Poly-Controlled Partial Evaluation

German Puebla

School of Computer Science
Technical University of Madrid
28660 Boadilla del Monte, Spain

german@fi.upm.es

Abstract

Existing algorithms for on-line partial evaluation of legirograms,
given an initial program and a description of run-time qesri
deterministically produce a specialized program. In thisrkv
we propose a novel framework for partial evaluation of logic
programs which igpoly-controlledin that it can take into account
repertoires of global control and local control rules iasteof a
single, predetermined combination. This approach is mexebile
than existing ones since it allows assignidigferent global and
local control rules to different call patterns, thus obitainresults
that cannot be obtained using traditional partial evatimatiThis
modification transforms partial evaluation frongieedyalgorithm
into a search-basedilgorithm and, as a result, sets of candidate
specialized programs can be achieved, instead of a singlelion
order to make the algorithm fully automatic, it requires thee

of self-tuning techniques which allow automatically measu
the quality of the different candidate specialized progga@ur
approach is resource aware in that it uses fitness functidmnshw
consider multiple factors such as run-time and code sizehfer
specialized programs. The framework has been implementte i
CiaoPP system, and tested on some benchmarks. The prelmina
experimental results we present show that our proposalnsbta
better specializations than those achieved using traditipartial
evaluation.

Categories and Subject Descriptors D.1.6 [Programming Tech-
niqueg: Logic Programming

General Terms Languages, Performance

Keywords Partial Evaluation, Control Rules, Optimization

1. Introduction

The aim of partial evaluationPE) is to specialize a program
w.rt. part of its input, which is known as th&tatic datdl11].
The quality of the code generated by partial evaluation thyrea
depends on theontrol strategyused. Traditional algorithms for
partial evaluation (PE) of logic programs (LP) are paraioetr.t.
the so-calledylobal controlandlocal control rules. The issue of
devising good control rules has received considerablentaite
(see for example [8] and its references).

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’06 July 10-12, 2006, Venice, Italy.
Copyright© 2006 ACM 1-59593-388-3/06/0007. .. $5.00.

Claudio Ochoa

School of Computer Science
Technical University of Madrid
28660 Boadilla del Monte, Spain

claudio®fi.upm.es

However, the existence of sophisticated control rules khic
behave (almost) optimally for all programs is still far fraeality.
Furthermore, the existing control rules focus on time-ificy
by trying to reduce the number of resolution steps which are
performed in the residual program. Other factors such asitieeof
and the memory required to run the residual program are nftest o
neglected, a relevant exception being the work in [4]. Initaidto
potentially generating larger programs, it is well knowattpartial
evaluation can slow-down programs due to lower level issuek
as clause indexing, cache sizes, etc.

Existing partial evaluators usually provide several glodrad
local control strategies, as well as many other paramegtoddl
trees, computation rules, etc.) directly affecting theligpaf the
obtained solution. For a novice user, it is extremely hardirtd
the right combination of parameters to achieve the desiedlts
(reduction of size of compiled code, reduction of executiame,
etc.). Even for an experienced user, it is rather difficulptedict
the behavior of partial evaluation, especially in terms phce-
efficiency (size of the residual program).

Also, once a choice of global and local control rules is made,
such a combination will be applied to all call patterns intésidual
program. Obviously, in practice, it can be very useful to bke @0
usedifferentglobal and local control rules falifferentcall patterns,
thus obtaining results that cannot be produced using ibadit
partial evaluation with any given control strategy.

In this work we propose a novel framework for on-line partial
evaluation which:

1. allows using different global and local control rulesddferent
call patterns (atoms) and

2. can generate several candidate specializations. Tipestab
izations can then be empirically compared for efficiency, in
terms of multiple factors such as size of the specializednamm
and time- and memory-efficiency of such specialized program

The framework iself-tuningn that, as mentioned above, it uses
empirical evaluations for selecting the best candidatesnbgns
of a fitness functionlt is also resource-awarein that multiple
factors, such as size of specialized programs and their memo
consumption can be taken into account by the fithess function
in addition to the natural consideration of time-efficierafythe
specialized programs. In [3], a self-tuning, resource awérline
specialization technique is introduced. In contrast, qupraach
performson-line partial evaluation, and thus can take advantage
of the great body of work available fon-linepartial evaluation of
logic programs.

The rest of the paper is organized as follows. In Sec. 2 some
required background on the basics of partial evaluationogfcl
programs is provided. Sec. 3 illustrates, by means of an pbam
the difficulty of choosing the right control strategies. lecS 4
we express a traditional partial evaluation framework asedy

algorithm. Then, in Sec. 5 we introduce a first approach tg-pol
controlled partial evaluation and, finally, in Sec. 6 we shamw
improved approach to poly-controlled partial evaluationSec. 7
we describe how to make this algorithm self-tuning and ressu
aware. Sec. 8 presents some preliminary experimentaltsesul
Finally, in Sec. 9 we discuss some related work and conclude.

2. Background

We assume some basic knowledge on the terminology of logic
programming. See for example [12] for details.

Very briefly, anatom A is a syntactic construction of the form
p(ti,...,tn), Wherep/n, withn > 0, is a predicate symbol and
t1,...,t, are terms. The functiopred applied to atomA, i.e.,
pred(A), returns the predicate symbp}n for A. A clauseis of
the formH — B where its head? is an atom and its bod® is a
conjunction of atoms. Alefinite progranis a finite set of clauses.
A goal (or query) is a conjunction of atoms.

A term ¢ is more generathans (or s is aninstanceof t), in
symbolst < s, if Jo. to = s. A unifier of a pair of terms{¢1, t2}
is a substitutionr such that,o = t20. A unifier o is calledmost
general unifiefmgu) if for every other unifiew’, t10 < t20’ .

2.1 Basics of Partial Evaluation in LP

Partial evaluation of LP is traditionally presented in teraf SLD
semantics. We briefly recall the terminology here. We withpde

a concrete algorithm for partial evaluation in Section 4e Thncept
of computation rulds used to select an atom within a goal for its
evaluation.

DEFINITION 2.1 (computation rule).

A computation rulds a functionR from goals to atoms. Let
G be a goal of the form— A;,..., Agr,..., A, k > 1. If
R(G) =Ar we say thatdr is theselectecatom inG.

The operational semantics of definite programs is based on
derivations [12].

DEFINITION 2.2 (derivation step).

LetGbe«— A;,...,ArR,...,Ar. LetR be a computation rule
and letR(G) =Ag. LetC = H «— Ba,..., B, be a renamed
apart clause inP. ThenG’ is derivedfrom G and C' via R if the
following conditions hold:

0 = mgu(Ar, H)

G'isthe goal — #(A1,...,Ar—1,B1,...,Bm, Art1,...,Ax)

As customary, given a progran? and a goalG, an SLD
derivationfor P U {G} consists of a possibly infinite sequence
G = Go,G1, G2, ... of goals, a sequendg,, Cs, . .. of properly
renamed apart clauses &f, and a sequencg,, 6, ... of mgus
such that eacli; 1 is derived fromG; andC’; 11 usingf;+1.

A derivation step can be non-deterministic whér unifies
with several clauses i, giving rise to several possible SLD
derivations for a given goal. Such SLD derivations can bawoized
in SLD treesA finite derivationG = Gy, G1,Ga2, ..., G, iscalled
successfuf G,, is empty. In that casé = 6,0- . . . 6,, is called the
computed answer for goél. Such a derivation is callefdiled if it
is not possible to perform a derivation step Wik .

In partial evaluation, SLD semantics is extended in order to
also allowincomplete derivationsvhich are finite derivations of
the formG = Go, G1,Go,. .., G, and where no atom is selected
in G,, for further resolution. This is needed in order to avoid §gc
non-termination of the specialization process. Also, thesstution
0 = 0102 ...0, is called the computed answer substitution for
goal G. An incomplete SLD tregossibly contains incomplete
derivations.

In order to compute gartial evaluation(PE) [11], given an
input program and a set of atoms (goal), the first step cansist
in applying anunfolding ruleto compute finite incomplete SLD
trees for these atoms. Then, a setasultans or residual rules are
systematically extracted from the SLD trées.

DEFINITION 2.3 (unfolding rule).

Given an atomA, an unfolding rule computes a set of finite
SLD derivationd;, . .., D, (i.e., a possibly incomplete SLD tree)
of the formD; = A, ..., G,; with computer answer substitutioh
fori =1,...,n whose associategsultantsare 6;(A) — G;.

Therefore, this step returns the set of resultants, i.erogram,
associated to the root-to-leaf derivations of these tréls.set of
resultants for the computed SLD tree is callgglatial evaluation
for the initial goal (query). The partial evaluation for & ségoals
is defined as the union of the partial evaluations for eachigdhe
set. We refer to [8] for details.

In order to ensure the local termination of the PE algorithm
while producing useful specializations, the unfoldingeruhust
incorporate some non-trivial mechanism to stop the coostm
of SLD trees. Nowadays, well-founded orderings (wfo) [2], &3
well-quasi orderings (wqo) [15, 9] are broadly used in thetegt
of on-line partial evaluation techniques (see, e.g., [5.15)).

In addition to local termination, ambstraction operatoris
applied to properly add the atoms in the right-hand sides of
resultants to the set of atoms to be partially evaluateds Thi
abstraction operator performs tgbal controland is in charge of
guaranteeing that the number of atoms which are generatedns
finite by replacing atoms by more general ones, i.e., by tpsin
precision in order to guarantee termination. The abstragihase
yields a new set of atoms, some of which may in turn need farthe
evaluation and, thus, the process is iteratively repeatatewmew
atoms are introduced.

3. The Dilemma of Controlling PE

As mentioned above, there exist many powerful local andajlob
control rules to choose from. Just as an example, in the ¢ésead
control, a decision to be taken is whether to allow non-lefm
unfolding or not. It is well known that performing unfoldirsgeps
w.r.t. atoms which are not leftmost can slow-down prograansi,

in the presence dfmpure predicates, non-leftmost unfolding can
even produce incorrect results [1]. On the other hand, paifg
non-leftmost unfolding can provide important gains in otteses.
See, for example, the program in Listing 1.

exp (Base ,Exp,Res):- exp_ac(Exp,Base,1,Res).

exp_ac(0,_,Res,Res).
exp_ac (Exp ,Base,Tmp,Res): -
Exp > O,
Expl is Exp - 1,
NTmp is Tmp * Base,
exp_ac (Expl ,Base ,NTmp,Res).

Listing 1. Theexponential/3 example

If we specialize it w.r.t. the queryxp (Base, 2,Res), enabling
non-leftmost unfolding allows to unroll the recursive sallThe
residual code, after some simple arithmetic simplificaﬁﬁoﬂls
shown in Listing 2.

1 et us note that the definition of a partial evaluatalgorithm requires,
in addition to an unfolding rule, the so-called global cohtievel (see
Section 1).

2The specializer in CiaoPP actually performs such simptifics of
arithmetic operations.

exp(A,2,B) :- B is Ax*A.

Listing 2. Residual code of thexponential/3 example

Consider now the program in Listing 3 below. Since the call
“C is B + 1" to the built-in predicateis/2 is not sufficiently
instantiated to be executed (s not yet bound to an arithmetic
expression), it is required to enable non-leftmost unfajdn order
to unfold the callq(C).

p(B):- C is B + 1, q(C).
q(1).
q(2).
q(3).
q(4).
q(5).
q(6).

Listing 3. Thep/1 example

However, such unfolding generates the residual code shown i
Listing 4.

p(A) :- 1 is A+1.
p(A) :- 2 is A+1.
p(A) :- 3 is A+1.
p(A) :- 4 is A+1.
p(A) :- 5 is A+1.
p(A) :- 6 is A+1.

Listing 4. The residual code fas/1

This code is less efficient than the original definitionpgft,
since the indexing for predicatg/1 is lost and the calls to built-in
is/2 have to be speculatively performed until a success is faéind,
any. For example for values of > 6, six calls tois/2 are always
performed, whereas just one was needed in the original anogr

In summary, the same feature of a local control rule, i.e.,
whether to allow non-leftmost unfolding, can be beneficiad f
certain calls (atoms) and can be counterproductive in sther

main(A,B,C) :-
D is 1x*B,
exp_ac_1(1,B,D,C),
p_1(A).

exp_ac_1(1,A,B,C) :- D is B*A, exp_ac_2(0,A,D,C).

exp_ac_2(0,_1,A,A).

p_1(A) :- B is A+1, q_1(B).
q_1(1).
q_1(2).
q_1(3).
q_1(4).
q_1(5).
q_1(6).

Listing 6. Result with leftmost unfolding

Unfortunately, neither the program in Listing 6 nor the one
in Listing 7 is optimal. This is because, in order to achiewe a
optimal result, non-leftmost unfolding should be used famas
for predicateexp/3, but only leftmost unfolding should be used
for atoms for predicatg/1.

main(A,B,C) :- D is 1xB, C is D*B, 1 is A+1.
main(A,B,C) :- D is 1xB, C is D*B, 2 is A+1.
main(A,B,C) :- D is 1*B, C is D*B, 3 is A+1.
main(A,B,C) :- D is 1x*B, C is D*B, 4 is A+1.
main(A,B,C) :- D is 1xB, C is D*B, 5 is A+1.
main(A,B,C) :- D is 1xB, C is D*B, 6 is A+1.
Listing 7. Result with non-leftmost unfolding

Note that although the rule of thumb discussed above for non-
leftmost unfolding happens to provide good results in thaneple,
clearly there is no unfolding rule which uniformly obtainset
optimal results in all cases.

Though one could argue that a good rule of thumb can be toonly 4, PE as a Greedy Algorithm

perform non-leftmost unfolding for determinate atoms,, itkose
which only unify with a single clause head, this heuristieslo
not guarantee to always achieve the best specializatisilpjesan
atom whose resolution is not determinate can become detistii
later on, since maybe just one (or even none) of the derivatio
which contain such step is successful orincomplete (ileharest
are failing derivations). Note that the problem of decidivigether
an atom is deterministic is undecidable: it can always happat
an SLD tree which contains several non-failing derivatiansome
depth, contains at most one non-failing derivation in the depth
level.

3.1 A Motivating Example

We now show in Listing 5 a program which defines the predicate
main/3 containing calls to the predicatesp/3 andp/1 defined
before:

main(A,B,C):- exp(B,2,Result), p(A).

Listing 5. A motivating example

In Listing 6 we can see the residual code obtained when
specializing this program w.r.t. the quemain(A,B,C) using
leftmost unfolding. Note that none of the calls to the birilt-
predicateis/2 are sufficiently instantiated to be executed at spe-
cialization time. Since only leftmost unfolding is allowethe
unfolding trees computed are not very deep, resulting inrgela
number of residual predicates. On the other hand, if we @oos
to enable non-leftmost unfolding, we obtain the residualgpam
shown in Listing 7, where only an SLD tree has been requined, a
thus no auxiliary predicates are defined.

As it is well known, greedy algorithmsare characterized by
starting from an initiatonfiguration(or state)Conf, and repeatedly
applying atransformation rule Twhich given a configuratio@onf;
produces a successor configurat@onf.; s.t.Conf1=T'(Conf).
This process is repeated until a configurat@onf,, n > 0, is
reached which satisfies certain conditions guaranteegtginf,

is final.

As we show in Algorithm 1 below, it is possible to consider
traditional partial evaluation frameworks as greedy dtpars. A
configurationConf; is a pair(S;, H;) s.t. S; is the set of atoms
yet to be handled by the algorithm arfd; is the set of atoms
already handled by the algorithm. Indeed An not only we store
atoms but also the result of applying global control to sucims,
i.e., members off; are pairs of the forn{A;, A;). Correctness of
the algorithm requires that eackf, is anabstractionof 4, i.e.,

A; = Aj6.

Given a set of atoms$ which describe the potential queries to
the program, the initial configuration is of the for{f, 0). In each
iteration of the algorithm, an atom; from S is selected (line 5).
Then, global control and local control as defined by Miestract
and Unfold rules, respectively, are applied (lines 6 and 7). This
builds an SLD-tree ford}, a generalization ofd; as determined
by Abstract using the predefined unfolding rulénfold. Once the
SLD-treer; is computed, the leaves in its resultants, i.e., the atoms
in the residual code forl; are collected by the functioleaves
Those atoms irleave$r;) which are not a variant of an atom
handled in previous iterations of the algorithm are adddti¢cset
of atoms to be considered{;1). We useB = A to denote thaB
andA arevariants i.e., they are equal modulo variable renaming. A

Algorithm 1 Greedy Partial Evaluation algorithm

Algorithm 2 Poly-Controlled Partial Evaluation algorithm

Input: ProgrampP

Input: Set of atoms of interest

Input: A global control ruleAbstract

Input: A local control ruleUnfold

Output: A partial evaluation for? and.S, encoded byH;

i=0
tHo=0
: So =S
repeat
A; = Select(S;)
A} = AbstractH;, A;)
7; = Unfold(P, A)
Hipr = H; U{(A;, A7)}
Sit+1 = (Si — {A:}) U{A € leaves(r;) | V (B,.) €
}

CcoNORrONE

Hiy1 .B£ A
10 i=i+4
11: until S; =0

configuration is final when it is of the forrf), /). The specialized
program correspondstg, 4 4 ¢y, resultants(A’).

Note that this algorithm differs from those in [5, 8] in thatoe
an atomA; is abstracted intod}, code for A} will be generated,
and it will not be abstracted any further no matter which othe
atoms are handled in later iterations of the algorithm. Assaut,
the set of atoms for which code is generated are not guakhntee
to beindependentTwo atoms are independent when they have no
common instance. However, the pairsinuniquely determine the
version used at each program point. Since code generatidnpes
a new predicate name per entryfify independence is guaranteed,
and thus the specialized program will not produce more Ewist
than the original one. Theccesystem [10] can be made to behave
as Algorithm 1 by setting thparent abstractiorilag to off.

5. A Poly-Controlled PE Algorithm

As we have seen, in the greedy algorithm given a configuration
(S;, H;), and once we decide to continue the computation using
A; € S;, there is only one successor configuration which is
T((Si, H;)). However, it is well known that several control strat-
egies exist which can be of interest in different circumséan It
is indeed a rather difficult endeavor to find a pair of globaitcal
and local control rules which behaves well in all settingbug,
rather than considering a single global control and locaitrcd
rule, at least in principle one can be interested in applyliffgrent
local and global control rules tdifferent atoms (call patterns).
Unfortunately, this is something which existing algorithrfor
partial evaluation do not cater for. If we allow differentgbinations
of global and local control rules, given a configuration réis no
longer a single successor in the computation of the alguoriit
possibly several ones. In fact, given a set of unfoldingstde=
{Unfold,, ..., Unfold,}, and a set of abstraction functiogs =
{Abstract, ..., Abstraci }, there are x j possible combinations.
Algorithm 2 shows goly-controlledpartial evaluation algorithm.
We refer to this algorithm as poly-controlled because ibwad
the use of multiple control strategies and use differentsdioe
different atoms. The choice of the control strategy to ajplsing
the handling of each atom is performed by &k function which
given an atormd;, a historyH;, a set of global control rules, and a
set of local control rules, picks up a pdibstract Unfold) among
all possible ones.
This algorithm differs from the greedy algorithm seen in
Section 4 in several ways. One is that rather than receiving a

Input: ProgrampP

Input: Set of atoms of interest

Input: Set of unfolding ruleg(

Input: Set of generalization functioris

Input: Selection functionPick

Output: A partial evaluation folP and.S, encoded byH;

1=0
Hy=10
So =S
repeat
A; = Select(S;)
(Abstract Unfold) = Pick(A;, H;,G,U)
Aj = Abstract H;, A;)
7; = Unfold(P, Aj)
Hiy1=H;U {<A~L, A;, Unfold)}
Sit1 = (Si — {Ai}) U{A € leaves(r;) |V (B,_,_) €
Hit1.B # A}
1=1+1
until S; =0

=

12:

input an abstraction function and an unfolding rule, it reee
a set of global control rules and set of local control rules.
Another difference is that the tuples in sét now contain not
only an atom and the result of abstracting it, but also theldirig
rule which has been picked for unfolding such atom. That is
needed in order to use exactly such unfolding rule during-tivke
generation phase. Indeed, the specialized program comdspo
Ua,ar,0n folaye s, resultants(A’, Un fold), where the function
resultantsis now parametric w.r.t. the unfolding rule. This allows
applying the same unfolding rule during code generation as$
applied during the execution of Algorithm 2. The third andafin
difference corresponds to the addition of the functck used in
line 6, and whose role has already been described above.
Clearly, different choices for th€ick function will result in
different specialized programs. It is important to note tha finer-
grained control of poly-controlled partial evaluation gastentially
produce specialized programs which are hard or even inipedsi
obtain by using off-the-shelf control strategies. Alse dddition
of thePick function conceptually makes the poly-controlled partial
evaluation algorithm being composed of three levels of rmbrthe
local control, the global control, and ttsearch contral which is
determined by the functioRick Note that the inclusion of the
history as an input argument®ick allows to make hopefully more
informed decisions.

6. Search-based Specialization

Poly-controlled algorithms can provide better specigiares than
those achievable by traditional partial evaluation aldpnis by
assigning different control strategies to different atoriewever,
the improvements achieved rely on the behavior of the foncti
Pick Unfortunately, choosing a godeick function can be a very
hard task.

Another alternative is, instead of decidiagpriori the control
strategy to apply to each atom, to generate several (or dien a
candidate partial evaluations and then deadposteriori which
specialized program to use. In the extreme, this can be dgne b
computing all possible combinations of global and localtomn
rules and exploring the whole search space in order to genera
not just a specialized program but rather a collection otispieed
programs.

Algorithm 3 shows an all-solutions search-based algorithm
In this case, there is no longer a single successor configorat

state for each atom to unfold, but several of them. This can

be interpreted as, giveG={A1,...,A;} andU={U1,...,U;},
we now have aset of transformation operato@(j‘ll,...,T{j‘il,

.. .,T(j‘j. Obviously, in general we will be interested in selecting
only one specialized program out of all final programs olgdin
Clearly, generating all possible candidate specializeahams
is more costly than computing just one. However, selectheg t

best candidate a posteriori allows to make much more infdrme

decisions than selecting it a priori, as in Algorithm 2.

Algorithm 3 All-candidates Search-based Partial Evaluation

algorithm

Input: ProgramP

Input: Set of atoms of interest

Input: Set of unfolding ruleg/

Input: Set of generalization functior
Output: Set of partial evaluationSols

1: Ho = @

2: S() =S

3: create(Conf9; Confs= push({So, Ho), Confg

4: Sols=10

5: repeat

6: (S;, H;) = pop(Conf9

7. A; = Select(S;)

8: Candidates = {(AbstractUnfold) | Abstract €
G,Unfold e U}

9: repeat

10: Candidates = Candidates — {(Abstract Unfold) }

11 A} = Abstrac{H;, A;)

12: 7; = Unfold(P, A})

13: Hit :H¢U{<Ai,A;,Unf0Id)}

14: Sit1 = (Si — {A:}) U{A € leaves(r;) |V (B, _,-) €

Hiy1.B # A}
15: if Si+1:® then
16: Sols=SolsU {H;y1}
17: else
18: pUSh(<5i+1, H¢+1>,Conf$
19: end if
20: until Candidates =0
21 1=1i41

22: until empty_stack(Conf9

The main difference between Algorithm 3 and Algorithm 2 is
that there are now two additional data structures. On€adsfs
which contains the configurations which are currently being
plored. The other one iSols which stores the set of solutions
found by the algorithm. As it is well known, the use of diffate
data structures fo€onfsprovides different traversals of the search
space. Currently, Algorithm 3 uses a stack, thus the seaatess
traversed in a depth-first fashion. Note that Algorithm 3sloet
work with single configurations but rather with stacks of fgu-
rations. The process terminates when the stack of confignsao
handle is empty, i.e. all final configurations have been redch

6.1 Searching for All Specializations in our Motivating
Example

Consider again the motivating example in Listing 5. Consalso
two local control rules, one performing leftmost unfoldiogly,
and the other one performing also non-leftmost unfolding,, i
U={leftmost nonleftmos} and one global control ruliel returning
always the same atom, i.&={id}. By applying Algorithm 3 we

{main}

{exp_ac(1),p(X)}

{exp_ac(0),p(X)}

{fat)}

Figure 1. Search space for the motivating example

([Program [RunTime| Size | Speedup] Code Reduc]]

Original 5890 | 1606 1.00 1.00
Solution1 3652 | 1596 1.61 1.01
Solution2 5138 | 1543 1.15 1.04
Solution3 2931 | 1379 2.01 1.16
Solution4 3962 | 1326 1.49 1.21
Solution5 7223 | 1321 0.82 1.22

Table 1. Comparison of Solutions

get five different specialized programs. In particul@plutionl

corresponds to the program in Listing 6 alution5to the

program in Listing 7. In addition, our algorithm also prodac
three other candidate programs which are hybrid in the siage
they use different control rules for different atoms, anastbannot
be achieved usinigftmost-id nor nonleftmostid only.

The search space for this example is shown in Figure 1. There,
each configuration is represented with a circle. Configonati
which are final are marked with a square around the circle. As
can be seen, the whole search space for the example corfsi&s o
configurations, 7 of which are not final and 5 are final, and thus
correspond to different candidate solutions, as alreadytioreed.

Each configuration is adorned with the set of atoms yet to
be handled, i.e.S; in the algorithm. Each node can have two
descendants, which are indicated with arcs. Arcs are ldbele
either 1, for leftmostor nl1 for non-leftmost The set of nodes
already handled is not shown explicitly in each node, but it
is implicitly represented by traversing the tree from eaduen
upwards up to the root, since an atom is handled in each node. F
example, in the case &olution3 the history is{{¢(B), ¢(B), nl),
(p(A),p(A),1), {exp-ac(1, A, B,C), exp-ac(l, A, B,C),nl),
(main(A, B,C), main(A, B,C),l)}. Also, some nodes only
have one descendant linked by two arcs to its parent. Thisdtes
that the two control strategies considered produce ea@rnivalon-
figurations, reducing the search space.

Table 1 provides a comparison of the different candidata-sol
tions together with the original program. The first columdiaates
the program we refer to in each row. The second column previde

an indication of the run-time efficiency of the different grams.
This time has been obtained by running a million times theayue
main(8,9,Result) and subtracting the time required by an
empty loop which performs a million iterations. The thirdwon
compares the sizes of the different programs. This sizeriginber

of bytes of the program compiled into byte-code using Ciak81
and after subtracting the size of an empty program. Fingdéy)ast
two columns compare the run-time and code-size of the éiffier
programs with that of the original program.

As it can be seen, not all programs obtained by partial etialua
are necessarily faster than the original one. In partic8lalutions
the one obtained using non-leftmost unfolding for all casdess
efficient than the original one. This is indicated by an spged
lower than 1, which is 0.82 in this case. On the other hand, the
speedup obtained b$olutionlis 1.61, but it is still far from the
fastest program, which iSolution3with an speedup of 2.01. As
regards code size, in this particular case all solutiongeset are
smaller than the original program, though it is well-knovatt
in some cases partial evaluation can produce programs velnech
significantly larger than the original one. The smallestgpam is
Solution5 with a code reduction of 1.22, but which happens to be
the slowest program of all, including the original one.

If both the speedup and code reduction factors are taken into
account, the most promising programs are prob&ualtion3and
Solution4 neither of which are achievable by using one unfolding
rule for all atoms. If code size is not a very pressing issbent
Solution3is probably the best one, but otherwiSelutiondshould
be used, since a relative small increase in program sizéda®v
significant time performance improvement. The choice betwbe
two solutions mentioned will depend on the fithess functised)
which can put more emphasis in one factor or another.

7. Self-Tuning, Resource-Aware PE

Though Algorithm 3 can be used to automatically generategela
number of candidate specialized programs to choose fromeed
some mechanism to automatically select just one of thenesinc
obviously, the goal of partial evaluation is to obtain a spkeed
program, not many. There are certainly several criteriactvician
be used in order to decide how good a specialized prograninés. T
framework we propose in this work iesource-awaresince it can
take the following criteria into account.

Time efficiency: currently we are measuring speedup w.r.t the
original program. In this case, we need a set of test casehwhi
are representative of the class of run-time queries whidh wi
be performed. Another possibility to be explored is the use o
static cost analysis. Cost analysis can aim at obtainingup
lower bounds on computational cost or even average cost.

Size of compiled codefairly easy to measure. It can be an im-
portant factor if the program will run on devices with linite

may be interested in achieving code which is as time-efficisn
possible, whereas in other cases space-efficiency can bmarpr
aim. It is important to note that this search-based apprdach
partial evaluation is also of interest when only run-timeaken
into account. Even in such case there is no control stratemea
which is guaranteed to always produce the most-efficien¢ dod
all compilers and architectures.

8. Preliminary Evaluation

In order to perform a preliminary assessment of the bendiits a
practicality of search based poly-controlled partial aasibn
(PCPE), we have conducted a series of experiments using the
CiaoPP [14, 6] system.

Although the search-based approach presented in Section 6
above is definitely appealing, it is worth investigating wies it
can actually produce better specializations than tratifipartial
evaluation (PE) and also whether it produces too large a ruoth
candidates, even for small programs.

In the implementation, a first obvious optimization was to
eliminate equivalent configurations which were descerslarfit
the same node in the search tree. l.e., it is often the case tha
given a configuratiorConf there are more than orig} andT{}/
with (A,U) # (A, U’) st. T¢ (Conf) = T{ (Conf). This
optimization is easy to implement, not very costly to execut
and reduces search space significantly. For example, iretirets
space in Figure 1, which already includes this optimizatibtiis
optimization were not applied then it would contain 19 comfig
rations, instead of 12 and there would be 9 candidate sokitio
instead of 5.

In our evaluation we have compared two extreme cases, i.e.,
traditional partial evaluation with the search-based @igm in all-
solutions mode. In our experiments, we have used the faligwet
of global control rulesG={dynamic, hom_emb}. The hom_emb
global control rule is based on homeomorphic embedding |8, 9
and flags atoms as potentially dangerous (and are thus djeaedja
when they homeomorphically embed any of the previouslyedsi
atoms. Thendynamic is the most abstract possible global control
rule, which abstracts away the value of all arguments of the
atom and replaces them with distinct variables. Also, the se
of local control rules used i&{={one_step, df _hom_emb_as}.

The ruleone_step is the simplest possible unfolding rule which
always performs just one unfolding step for any atom. Fnall
df -hom_emb_as is an unfolding rule based on homeomorphic
embedding. More details on this unfolding rule can be found
in [14]. It can handle external predicates safely and cafopar
non-leftmost unfolding as long as unfolding is safe (se¢ @hd
local (see [14]). We have chosen these particular global and local
control rules since, on the one hand, they guarantee tetimina
and, on the other hand, they allow us to contrast aggressige a

resources, as is the case in embedded systems and pervasiveonservative unfolding. In this way, we expect to obtain enor

computing. Also, even in cases where code size is not much of
an issue, it can happen that different specialized proghavs
similar time-efficiency but some of them can be significantly
larger than others.

Memory-consumption: it can be of interest when resources are
scarce, similarly to the case of size of compiled code.

Our framework is fully automatic, i.e., there is no need for
human intervention in order to decide which is the best antbag
candidate specializations. We refer to this aslétuningapproach.

A fitness functiorassigns a numeric value to each candidate spe-
cialization, reflecting how good the corresponding program
The framework is parametric w.r.t. the fithess function st the
method can be applied with different aims in mind. Sometimes

heterogeneous candidate solutions.

When testing search-based poly-controlled partial eviaogn
all solutions mode, for the control rules mentioned abowehave
found out that the approach copes with many of the benchnigrks
Lam & Kusalik [7]. However, these benchmarks are of reldgive
little interest to our technique, since many of them can by fu
unfolded. Thus, in general, traditional partial evaluatimbtains
good results, and the solutions provided by PCPE were sofsiti
achievable by traditional PE, i.e., solutions using always global
control rule and one local control rule for all atoms.

However, in practice, it is often the case that programsdein
partially evaluated cannot be fully unfolded since theistator-
mation available is not sufficient to do so. In our experiraéion
with the technique we have found out that, at least for the-com

[Input query | #solutions ||
rev(L,R) 6
rev([-|L],R) 48
rev([,-|L],R) 117
rev([-,-,-|L],R) 186
rev([.,-,-,-|L],R) 255
rev([1L],R) 129
rev([1,2L],R) 480

Table 2. Solutions generated by PCPE for rev benchmark

bination of control rules used, the number of candidate iafiec
zations grows rapidly with the amount of static data avédab
the specialization query. In order to illustrate this phaeaon, let
us consider the program in Listing 8, which implements a eaiv
reverse algorithm:

:- module(_,[rev/2],[1).
:- entry rev([_,_IL],R).

rev ([],[]).
rev([HIL],R):-
rev(L,Tmp),
app (Tmp, [H] ,R) .

app ([],L,L).
app ([X|Xs],Y,[X1Zs]):-
app(Xs,Y,Zs).

Listing 8. Therev/2 example

In CiaoPP, the description of initial queries (i.e., the set of
atoms of interestS in algorithms 1 to 3) is obtained by taking
into account the set of predicates exported by the modultisn
caserev/2, possibly qualified by means ehtrydeclarations. For
example, thentrydeclaration in Listing 8 is used to specialize the
naive reverse procedure for lists containatgeasttwo elements.

[Benchmark [Compiled size | #versions ||
examplepcpe 5504 27
permute 4687 70
nrev 4623 117
gsortapp 5390 40
sublists 5638 58
relative 5909 61

Table 3. Size and number of versions of benchmarks

[Benchmark | Specialization query ||
examplepcpe main(A,B,2,D)
nrev rev([.,-|L],R)

permute permute([1,2,3,4,5,6],L
gsortapp gsort([,-|L],R)
sublists sublists(A,B,C)
relative relative(john,X)

Table 4. Specialization queries used in our experiment

relative A Lam & Kusalik [7] simple expert system which contains

neither builtins nor negations. With the specializatioreryu
considered it can be fully unfolded.

sublists A predicate taking a list of pairs of numbers as the first

argument, and an arbitrary list as a second argument. Every
pair of numbers of the first list denotes the beginning and end
of a sublist of the second argument. Sublists are returned in
the third argument of the predicate. This benchmark costain
builtins. For the specialization query considered it carm®
fully unfolded.

Table 3 shows the size in bytes of the compiled bytecode of

each benchmark, as well as the number of candidate sollt@ng

Table 2 shows the number of candidate solutions generated bygenerated by the PCPE approach. In order to keep the number of

Algorithm 3 in all solutions mode (eliminating equivalerindig- candidate solutions reasonable, in most cases we havedptbvi

urations in the search tree), for seveealry declarations. As can ~ SPecialization queries containing small static data. Aesailt, in

be observed in the table, as the length of the list providezhary some of the programs the speed-up achieved by partiallyatiay

grows, the number of candidate solutions computed quialdws. the program is not very high using any of the strategies eslittbe

Furthermore, if the elements of the input list are statigntithe information is known at specialization time. The spectiian

number of candidates grows even faster, as can be seen imsthe | gueries used in our experiments for each benchmark are simown

two rows in Table 2, where we provide the first elements ofigte |~ Table 4. _ _ _

From this small example, it is clear that, in order to be abledpe As we have mentioned previously, the solutions computed by

with realistic Prolog programs, it is mandatory to redueegbarch ~ PCPE are evaluated using a fitness function, and the besiosolu

space. is considered to be the output of the whole algorithm. In our
In spite of the phenomenon just described, we have been able€Xperiments, we have used the following three differentefitn

to test our approach on a heterogeneous set of benchmarks, anfunctions:

compare these results against those produced by tradipartzal

evaluation. The set of benchmarks used in our experimelisvia speedupcompares programs based on their time-efficiency, meas-

uring run-time speedup w.r.t the original program. For ttlie
user needs to provide a set of run-time queries with which to
time the execution of the program. Thus, such queries should
be representative of the real executions of the prograns It i
computed as

speedupTspec/Torig,

where T, is the execution time taken by the specialized
program to run the given run-time queries, d@hg;, the time
taken by the original program.

examplepcpe The motivating example from Listing 5.

nrev The naive reverse algorithm described in Listing 8. It does
not contain builtins nor negations. With the specializatioery
used, this benchmark cannot be fully unfolded.

permute A program which computes all possible permutations
of the elements of the input list. An important feature ofthi
program is that its results, when fully unfolded, are mucbda
than the original program. The specialization query used is
fully-instantiated, closed list. reduction compares programs based on their space-efficiency,
measuring reduction of size of compiled bytecode w.r.t the

original program. It is computed as
reductiore(Sorig — Sempty) (Sspec — Sempty),

gsortapp A naive quicksort algorithm implemented using append.
It contains arithmetic builtins. With the specializationeny
used it cannot be fully unfolded.

Local control

ID || Global control |

cl || hom_emb one_step
c2 || hom_emb df _hom_emb_as
c3 || dynamic one_step
c4 || dynamic df _hom_emb_as

Table 5. Combinations of local and global control rules

where S;,.. is the size of the compiled bytecode of the
specialized progranfi,4 is the size of the compiled bytecode
of the original program, anfec..,+y is the size of the compiled
bytecode of an empty program.

balance a combination of the previous two. It is defined as
balancesspeedup® x reduction”.

Exponentsy and 5 can be given different weights depending
on whether time- or space-efficiency are considered more im-
portant for our purposes. In our runs, we usege: 5 = 0.5.

8.1 Benefits of PCPE

We now try to evaluate whether PCPE can actually producerbett
results than traditional PE. Tables 6, 7, and 8 show how PCPE

solutions behave when compared to the solutions obtained by

traditional PE, using different fitness functions. In ortiebe as
informative as possible, the best solution obtained by PG&RE
been compared against all specialized programs obtaindeleby
when runningeverycombination of the selected global and local
control rules.

Each table shows the benchmark being considered, the fitnes
value obtained by the solution of poly-controlled partiadleation,
and its composition(columns c1 through c4, see below), and
the fitness value of every solution found by traditional gért
evaluation using the different combinations of local andbgl
control rules. Note that all fitness functions are defineduohs
a way that the original program has fitness 1, and valuesareat
than one indicate improvements over the original prograhgreas
values less than one indicate that the considered programrie
than the original program (under the corresponding cateri

For brevity, each of the four combination of global and local
control rules is given an identifier, described in Table 5tHe
case of the PCPE solution, columa$ throughc4 describe the
percentage of atoms in the selected best solution whoseatipac
tion behaviour can be achieved using the corresponding it@nb
tion of global and local control. Note that the addition of tralues
of c1 throughc4 for a given program will be 100 or more. The
latter can occur because different controls can result &cthxthe
same specialization for certain atoms. A value of a 100 irvargi
column means that such best solution can be obtained byitnaadi
partial evaluation by using the corresponding combinatiagiobal
and local control rules. Note that in our implementation,ewh
eliminating equivalent configurations in the search tree, siill
keep track of their control rules, in order to produce aceura
percentages.

Table 6 shows the results achieved when wesmEedums a
fitness function. In general, speedup values in most casesdsbe
greater than 1. However, since we are providing very littiic
information to the partial evaluation algorithms, in theseeof
nreyv, gsortapp andsublistthe speedup achieved w.r.t. the original
program is very small, and in many cases (especially inticadil
partial evaluation) the specialized program is somewloates than
the original one. Speedups are however evident inmelaive and
permutebenchmarks, since they can be fully unfolded. In these
two cases, and considering only speedup as the fitness dancti

the solution obtained by PCPE is a solution that can be oddain
by traditional PE. In the case pkermute it is achieved byc?, i.e.,
using hom_emb as a global control rule andf_hom_emb_as as
a local control rule. This is indicated by the 10068 column.
We can also observe that the speedup of both the PCPE solution
and the solution obtained by traditional PE using such obnties
are pretty much the same and the difference lies only in imin
errors during the experiments, since they correspond tedhse
program. In the case oglative, PCPE obtains two (best) solutions,
one containing a 100 in coluna@?, not shown in this table, and one
containing a 100 in colump4. As can be seen in the table, this
speedup value is very similar to the one obtained by trathli®E
using such control rules since, again, they correspondetaaime
code. For this particular fitness function, the rest of bematks are
the interesting ones, since the solution obtained by PCREatde
obtained by PE, as there is no 100 in any column. In all cages th
PCPE solution gets a better fitness value than any of theicatut
provided by traditional PE, i.e., the obtained specialipeagram
is faster. The PCPE solution in these cases is between 6%6&ad 9
faster than the corresponding best PE solution. Note tisatelult
is interesting in itself: PCPE can achieve better resulés thny
single control rule even in the case where only speedup Entak
into account. These experiments were performed on a 1.5 GHz
PowerPC G4 processor, with 1Gb of RAM, running on a Darwin
8.5 kernel. Times are given in milliseconds and are compasdtie
arithmetic mean of five runs.

Table 7 compares PCPE and traditional PE usieduction
as a fitness function. As can be expected from the selected set
of benchmarks, the solutions obtained by PE have a fitnesg val
below 1 in most cases, indicating that the specialized pirograre
larger than the original one. This usually is due to the faat these

Shenchmarks contains just a few predicates, and partialigtiah

creates many new specialized predicates which then caramot b
unfolded very much. When programs can be fully unfolded, as
is the case ofelative and permute the use ofdf_hom_emb_as
as a local control rule usually achieves such full unfoldihy
the case opermute the fitness is almost 0 far2 since the final
fully unfolded program is much larger than the original one.
Furthermore, programs produced usicg i.e., dynamic as a
global control rule andne_step as a local control rule, are indeed
isomorphic to the original program. In this case, fithessi@glare
slightly lower than 1 (0.98) due to predicate renamings,civhi
creates slightly larger predicate names. As can be seenein th
table, most of the programs returned by PCPE are not achévab
using PE. The only exception sublists where the best PCPE
corresponds to the original program. Thus, it seems thatPi€P
able to find a solution that is smaller than any of the solgimund
by PE.

Finally, Table 8 shows the results achieved by usiaanceas
a fitness function. As can be seen, most of PCPE solution®tann
be obtained via traditional PE, with the exception of theisoh for
sublists where the optimal coincides with not partially evaluating
the program, i.e., the original program. In most cases, P@R&ins
better fithness values than any of the solutions obtained by PE
meaning that PCPE outperforms PE in most cases when both time
and space-efficiency are simultaneously considered.

8.2 Cost of PCPE

We now evaluate the cost of performing PCPE when compared
to PE. Though one can argue that, in the case of compile-time
specialization, the time required to specialize a progranmat
very important, the results presented here provide sonoenra-

tion of the additional compile-time cost of PCPE when coregar

to PE. Depending on the situation, the developer may chamse t

Best PCPE

Fitness Trad PE

Benchmark cl] c2]c3] c4] Fit cl[c2] 3] c4
examplepcpe 75| 50| 50| 25 196 091| 057| 1.01| 0.49
permute 0|100| O 0 526 0.75| 5.14| 1.01| 2.00
nrev 57| 57| 0] 14 120l 051 0.77| 099 | 0.91
gsortapp 50| 50| 83| 67 1.06| 0.86| 0.87| 099| 0.94
sublists 57| 43 71| 43 1.08 | 0.97| 099 098] 0.88
relative 0 O| O] 100 | 14.08| 0.98| 14.05| 0.98 | 14.02
Table 6. PCPE behaviour (speedup).
Best PCPE Fitness Trad PE
Benchmark cl]c2] c3]c4] Fit cl] c2] c3] c4
examplepcpe 75150 50| 25 1.22] 0.82| 1.15| 0.98 | 0.39
permute 25| 50| 50| 50| 1.15] 0.37| 0.00 | 0.98 | 0.80
nrev 20 60| 60| 80| 098] 0.55[0.29 | 0.98 | 0.76
gsortapp 33| 67| 67|83 098] 0.78| 0.43| 0.98 | 0.66
sublists 100 | 25| 100 | 25 || 0.98 || 0.98 | 0.52| 0.98 | 0.61
relative 20 60| 40| 60| 1.17| 0.66| 0.89| 0.98 | 0.13
Table 7. PCPE behaviour (reduction).
Benchmark Best PCPE Fitness Trad PE
cl[c2] c3[c4] Fit cl[c2] 3] 4
examplepcpe 75| 50| 50| 25| 154 0.87| 0.81| 0.99| 0.44
permute 40 | 40| 40| 40| 1.30|| 0.54| 0.14 | 1.01 | 1.29
nrev 60 | 60 0|40 1.12] 052 | 0.48| 0.98| 0.82
gsortapp 50| 50| 83| 67| 1.00|| 0.81| 0.61| 0.99| 0.78
sublists 100 | 25| 100 | 25| 1.01| 1.00| 0.70| 0.99| 0.73
relative 20 60| 40| 80| 405 0.80| 3.55| 0.98 | 1.33
Table 8. PCPE behaviour (balance).
Specialization Time
Benchmark PE PCPE PCPE
Analys | Gen [Total || Analys [Gen | Total /PE
examplepcpe 26 43 69 111 | 304 415 6
permute 1153 | 744 | 1897 1271 | 1242 | 2513 1
nrev 16 27 44 453 | 1166 | 1619 37
gsortapp 22 39 61 153 | 425 578 10
sublists 22 41 63 206 | 649 854 14
relative 216 | 166 | 382 1038 | 1187 | 2225 6

Table 9. Cost of PCPE (Specialization Time in msecs.)

spend more resources on specializing the program in retura f
(hopefully) better specialized program.

Specialization in both traditional and poly-controlledrtps However, PCPE involves an additional step of evaluatioeraft
evaluation involves a phase commonly referred toaaslysis code generation which is not required in PE. In this step, all
(corresponding to algorithms 1 to 3 described in this paper) candidate solutions are evaluated using the corresporfiiinegs
and another phase for code generation. Table 9 shows the time function, and the solution having the highest fitness vedpeasents
(expressed in milliseconds) spent for both approachesgltiese the output of the algorithm for the given input queries. Nibtat
two phases. The last column shows the ratio between PCPE andhere may exist several solutions sharing the same fitnéss.va
PE. As can be seen, the burden introduced by the PCPE approach When evaluating all candidates, the fitness function used fo
is usually acceptable. In many cases this overhead is jiretated such purpose makes an important difference in the time redyui
with the amount of candidate solutions generated by theighgo. by such phase. In the case mfduction we need to compile
Thus,nrevis the benchmark where the rafRCPE/PEis bigger, each candidate solution and compare the sizes of the cainpile
since there are 117 candidate solutions produced by theithlgo code of all of them. Even though this involves disk accesges,
Observe that in those cases that can be fully unfoldedpeemute comparison among solutions can be done pretty quickly, lans| t
andrelative, specialization time is usually high in both approaches, the increment in time due to evaluation is acceptable, asrsho

so the ratioPCPE/PEis not very high. In the rest of benchmarks
this ratio ranges between 6 and 14.

Evaluation Time(speedup)

Benchmark PE PCPE

Spec| Eval | Total |
examplepcpe 69 | 415 11540 11955
permute 1897 | 2513 | 19971 | 22484
nrev 44 | 1619 | 66692 | 68312
gsortapp 61| 578 | 17159 | 17737
sublists 63 | 854 | 77104 | 77958
relative 382 | 2225| 17007 | 19232

Evaluation Time(reduction)

Benchmark PE PCPE

Spec| Eval | Total |
examplepcpe 69 | 415] 1230 | 1645
permute 1897 | 2513 | 3587 | 6100
nrev 44 | 1619 | 5826 | 7444
gsortapp 61 | 578 | 2332 | 2909
sublists 63 | 854 | 4016 | 4870
relative 382 | 2225 | 5173 | 7399

Table 10. Total Cost of PCPE (Time in msecs.)

in Table 11. In most cases, evaluation takes between twoamnd f
times the time spent in the previous two phases.

However, when the fitness function involves measuring time-
efficiency, i.e. inspeedupand balance we need to run each
specialized program a number of iterations in order to obtai
more accurate measurements, thus increasing the time spent
evaluation (see tables 10 and 12). In our implementatiorhave
a constanK for estimating the desired amount of time we want
to evaluate each candidate. By running the original progi@m
K milliseconds, we estimate the amount of iterations to be run
for each of the final candidates. By increasing or decreatiisg

constank, we increase or decrease the time spent by the evaluation

step of our algorithm. In this way, we have a trade-off betwée
time spent in this phase, and the accuracy of the obtaineticol
For our experiments, we set this constant to 500 millisesoAd
a result, we spend roughly about 500 milliseconds evalgatach
candidate solution.

9. Discussion and Related Work

In this work we have introduced a framework for on-line plrti
evaluation which allows using different global and locahtol
rules for different atoms, obtaining results that are ndti@@ble
by traditional partial evaluation. The framework is selfing,
employing resource-awaffégness functionso select the best so-
lutions from a resulting set of candidate solutions.

The poly-controlled partial evaluation framework opensthup
door to many interesting possibilities. Experiments halvews
that results obtained by poly-controlled partial evalortire very
promising, in the sense that often these results cannot taénel
using traditional partial evaluation, and they obtain &efitness
values than their PE counterparts, for fitness functionesaasg
time- and space-efficiency performance.

As regards related work, the work in [3] is probably the most
related one. There, a self-tuning, resource awéréne specializa-
tion technique is introduced. The algorithm is based on tiartaf
annotations for offline partial evaluation. In contrast; approach
performson-line partial evaluation, and thus can take advantage of
the great body of work available fam-line partial evaluation of
logic programs. To the best of our knowledge, there are ndasim
approaches foon-line partial evaluation. Arguably, on-line tech-
niques for partial evaluation of logic programs are vergvaht,
since on-line techniques have received a lot of attentidhérogic
programming paradigm.

It remains as future work to develop effective techniques fo
reducing the search space in PCPE and then apply the resultin
algorithm on a larger set of programs, using different dearc
controls. For this purpose, we would like to be able to prunaya
branches which are not promising, or even guaranteed neatb |
to an optimal solution, as in branch and bound algorithmsttis,
we need to be able to apply the fitness function not only to genfi
urations which are final, but also to intermediate configarst

Table 11. Total Cost of PCPE (Time in msecs.)

Evaluation Time(balance)

Benchmark PE PCPE

Spec| Eval [Total |
examplepcpe 69 | 415 | 12887 | 13302
permute 1897 | 2513 | 24408 | 26920
nrev 44| 1619 | 73538 | 75157
gsortapp 61 | 578 | 19886 | 20463
sublists 63 | 854 | 82898 | 83752
relative 382 | 2225 | 22755 | 24980

Table 12. Total Cost of PCPE (Time in msecs.)

In addition to this, there are a number of relatively simple
ideas which we hope can be used in order to greatly reduce
the complexity of PCPE. For example, different procedurageh
different relative importance on the overall time efficigraf the
program. Thus, it can be a good idea to obtain data on the €ost o
the different procedures by means of profiling, in order tabke
to make more informed decisions at partial evaluation tif.
example, for procedures with little impact on the run-tinfete
program, less aggressive control strategies can be useteasin
calls to predicates with an important cost, more aggresstiag-
egies should be used. Also, the branching factor could bied/ar
for different atoms according to the importance of the at@imngp
handled. If the atom has important weight, we should probabl
try out more different alternatives than in other less intgor
predicates.

Acknowledgments

The authors would like to thank Michael Leuschel for his caenits

on a preliminary version of this work. This work was funded
in part by the Information Society Technologies program e t
European Commission, Future and Emerging Technologiesrund
the 1ST-15905MOBIUS project, by the Spanish Ministry of
Education under the TIN-2005-092GMERIT project, and the
Madrid Regional Government under tRROMESA®roject.

References

[1] E. Albert, G. Puebla, and J. Gallagher. Non-Leftmostdldihg in
Partial Evaluation of Logic Programs with Impure Predisatén
14th International Symposium on Logic-based Program Sgish
and Transformation (LOPSTR’03)NCS. Springer-Verlag, 2006.

[2] M. Bruynooghe, D. De Schreye, and B. Martens. A Generék@on
for Avoiding Infinite Unfolding during Partial DeductionNew
Generation Computingl(11):47-79, 1992.

Stephen-John Craig and Michael Leuschel. Self-tuniegpurce
aware specialisation for Prolog. RPDP '05: Proceedings of the 7th
ACM SIGPLAN international conference on Principles andapice
of declarative programmingpages 23-34, New York, NY, USA,
2005. ACM Press.

3

—

[4] Saumya K. Debray. Resource-Bounded Partial Evaluatiom
Proceedings of PEPM’'97, the ACM Sigplan Symposium on Rartia
Evaluation and Semantics-Based Program Manipulatgages 179—
192. ACM Press, 1997.

[5] J.P. Gallagher. Tutorial on specialisation of logic grams. In
Proceedings of PEPM’'93, the ACM Sigplan Symposium on Rartia
Evaluation and Semantics-Based Program Manipulatjzages 88—
98. ACM Press, 1993.

Manuel V. Hermenegildo, Geram Puebla, Francisco Bueno, and

Pedro lopez-Gar@. Integrated Program Debugging, Verification,
and Optimization Using Abstract Interpretation (and ThadCsystem

PreprocessorBcience of Computer Programmir&(1-2):115-140,

October 2005.

J. Lam and Kusalik A. A comparative analysis of partiatidetors for
pure prolog. Technical report, Department of ComputatiStéence,
University of Saskatchewan, Canada, May 1991. Revised A9@1.

M. Leuschel and M. Bruynooghe. Logic program specidisa
through partial deduction: Control issueSheory and Practice of
Logic Programming2(4 & 5):461-515, July & September 2002.

Michael Leuschel. On the power of homeomorphic embegidin
for online termination. In Giorgio Levi, editor, Static Alyais.
Proceedings of SAS'9&8NCS 1503, pages 230-245, Pisa, Italy,
September 1998. Springer-Verlag.

[6

—

[7

—

8

—_

[9

—

[10] Michael Leuschel, Bern Martens, and Danny De Schreyaiti@lling
generalisation and polyvariance in partial deduction afral logic
programs. ACM Transactions on Programming Languages and
Systems20(1):208-258, January 1998.

[11] J. W. Lloyd and J. C. Shepherdson. Partial evaluatiofogic
programming. The Journal of Logic Programmindl1:217-242,
1991.

[12] J.W. Lloyd. Foundations of Logic ProgrammingSpringer, second,
extended edition, 1987.

[13] B. Martens and D. De Schreye. Automatic finite unfoldimging
well-founded measureslournal of Logic Programming28(2):89—
146, 1996. To Appear, abridged and revised version of Teelhni
Report CW180, Departement Computerwetenschappen, Kuvere
October 1993.

[14] G. Puebla, E. Albert, and M. Hermenegildo. Efficient hbc
Unfolding with Ancestor Stacks for Full Prolog. Ith International
Symposium on Logic-based Program Synthesis and Transtiorma
(LOPSTR’04) number 3573 in LNCS, pages 149-165. Springer-
Verlag, 2005.

[15] M.H. Sgrensen and R. @Gdk. An Algorithm of Generalization in
Positive Supercompilation. IRroc. of ILPS'95 pages 465-479. The
MIT Press, 1995.

