saving it in a temporary
file at the server side. Second, and more importantly, starting and stopping the application
may be inefficient. For example, if the idea is to query a large database or a natural language
understanding system, it may take a long time to start and stop the system. In order to avoid
this we propose an alternative architecture for cgi-bin applications (a similar idea, although not
based on the idea of active modules, has been proposed independently by Ken Bowen [3]).

The basic idea is illustrated in Figure 3. The operation is identical to that of standard form
handlers, as illustrated in Figure 2, up to step 3. In this step, the handler started is not the
application itself, but rather an interface to the actual application, which is running continuously
and thus contains state. Thus, only the interface is started and stopped with every transaction.
The interface simply passes the form input received from the server (4) to the running application
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Figure 3: The Forms Interface using Active Modules

(5) and then forwards the output from the application (6) to the server before terminating, while
the application itself continues running. Both the interface and the application can be written in
LP/CLP, using the predicates presented. The interface can be a simple script, while the application
itself will be typically compiled.

An interesting issue is that of communication between interface and application. This can of
course be done through sockets. However, as a cleaner and much simpler alternative, the concept
of active modules [4] can be used to advantage in this application. An active module (or an active
object, if modularity is implemented via objects) is an ordinary module to which computational
resources are attached (for example, a process on a UNIX machine), and which resides at a given
(socket) address on the network.* Compiling an active module produces an executable which,
when running, acts as a server for a number of relations, which are the predicates exported by
the module. The relations exported by the active module can be accessed by any program on
the network by simply “loading” the module and thus importing such “remote relations.” The
idea is that the process of loading an active module does not involve transferring any code, but
rather setting up things so that calls in the local module are executed as remote procedure calls
to the active module, possible over the network. Except for saving it in a special way, an active
module is identical from the programmer point of view to an ordinary module. Also, a program
using an active module imports it and uses it in the same way as any other module, except that it
uses “use_active_module” rather than “use_module” (see below). Also, an active module has an
address (network address) which must be known in order to use it. The address can be announced
by the active module when it is started via a file or a name server (which would be itself another
active module with a fixed address).

We now present the constructs used by active modules. Note that for concreteness and com-
patibility in the description of modules we mainly follow the same scheme as SICStus Prolog.

e :- use_active_module(Module, Predicates) A declaration used to import the predicates
in the list Predicates from the (already) active module Module. From this point on, the code
should be written as if a standard use_module/2 declaration had been used. The declaration
needs the following hook predicate to be defined.

e module_address (Module, Address) This predicate must give the address of each active mod-
ule imported in the code.

e save_active_module(Name, Address, Hook) Saves the current code as an active module,
into the executable file Name. When the file is executed (for example, at the operating
system level by “Name &”), Address is unified with the address of the module, and Hook is
called in order to export this address as required.

41t is also possible to provide active modules via a WWW address. However, we find it more straightforward to
simply use socket addresses. In any case, this is generally hidden inside the access method and can be thus made
transparent to the user.
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Note that this scheme is very flexible. For example, the predicate module_address/2 itself
could be imported, thus allowing a configurable standard way of locating active modules. One
could, for example, use a directory accessible by all the involved machines to store the addresses of
the active modules in them, and this predicate would examine this directory to find the required
data. A more elegant solution would be to implement a name server, that is, an active module
with a known address that records the addresses of active modules and supplies this data to the
modules that actively import it.

From the implementation point of view, active modules are essentially daemons: Prolog exe-
cutables which are started as independent processes at the operating system level. In the CIAO
system library, communication with active modules is implemented using sockets (thus, the ad-
dress of an active module is a UNIX socket in a machine). Requests to execute goals in the
module are sent through the socket by remote programs. When such a request arrives, the process
running the active module takes it and executes it, returning through the socket the computed
results. These results are then taken by the remote processes.

Thus, when the compiler finds a use_active_module declaration, it defines the imported
predicates as remote calls to the active module. For example, if the predicate P is imported from
the active module M, the predicate would be defined as

P :- module_address(M,A), remote_call(A,P)

The predicate save_active_module/3 saves the current code like save/1, but when the exe-
cution is started a socket is created whose address is the second argument of the predicate, and
the expression in the third argument is executed. Then, the execution goes into a loop of reading
execution requests from the socket, executing them, and returning the solutions back through the
socket.

Compiling the following program creates an executable phone_db which, when started as a
process (for example, by typing “phone_db &” at a UNIX shell prompt) saves its address (i.e.,
that of its socket) in file phone_db.addr and waits for queries from any module which “imports”
this module (it also provides a predicate to dynamically add information to the database):

:- module(phone_db, [response/2,add_phone/2]).

response(Name, Response) :-
form_empty_value(Name) ->

Response = ’You have to provide a name.’
; phone(Name, Phone) ->
Response = [’Telephone number of ’,b(Name),’: ’,Phone]
; Response = [’No telephone number available for ’,b(Name),’.’].

add_phone (Name, Phone) :-
assert (phone(Name, Phone)).

:- dynamic phone/2.

phone(daniel, ’336-7448’).
phone (manuel, ’336-7435’).
phone(sacha, ’543-53167).

:- save_active_module(phone_db,Address,
(tell(’phone_db.addr’), write(Address),told)).

The following simple script can be used as a cgi-bin executable which will be the active module
interface for the previous active module. When started, it will process the form input, issue a
call to response/2 (which will be automatically handled by the phone_db active module), and
produce a new form before terminating. It will locate the address of the phone_db active module
via the module_address/2 predicate it defines.

#!/usr/local/bin/lpshell
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:- use_active_module(phone_db, [response/2]) .
:— use_module(’/usr/local/src/pillow/pillow.pl’).

main(_) :-
get_form_input (Input),
get_form_value(Input,person_name,Name),
response (Name ,Response) ,
output_html ([
cgi_reply,
start,
title(’Telephone database’),
image (’phone.gif’),
heading(2,’Telephone database’),

I’
Response,
$’
start_form,
’Click here, enter name of clip member, and press Return:’,
\\,
input (text, [name=person_name,size=20]),
end_form,
end]) .

module_address (phone_db,Address) :-
see(’phone_db.addr’),
read(Address),
seen.

There are many enhancements to this simple schema which, for brevity, are only sketched here.
One is to add concurrency to the active module (or whatever means of handling the client-server
interaction is being used), in order to handle queries from different clients concurrently. This is
easy to do in systems that support concurrency natively, such as &-Prolog/CIAO, BinProlog/u?-
Prolog, AKL, Oz, and KL1. We feel that &-Prolog/CIAO can offer advantages in this area because
it offers compatibility with Prolog and CLP systems while at the same time efficiently supporting
concurrent execution of clause goals via local or distributed threads. Such goals can communicate
at different levels of abstraction: sockets/ports, blackboard, or shared variables. BinProlog/u>-
Prolog also supports threads, although the communication mechanisms are somewhat different.
Finally, as shown in [24], it is also possible to exploit the concurrency present in or-parallel Prolog
systems such as Aurora for implementing a multiprocessing server.

It is also interesting to set up things so that a single active module can handle different forms.
This can be done even dynamically (i.e., the capabilities of the active module are augmented on
te fly, being able to handle a new form), by designating a directory in which code to be loaded
by the active module would be put, the active module consulting the directory periodically to
increase its functionalities. Finally, another important issue that has not been addressed is that of
providing security, i.e., ensuring that only allowed clients connect to the active module. As in the
case of remote code downloading, stardard forms of authentication based on codes can be used.

An implementation of active modules as described is included in the CIAQO library which
provides the concurrent and distributed execution facilities mentioned above [4]. As the PiLLoW
library, this library only uses standard features of LP/CLP systems, although it does require
attributed variables [17] if shared-variable communication is to be used [14]. However, this is not
necessary for implementing active modules.

11 Automatic Code Downloading and Local Execution

In this section we describe an architecture which, using only the facilities we have presented in
previous sections, allows the downloading and local execution of Prolog (or other LP/CLP) code
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Figure 4: Automatic code downloading architecture

by accessing a WWW address, without requiring a special browser. This is a complementary
approach to giving WWW access to an active module in the sense that it provides code which
will be executed in the client machine. More concretely, the functionality that we desire is that
by simply clicking on a WWW pointer, and transparently for the user, remote Prolog code is
automatically downloaded in such a way that it can be queried via forms and all the processing is
done locally.

To allow this, the HTTP server on the server machine is configured to give a specific
mime.type (for example application/x-prolog) to the files which will hold WWW-downloadable
Prolog code (for example those with a special suffix, like .wpl). On the other side, the
browser is configured to start the wpl_handler helper application when receiving data of type
application/x-prolog. This wpl_handler application is the interface to a Prolog engine which
will execute the WWW downloaded code, acting as an active module. We now sketch the proce-
dure (see figure 4):

1. The form that will be used to query the dowloaded code (and which we assume already
loaded on the browser) contains a link which points to a WWW-aware Prolog code file.
Clicking on this link produces the download as explained below. Note that for browsers that
can handle multipart/mixed mime types (such as most modern browsers), the form and
the code file could alternatively be combined in the same document. However, for brevity,
we will only describe the case when they are separate. The handler for the form is specified
as the local cgi-bin executable wpl_questioner.cgi.

2. As the server of the file tells the browser that this page is of type application/x-prolog,
the browser starts a wpl_handler and passes the file to it (in this example by saving the file
in a temporal directory and passing its name).

3. The wpl_handler process checks whether a Prolog engine is currently running for this
browser and, if necessary, starts one. This Prolog engine is configured as an active module.

4. Then, through a call to a predicate of the active module “loadcode (File)” the handler asks
the active module to read the code.

5. The active module reads the code and compiles it.

6. wpl_handler waits for the active module to complete the compilation and writes a “done”
message to the browser.
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7. The browser receives the “done” message.

8. Now, when the “submit” button in the form is pressed, and following the standard procedure
for forms, the browser starts a wpl_questioner process, sending it the form data.

9. The wpl_questioner process gets this form data, translates it to a dictionary For-
mData and passes it to the active module through a call to its exported predicate
answerform(FormData, FormReply).

10. The active module processes this request, and returns in FormReply a WWW page (as a
term) which contains the answer to it (and possibly a new form).

11. The wpl_questioner process translates FormReply to raw HTML and gives it back to the
browser, dying afterwards. Subsequent queries to the active module can be accomplished ei-
ther by going back to the previous page (using the “back” button pressent in many browsers)
or, if the answer page contains a new query form, by using it. In any case, the procedure
continues at 8.

The net effect of the approach is that by simply clicking on a WWW pointer, remote Prolog
code is automatically downloaded to a local Prolog engine. Queries posed via the form are answered
locally by the Prolog engine.

There are obvious security issues that need to be taken care of in this architecture. Again,
standard authentication techniques can be used. However, since source code is being passed
around, it is comparatively easy to verify that no dangerous predicates (for example, perhaps
those that can access files) are executed. Note again that it is also possible to download bytecode,
since this is supported by most current LP/CLP systems, using a similar approach.

12 Related Work

Previous general purpose work on WWW programming using computational logic systems in-
cludes, to the best of our knowledge, the publicly available html.pl library [5] and manual, and
the LogicWeb system [21]. The html.pl library was built by D. Cabeza and M. Hermenegildo,
using input from L. Naish’s forms code for NU-Prolog and M. Hermenegildo and F. Bueno’s ex-
periments building a WWW interface to the CHAT-80 [27] program. It was released as a publicly
available WWW library for LP/CLP systems and announced, among other places, in the Internet
comp.lang.prolog newsgroup [6]. The library has since been ported to a large number of sys-
tems and adapted by several Prolog vendors, as well as used by different programmers in various
institutions. In particular, Ken Bowen has ported the library to ALS Prolog and extended it to
provide group processing of forms and an alternative to our use of active modules [3]. The present
work is essentially a significant extension of the html.pl library.

The main other previous body of work related to general-purpose interfacing of logic program-
ming and the WWW that we have knowledge of is the LogicWeb [21] system, by S.W. Loke and
A. Davison. The aim of LogicWeb is to use logic programming to extend the concept of WWW
pages, incorporating in them programmable behaviour and state. In this, it shares goals with
Java. It also offers rich primitives for accessing code in remote pages and module structuring.
The aims of LogicWeb are different from those of html.pl/PiLLoW. LogicWeb is presented as a
system itself, and its implementation is done through a tight integration with the Mosaic browser,
making use of special features of this browser. In contrast, html.pl/PiLLoW is a general purpose
library, meant to be used by a general computational logic systems and is browser-independent.
html.pl/PiLLoW offers a wide range of functionalities, such as syntax conversion between HTML
and logic terms, access predicates for WWW pages, predicates for handling forms, etc., which are
generally at a somewhat lower level of abstraction than those of LogicWeb. We believe that using
PiLLoW and the ideas sketched in this paper it is possible to add the quite interesting functionality
offered by LogicWeb to standard LP and CLP systems. We have shown some examples including
access to passive remote code (modules with an ftp or http address) from programs and auto-
matic remote code access and querying using standard browsers and forms. In addition, we have
discussed active remote code, where the functionality, rather than the code itself, is exported.

19



13 Conclusions and Future Work

We have discussed from a practical point of view a number of issues involved in writing Internet
and WWW applications using LP/CLP systems. In doing so, we have described PiLLoW, an
Internet/WWW programming library for LP/CLP systems. PiLLoW provides facilities for gen-
erating HTML structured documents, producing HTML forms, writing form handlers, accessing
and parsing WWW documents, and accessing code posted at HT'TP addresses. We have also de-
scribed the architecture of some application classes, including automatic code downloading, using
a high-level model of client-server interaction, active modules. Finally we have also described an
architecture for automatic LP/CLP code downloading for local execution, using generic browsers.
We believe that the CIAO PiLLoW library can ease substantially the process of developing WWW
applications using computational logic systems.

We are currently working on extended versions of the library which for example may make
extensive use of concurrency internally (on those LP/CLP systems that support it) to overlap
network requests and include support for (active) VRML. We are also considering interfaces with
the Java language, including making the LP/CLP system be a Java library and also calling Java
from the LP/CLP system in order to use its libraries. Finally, we are also considering the possibility
of compiling LP/CLP code to the Java abstract machine. This seems possible, although at a cost
in performance with respect to a direct WAM-like implementation, since the Java abstract machine
does not have built-in support for unification or backtracking, which would have to be interpreted.

In addition to being part of the &-Prolog/CIAQO system, the PiLLoW library is being pro-
vided as a public domain standard library for SICStus Prolog and other Prolog and CLP sys-
tems, supporting most of its functionality. Please contact the authors or consult our WWW site
http://www.clip.dia.fi.upm.es for details.

The authors would like to thank Mats Carlsson, Tony Beaumont, Ken Bowen, Michael Codish,
Markus Fromherz, Paul Tarau, Andrew Davison, and Koen De Bosschere for useful feedback on
previous versions of the presented libraries. The first versions of the CIAQO system and the html.pl
library were developed under partial support from the ACCLAIM ESPRIT project.
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