
Poly-Controlled Partial Evaluation

Gerḿan Puebla
School of Computer Science

Technical University of Madrid
28660 Boadilla del Monte, Spain

german@fi.upm.es

Claudio Ochoa
School of Computer Science

Technical University of Madrid
28660 Boadilla del Monte, Spain

claudio@fi.upm.es

Abstract
Existing algorithms for on-line partial evaluation of logic programs,
given an initial program and a description of run-time queries,
deterministically produce a specialized program. In this work
we propose a novel framework for partial evaluation of logic
programs which ispoly-controlledin that it can take into account
repertoires of global control and local control rules instead of a
single, predetermined combination. This approach is more flexible
than existing ones since it allows assigningdifferent global and
local control rules to different call patterns, thus obtaining results
that cannot be obtained using traditional partial evaluation. This
modification transforms partial evaluation from agreedyalgorithm
into a search-basedalgorithm and, as a result, sets of candidate
specialized programs can be achieved, instead of a single one. In
order to make the algorithm fully automatic, it requires theuse
of self-tuning techniques which allow automatically measuring
the quality of the different candidate specialized programs. Our
approach is resource aware in that it uses fitness functions which
consider multiple factors such as run-time and code size forthe
specialized programs. The framework has been implemented in the
CiaoPP system, and tested on some benchmarks. The preliminary
experimental results we present show that our proposal obtains
better specializations than those achieved using traditional partial
evaluation.

Categories and Subject Descriptors D.1.6 [Programming Tech-
niques]: Logic Programming

General Terms Languages, Performance

Keywords Partial Evaluation, Control Rules, Optimization

1. Introduction
The aim of partial evaluation (PE) is to specialize a program
w.r.t. part of its input, which is known as thestatic data[11].
The quality of the code generated by partial evaluation greatly
depends on thecontrol strategyused. Traditional algorithms for
partial evaluation (PE) of logic programs (LP) are parametric w.r.t.
the so-calledglobal controland local control rules. The issue of
devising good control rules has received considerable attention
(see for example [8] and its references).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’06 July 10–12, 2006, Venice, Italy.
Copyright c© 2006 ACM 1-59593-388-3/06/0007. . . $5.00.

However, the existence of sophisticated control rules which
behave (almost) optimally for all programs is still far fromreality.
Furthermore, the existing control rules focus on time-efficiency
by trying to reduce the number of resolution steps which are
performed in the residual program. Other factors such as thesize of
and the memory required to run the residual program are most often
neglected, a relevant exception being the work in [4]. In addition to
potentially generating larger programs, it is well known that partial
evaluation can slow-down programs due to lower level issuessuch
as clause indexing, cache sizes, etc.

Existing partial evaluators usually provide several global and
local control strategies, as well as many other parameters (global
trees, computation rules, etc.) directly affecting the quality of the
obtained solution. For a novice user, it is extremely hard tofind
the right combination of parameters to achieve the desired results
(reduction of size of compiled code, reduction of executiontime,
etc.). Even for an experienced user, it is rather difficult topredict
the behavior of partial evaluation, especially in terms of space-
efficiency (size of the residual program).

Also, once a choice of global and local control rules is made,
such a combination will be applied to all call patterns in theresidual
program. Obviously, in practice, it can be very useful to be able to
usedifferentglobal and local control rules fordifferentcall patterns,
thus obtaining results that cannot be produced using traditional
partial evaluation with any given control strategy.

In this work we propose a novel framework for on-line partial
evaluation which:

1. allows using different global and local control rules fordifferent
call patterns (atoms) and

2. can generate several candidate specializations. These special-
izations can then be empirically compared for efficiency, in
terms of multiple factors such as size of the specialized program
and time- and memory-efficiency of such specialized program.

The framework isself-tuningin that, as mentioned above, it uses
empirical evaluations for selecting the best candidates bymeans
of a fitness function. It is also resource-awarein that multiple
factors, such as size of specialized programs and their memory
consumption can be taken into account by the fitness function
in addition to the natural consideration of time-efficiencyof the
specialized programs. In [3], a self-tuning, resource aware off-line
specialization technique is introduced. In contrast, our approach
performson-line partial evaluation, and thus can take advantage
of the great body of work available foron-linepartial evaluation of
logic programs.

The rest of the paper is organized as follows. In Sec. 2 some
required background on the basics of partial evaluation of logic
programs is provided. Sec. 3 illustrates, by means of an example,
the difficulty of choosing the right control strategies. In Sec. 4
we express a traditional partial evaluation framework as a greedy

algorithm. Then, in Sec. 5 we introduce a first approach to poly-
controlled partial evaluation and, finally, in Sec. 6 we showan
improved approach to poly-controlled partial evaluation.In Sec. 7
we describe how to make this algorithm self-tuning and resource-
aware. Sec. 8 presents some preliminary experimental results.
Finally, in Sec. 9 we discuss some related work and conclude.

2. Background
We assume some basic knowledge on the terminology of logic
programming. See for example [12] for details.

Very briefly, anatomA is a syntactic construction of the form
p(t1, . . . , tn), wherep/n, with n ≥ 0, is a predicate symbol and
t1, . . . , tn are terms. The functionpred applied to atomA, i.e.,
pred(A), returns the predicate symbolp/n for A. A clauseis of
the formH ← B where its headH is an atom and its bodyB is a
conjunction of atoms. Adefinite programis a finite set of clauses.
A goal (or query) is a conjunction of atoms.

A term t is more generalthans (or s is an instanceof t), in
symbolst ≤ s, if ∃σ. tσ = s. A unifier of a pair of terms{t1, t2}
is a substitutionσ such thatt1σ = t2σ. A unifier σ is calledmost
general unifier(mgu) if for every other unifierσ′, t1σ ≤ t2σ

′ .

2.1 Basics of Partial Evaluation in LP

Partial evaluation of LP is traditionally presented in terms of SLD
semantics. We briefly recall the terminology here. We will provide
a concrete algorithm for partial evaluation in Section 4. The concept
of computation ruleis used to select an atom within a goal for its
evaluation.

DEFINITION 2.1 (computation rule).
A computation ruleis a functionR from goals to atoms. Let

G be a goal of the form← A1, . . . , AR, . . . , Ak, k ≥ 1. If
R(G) =AR we say thatAR is theselectedatom inG.

The operational semantics of definite programs is based on
derivations [12].

DEFINITION 2.2 (derivation step).
LetG be← A1, . . . , AR, . . . , Ak. LetR be a computation rule

and letR(G) =AR. Let C = H ← B1, . . . , Bm be a renamed
apart clause inP . ThenG′ is derivedfrom G andC viaR if the
following conditions hold:

θ = mgu(AR, H)

G′ is the goal← θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak)

As customary, given a programP and a goalG, an SLD
derivation for P ∪ {G} consists of a possibly infinite sequence
G = G0, G1, G2, . . . of goals, a sequenceC1, C2, . . . of properly
renamed apart clauses ofP , and a sequenceθ1, θ2, . . . of mgus
such that eachGi+1 is derived fromGi andCi+1 usingθi+1.

A derivation step can be non-deterministic whenAR unifies
with several clauses inP , giving rise to several possible SLD
derivations for a given goal. Such SLD derivations can be organized
in SLD trees. A finite derivationG = G0, G1, G2, . . . , Gn is called
successfulif Gn is empty. In that caseθ = θ1θ2 . . . θn is called the
computed answer for goalG. Such a derivation is calledfailed if it
is not possible to perform a derivation step withGn.

In partial evaluation, SLD semantics is extended in order to
also allow incomplete derivationswhich are finite derivations of
the formG = G0, G1, G2, . . . , Gn and where no atom is selected
in Gn for further resolution. This is needed in order to avoid (local)
non-termination of the specialization process. Also, the substitution
θ = θ1θ2 . . . θn is called the computed answer substitution for
goal G. An incomplete SLD treepossibly contains incomplete
derivations.

In order to compute apartial evaluation(PE) [11], given an
input program and a set of atoms (goal), the first step consists
in applying anunfolding rule to compute finite incomplete SLD
trees for these atoms. Then, a set ofresultants or residual rules are
systematically extracted from the SLD trees.1

DEFINITION 2.3 (unfolding rule).
Given an atomA, an unfolding rule computes a set of finite

SLD derivationsD1, . . . , Dn (i.e., a possibly incomplete SLD tree)
of the formDi = A, . . . , Gi with computer answer substitutionθi

for i = 1, . . . , n whose associatedresultantsareθi(A)← Gi.

Therefore, this step returns the set of resultants, i.e., a program,
associated to the root-to-leaf derivations of these trees.The set of
resultants for the computed SLD tree is called apartial evaluation
for the initial goal (query). The partial evaluation for a set of goals
is defined as the union of the partial evaluations for each goal in the
set. We refer to [8] for details.

In order to ensure the local termination of the PE algorithm
while producing useful specializations, the unfolding rule must
incorporate some non-trivial mechanism to stop the construction
of SLD trees. Nowadays, well-founded orderings (wfo) [2, 13] and
well-quasi orderings (wqo) [15, 9] are broadly used in the context
of on-line partial evaluation techniques (see, e.g., [5, 10, 15]).

In addition to local termination, anabstraction operatoris
applied to properly add the atoms in the right-hand sides of
resultants to the set of atoms to be partially evaluated. This
abstraction operator performs theglobal controland is in charge of
guaranteeing that the number of atoms which are generated remains
finite by replacing atoms by more general ones, i.e., by losing
precision in order to guarantee termination. The abstraction phase
yields a new set of atoms, some of which may in turn need further
evaluation and, thus, the process is iteratively repeated while new
atoms are introduced.

3. The Dilemma of Controlling PE
As mentioned above, there exist many powerful local and global
control rules to choose from. Just as an example, in the case of local
control, a decision to be taken is whether to allow non-leftmost
unfolding or not. It is well known that performing unfoldingsteps
w.r.t. atoms which are not leftmost can slow-down programs,and,
in the presence ofimpurepredicates, non-leftmost unfolding can
even produce incorrect results [1]. On the other hand, performing
non-leftmost unfolding can provide important gains in other cases.
See, for example, the program in Listing 1.

exp(Base ,Exp ,Res):- exp_ac(Exp ,Base ,1,Res).

exp_ac(0,_,Res ,Res).
exp_ac(Exp ,Base ,Tmp ,Res):-

Exp > 0,
Exp1 is Exp - 1,
NTmp is Tmp * Base ,
exp_ac(Exp1 ,Base ,NTmp ,Res).

Listing 1. Theexponential/3 example

If we specialize it w.r.t. the queryexp(Base,2,Res), enabling
non-leftmost unfolding allows to unroll the recursive calls. The
residual code, after some simple arithmetic simplifications2, is
shown in Listing 2.

1 Let us note that the definition of a partial evaluationalgorithm requires,
in addition to an unfolding rule, the so-called global control level (see
Section 1).
2 The specializer in CiaoPP actually performs such simplifications of
arithmetic operations.

exp(A,2,B) : - B is A*A.

Listing 2. Residual code of theexponential/3 example

Consider now the program in Listing 3 below. Since the call
“C is B + 1” to the built-in predicateis/2 is not sufficiently
instantiated to be executed (B is not yet bound to an arithmetic
expression), it is required to enable non-leftmost unfolding in order
to unfold the callq(C).

p(B):- C is B + 1 , q(C).

q(1).
q(2).
q(3).
q(4).
q(5).
q(6).

Listing 3. Thep/1 example

However, such unfolding generates the residual code shown in
Listing 4.

p(A) : - 1 is A+1.
p(A) : - 2 is A+1.
p(A) : - 3 is A+1.
p(A) : - 4 is A+1.
p(A) : - 5 is A+1.
p(A) : - 6 is A+1.

Listing 4. The residual code forp/1

This code is less efficient than the original definition ofp/1,
since the indexing for predicateq/1 is lost and the calls to built-in
is/2 have to be speculatively performed until a success is found,if
any. For example for values ofA ≥ 6, six calls tois/2 are always
performed, whereas just one was needed in the original program.

In summary, the same feature of a local control rule, i.e.,
whether to allow non-leftmost unfolding, can be beneficial for
certain calls (atoms) and can be counterproductive in others.
Though one could argue that a good rule of thumb can be to only
perform non-leftmost unfolding for determinate atoms, i.e., those
which only unify with a single clause head, this heuristic does
not guarantee to always achieve the best specialization possible: an
atom whose resolution is not determinate can become deterministic
later on, since maybe just one (or even none) of the derivations
which contain such step is successful or incomplete (i.e., all the rest
are failing derivations). Note that the problem of decidingwhether
an atom is deterministic is undecidable: it can always happen that
an SLD tree which contains several non-failing derivationsat some
depth, contains at most one non-failing derivation in the next depth
level.

3.1 A Motivating Example

We now show in Listing 5 a program which defines the predicate
main/3 containing calls to the predicatesexp/3 andp/1 defined
before:

main(A,B,C):- exp(B,2,Result), p(A).

Listing 5. A motivating example

In Listing 6 we can see the residual code obtained when
specializing this program w.r.t. the querymain(A,B,C) using
leftmost unfolding. Note that none of the calls to the built-in
predicateis/2 are sufficiently instantiated to be executed at spe-
cialization time. Since only leftmost unfolding is allowed, the
unfolding trees computed are not very deep, resulting in a large
number of residual predicates. On the other hand, if we choose
to enable non-leftmost unfolding, we obtain the residual program
shown in Listing 7, where only an SLD tree has been required, and
thus no auxiliary predicates are defined.

main(A,B,C) :-
D is 1*B,
exp_ac_1(1,B,D,C),
p_1(A).

exp_ac_1(1,A,B,C) :- D is B*A, exp_ac_2(0,A,D,C).

exp_ac_2(0,_1,A,A).

p_1(A) :- B is A+1, q_1(B).

q_1 (1).
q_1 (2).
q_1 (3).
q_1 (4).
q_1 (5).
q_1 (6).

Listing 6. Result with leftmost unfolding

Unfortunately, neither the program in Listing 6 nor the one
in Listing 7 is optimal. This is because, in order to achieve an
optimal result, non-leftmost unfolding should be used for atoms
for predicateexp/3, but only leftmost unfolding should be used
for atoms for predicatep/1.

main(A,B,C) :- D is 1*B, C is D*B, 1 is A+1.
main(A,B,C) :- D is 1*B, C is D*B, 2 is A+1.
main(A,B,C) :- D is 1*B, C is D*B, 3 is A+1.
main(A,B,C) :- D is 1*B, C is D*B, 4 is A+1.
main(A,B,C) :- D is 1*B, C is D*B, 5 is A+1.
main(A,B,C) :- D is 1*B, C is D*B, 6 is A+1.

Listing 7. Result with non-leftmost unfolding

Note that although the rule of thumb discussed above for non-
leftmost unfolding happens to provide good results in this example,
clearly there is no unfolding rule which uniformly obtains the
optimal results in all cases.

4. PE as a Greedy Algorithm
As it is well known, greedy algorithmsare characterized by
starting from an initialconfiguration(or state)Conf0 and repeatedly
applying atransformation rule Twhich given a configurationConfi
produces a successor configurationConfi+1 s.t.Confi+1=T (Confi).
This process is repeated until a configurationConfn, n ≥ 0, is
reached which satisfies certain conditions guaranteeing that Confn
is final.

As we show in Algorithm 1 below, it is possible to consider
traditional partial evaluation frameworks as greedy algorithms. A
configurationConfi is a pair〈Si, Hi〉 s.t. Si is the set of atoms
yet to be handled by the algorithm andHi is the set of atoms
already handled by the algorithm. Indeed, inHi not only we store
atoms but also the result of applying global control to such atoms,
i.e., members ofHi are pairs of the form〈Ai, A

′
i〉. Correctness of

the algorithm requires that eachA′
i is an abstractionof Ai, i.e.,

Ai = A′
iθ.

Given a set of atomsS which describe the potential queries to
the program, the initial configuration is of the form〈S, ∅〉. In each
iteration of the algorithm, an atomAi from S is selected (line 5).
Then, global control and local control as defined by theAbstract
and Unfold rules, respectively, are applied (lines 6 and 7). This
builds an SLD-tree forA′

i, a generalization ofAi as determined
by Abstract, using the predefined unfolding ruleUnfold. Once the
SLD-treeτi is computed, the leaves in its resultants, i.e., the atoms
in the residual code forA′

i are collected by the functionleaves.
Those atoms inleaves(τi) which are not a variant of an atom
handled in previous iterations of the algorithm are added tothe set
of atoms to be considered (Si+1). We useB ≡ A to denote thatB
andA arevariants, i.e., they are equal modulo variable renaming. A

Algorithm 1 Greedy Partial Evaluation algorithm
Input: ProgramP
Input: Set of atoms of interestS
Input: A global control ruleAbstract
Input: A local control ruleUnfold
Output: A partial evaluation forP andS, encoded byHi

1: i = 0
2: H0 = ∅
3: S0 = S
4: repeat
5: Ai = Select(Si)
6: A′

i = Abstract(Hi, Ai)
7: τi = Unfold(P, A′

i)
8: Hi+1 = Hi ∪ {〈Ai, A

′
i〉}

9: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, 〉 ∈
Hi+1 . B 6≡ A}

10: i = i + i
11: until Si = ∅

configuration is final when it is of the form〈∅,H〉. The specialized
program corresponds to

S

〈A,A′〉∈Hn
resultants(A′).

Note that this algorithm differs from those in [5, 8] in that once
an atomAi is abstracted intoA′

i, code forA′
i will be generated,

and it will not be abstracted any further no matter which other
atoms are handled in later iterations of the algorithm. As a result,
the set of atoms for which code is generated are not guaranteed
to beindependent. Two atoms are independent when they have no
common instance. However, the pairs inH uniquely determine the
version used at each program point. Since code generation produces
a new predicate name per entry inH, independence is guaranteed,
and thus the specialized program will not produce more solutions
than the original one. TheECCEsystem [10] can be made to behave
as Algorithm 1 by setting theparent abstractionflag tooff.

5. A Poly-Controlled PE Algorithm
As we have seen, in the greedy algorithm given a configuration
〈Si, Hi〉, and once we decide to continue the computation using
Ai ∈ Si, there is only one successor configuration which is
T (〈Si, Hi〉). However, it is well known that several control strat-
egies exist which can be of interest in different circumstances. It
is indeed a rather difficult endeavor to find a pair of global control
and local control rules which behaves well in all settings. Thus,
rather than considering a single global control and local control
rule, at least in principle one can be interested in applyingdifferent
local and global control rules todifferent atoms (call patterns).
Unfortunately, this is something which existing algorithms for
partial evaluation do not cater for. If we allow different combinations
of global and local control rules, given a configuration, there is no
longer a single successor in the computation of the algorithm but
possibly several ones. In fact, given a set of unfolding rules U =
{Unfold1, . . . , Unfoldi}, and a set of abstraction functionsG =
{Abstract1, . . . , Abstractj}, there arei× j possible combinations.

Algorithm 2 shows apoly-controlledpartial evaluation algorithm.
We refer to this algorithm as poly-controlled because it allows
the use of multiple control strategies and use different ones for
different atoms. The choice of the control strategy to applyduring
the handling of each atom is performed by thePick function which
given an atomAi, a historyHi, a set of global control rules, and a
set of local control rules, picks up a pair〈Abstract, Unfold〉 among
all possible ones.

This algorithm differs from the greedy algorithm seen in
Section 4 in several ways. One is that rather than receiving as

Algorithm 2 Poly-Controlled Partial Evaluation algorithm
Input: ProgramP
Input: Set of atoms of interestS
Input: Set of unfolding rulesU
Input: Set of generalization functionsG
Input: Selection functionPick
Output: A partial evaluation forP andS, encoded byHi

1: i = 0
2: H0 = ∅
3: S0 = S
4: repeat
5: Ai = Select(Si)
6: 〈Abstract, Unfold〉 = Pick(Ai, Hi,G,U)
7: A′

i = Abstract(Hi, Ai)
8: τi = Unfold(P, A′

i)
9: Hi+1 = Hi ∪ {〈Ai, A

′
i, Unfold〉}

10: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, , 〉 ∈
Hi+1 . B 6≡ A}

11: i = i + 1
12: until Si = ∅

input an abstraction function and an unfolding rule, it receives
a set of global control rules anda set of local control rules.
Another difference is that the tuples in setHi now contain not
only an atom and the result of abstracting it, but also the unfolding
rule which has been picked for unfolding such atom. That is
needed in order to use exactly such unfolding rule during thecode
generation phase. Indeed, the specialized program corresponds to
S

〈A,A′,Unfold〉∈Hn
resultants(A′, Unfold), where the function

resultantsis now parametric w.r.t. the unfolding rule. This allows
applying the same unfolding rule during code generation as it was
applied during the execution of Algorithm 2. The third and final
difference corresponds to the addition of the functionPick used in
line 6, and whose role has already been described above.

Clearly, different choices for thePick function will result in
different specialized programs. It is important to note that the finer-
grained control of poly-controlled partial evaluation canpotentially
produce specialized programs which are hard or even impossible to
obtain by using off-the-shelf control strategies. Also, the addition
of thePick function conceptually makes the poly-controlled partial
evaluation algorithm being composed of three levels of control, the
local control, the global control, and thesearch control, which is
determined by the functionPick. Note that the inclusion of the
history as an input argument toPickallows to make hopefully more
informed decisions.

6. Search-based Specialization
Poly-controlled algorithms can provide better specializations than
those achievable by traditional partial evaluation algorithms by
assigning different control strategies to different atoms. However,
the improvements achieved rely on the behavior of the function
Pick. Unfortunately, choosing a goodPick function can be a very
hard task.

Another alternative is, instead of decidinga priori the control
strategy to apply to each atom, to generate several (or even all)
candidate partial evaluations and then decidea posteriori which
specialized program to use. In the extreme, this can be done by
computing all possible combinations of global and local control
rules and exploring the whole search space in order to generate
not just a specialized program but rather a collection of specialized
programs.

Algorithm 3 shows an all-solutions search-based algorithm.
In this case, there is no longer a single successor configuration
state for each atom to unfold, but several of them. This can
be interpreted as, givenG={A1, . . . , Aj} and U={U1, . . . , Ui},
we now have aset of transformation operatorsT A1

U1
, . . . , T A1

Ui
,

. . . , T
Aj

Ui
. Obviously, in general we will be interested in selecting

only one specialized program out of all final programs obtained.
Clearly, generating all possible candidate specialized programs
is more costly than computing just one. However, selecting the
best candidate a posteriori allows to make much more informed
decisions than selecting it a priori, as in Algorithm 2.

Algorithm 3 All-candidates Search-based Partial Evaluation
algorithm
Input: ProgramP
Input: Set of atoms of interestS
Input: Set of unfolding rulesU
Input: Set of generalization functionsG
Output: Set of partial evaluationsSols

1: H0 = ∅
2: S0 = S
3: create(Confs); Confs= push(〈S0, H0〉, Confs)
4: Sols= ∅
5: repeat
6: 〈Si, Hi〉 = pop(Confs)
7: Ai = Select(Si)
8: Candidates = {〈Abstract, Unfold〉 | Abstract ∈

G, Unfold∈ U}
9: repeat

10: Candidates = Candidates− {〈Abstract, Unfold〉}
11: A′

i = Abstract(Hi, Ai)
12: τi = Unfold(P, A′

i)
13: Hi+1 = Hi ∪ {〈Ai, A

′
i, Unfold〉}

14: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, , 〉 ∈
Hi+1 . B 6≡ A}

15: if Si+1=∅ then
16: Sols= Sols∪ {Hi+1}
17: else
18: push(〈Si+1, Hi+1〉,Confs)
19: end if
20: until Candidates = ∅
21: i = i + 1
22: until empty stack(Confs)

The main difference between Algorithm 3 and Algorithm 2 is
that there are now two additional data structures. One isConfs,
which contains the configurations which are currently beingex-
plored. The other one isSols, which stores the set of solutions
found by the algorithm. As it is well known, the use of different
data structures forConfsprovides different traversals of the search
space. Currently, Algorithm 3 uses a stack, thus the search space is
traversed in a depth-first fashion. Note that Algorithm 3 does not
work with single configurations but rather with stacks of configu-
rations. The process terminates when the stack of configurations to
handle is empty, i.e. all final configurations have been reached.

6.1 Searching for All Specializations in our Motivating
Example

Consider again the motivating example in Listing 5. Consider also
two local control rules, one performing leftmost unfoldingonly,
and the other one performing also non-leftmost unfolding, i.e.,
U={leftmost, nonleftmost} and one global control ruleid returning
always the same atom, i.e.,G={id}. By applying Algorithm 3 we

{exp_ac(0),p(X)}

{exp_ac(1),p(X)}

{q(X)}

{p(X)}

{} {}

{}

{}

{p(X)}

{q(X)}

nlnl

nl

nl

nl

l

l

l

l

l l

l nl

{}

{main}

nl

1

3

5

2

4

Figure 1. Search space for the motivating example

Program Run Time Size Speedup Code Reduc
Original 5890 1606 1.00 1.00
Solution1 3652 1596 1.61 1.01
Solution2 5138 1543 1.15 1.04
Solution3 2931 1379 2.01 1.16
Solution4 3962 1326 1.49 1.21
Solution5 7223 1321 0.82 1.22

Table 1. Comparison of Solutions

get five different specialized programs. In particular,Solution1
corresponds to the program in Listing 6 andSolution5 to the
program in Listing 7. In addition, our algorithm also produces
three other candidate programs which are hybrid in the sensethat
they use different control rules for different atoms, and thus cannot
be achieved usingleftmost+id nornonleftmost+id only.

The search space for this example is shown in Figure 1. There,
each configuration is represented with a circle. Configurations
which are final are marked with a square around the circle. As
can be seen, the whole search space for the example consists of 12
configurations, 7 of which are not final and 5 are final, and thus
correspond to different candidate solutions, as already mentioned.

Each configuration is adorned with the set of atoms yet to
be handled, i.e.,Si in the algorithm. Each node can have two
descendants, which are indicated with arcs. Arcs are labeled
either l, for leftmost or nl for non-leftmost. The set of nodes
already handled is not shown explicitly in each node, but it
is implicitly represented by traversing the tree from each node
upwards up to the root, since an atom is handled in each node. For
example, in the case ofSolution3, the history is{〈q(B), q(B), nl〉,
〈p(A), p(A), l〉, 〈exp ac(1, A, B, C), exp ac(1, A, B, C), nl〉,
〈main(A,B, C), main(A, B, C), l〉}. Also, some nodes only
have one descendant linked by two arcs to its parent. This indicates
that the two control strategies considered produce equivalent con-
figurations, reducing the search space.

Table 1 provides a comparison of the different candidate solu-
tions together with the original program. The first column indicates
the program we refer to in each row. The second column provides

an indication of the run-time efficiency of the different programs.
This time has been obtained by running a million times the query
main(8,9,Result) and subtracting the time required by an
empty loop which performs a million iterations. The third column
compares the sizes of the different programs. This size is innumber
of bytes of the program compiled into byte-code using Ciao-1.13
and after subtracting the size of an empty program. Finally,the last
two columns compare the run-time and code-size of the different
programs with that of the original program.

As it can be seen, not all programs obtained by partial evaluation
are necessarily faster than the original one. In particular, Solution5,
the one obtained using non-leftmost unfolding for all casesis less
efficient than the original one. This is indicated by an speedup
lower than 1, which is 0.82 in this case. On the other hand, the
speedup obtained bySolution1is 1.61, but it is still far from the
fastest program, which isSolution3with an speedup of 2.01. As
regards code size, in this particular case all solutions achieved are
smaller than the original program, though it is well-known that
in some cases partial evaluation can produce programs whichare
significantly larger than the original one. The smallest program is
Solution5, with a code reduction of 1.22, but which happens to be
the slowest program of all, including the original one.

If both the speedup and code reduction factors are taken into
account, the most promising programs are probablySolution3and
Solution4, neither of which are achievable by using one unfolding
rule for all atoms. If code size is not a very pressing issue, then
Solution3is probably the best one, but otherwiseSolution4should
be used, since a relative small increase in program size provides
significant time performance improvement. The choice between the
two solutions mentioned will depend on the fitness function used,
which can put more emphasis in one factor or another.

7. Self-Tuning, Resource-Aware PE
Though Algorithm 3 can be used to automatically generate a large
number of candidate specialized programs to choose from, weneed
some mechanism to automatically select just one of them since,
obviously, the goal of partial evaluation is to obtain a specialized
program, not many. There are certainly several criteria which can
be used in order to decide how good a specialized program is. The
framework we propose in this work isresource-awaresince it can
take the following criteria into account.

Time efficiency: currently we are measuring speedup w.r.t the
original program. In this case, we need a set of test cases which
are representative of the class of run-time queries which will
be performed. Another possibility to be explored is the use of
static cost analysis. Cost analysis can aim at obtaining upper or
lower bounds on computational cost or even average cost.

Size of compiled code:fairly easy to measure. It can be an im-
portant factor if the program will run on devices with limited
resources, as is the case in embedded systems and pervasive
computing. Also, even in cases where code size is not much of
an issue, it can happen that different specialized programshave
similar time-efficiency but some of them can be significantly
larger than others.

Memory-consumption: it can be of interest when resources are
scarce, similarly to the case of size of compiled code.

Our framework is fully automatic, i.e., there is no need for
human intervention in order to decide which is the best amongthe
candidate specializations. We refer to this as aself-tuningapproach.
A fitness functionassigns a numeric value to each candidate spe-
cialization, reflecting how good the corresponding programis.
The framework is parametric w.r.t. the fitness function so that the
method can be applied with different aims in mind. Sometimeswe

may be interested in achieving code which is as time-efficient as
possible, whereas in other cases space-efficiency can be a primary
aim. It is important to note that this search-based approachto
partial evaluation is also of interest when only run-time istaken
into account. Even in such case there is no control strategy alone
which is guaranteed to always produce the most-efficient code for
all compilers and architectures.

8. Preliminary Evaluation
In order to perform a preliminary assessment of the benefits and
practicality of search based poly-controlled partial evaluation
(PCPE), we have conducted a series of experiments using the
CiaoPP [14, 6] system.

Although the search-based approach presented in Section 6
above is definitely appealing, it is worth investigating whether it
can actually produce better specializations than traditional partial
evaluation (PE) and also whether it produces too large a number of
candidates, even for small programs.

In the implementation, a first obvious optimization was to
eliminate equivalent configurations which were descendants of
the same node in the search tree. I.e., it is often the case that
given a configurationConf there are more than oneT A

U andT A′

U′

with (A, U) 6= (A′, U ′) s.t. T A
U (Conf) = T A′

U′ (Conf). This
optimization is easy to implement, not very costly to execute,
and reduces search space significantly. For example, in the search
space in Figure 1, which already includes this optimization, if this
optimization were not applied then it would contain 19 configu-
rations, instead of 12 and there would be 9 candidate solutions
instead of 5.

In our evaluation we have compared two extreme cases, i.e.,
traditional partial evaluation with the search-based algorithm in all-
solutions mode. In our experiments, we have used the following set
of global control rulesG={dynamic, hom emb}. Thehom emb
global control rule is based on homeomorphic embedding [8, 9]
and flags atoms as potentially dangerous (and are thus generalized)
when they homeomorphically embed any of the previously visited
atoms. Then,dynamic is the most abstract possible global control
rule, which abstracts away the value of all arguments of the
atom and replaces them with distinct variables. Also, the set
of local control rules used isU={one step, df hom emb as}.
The ruleone step is the simplest possible unfolding rule which
always performs just one unfolding step for any atom. Finally,
df hom emb as is an unfolding rule based on homeomorphic
embedding. More details on this unfolding rule can be found
in [14]. It can handle external predicates safely and can perform
non-leftmost unfolding as long as unfolding is safe (see [1]) and
local (see [14]). We have chosen these particular global and local
control rules since, on the one hand, they guarantee termination,
and, on the other hand, they allow us to contrast aggressive and
conservative unfolding. In this way, we expect to obtain more
heterogeneous candidate solutions.

When testing search-based poly-controlled partial evaluation in
all solutions mode, for the control rules mentioned above, we have
found out that the approach copes with many of the benchmarksby
Lam & Kusalik [7]. However, these benchmarks are of relatively
little interest to our technique, since many of them can be fully
unfolded. Thus, in general, traditional partial evaluation obtains
good results, and the solutions provided by PCPE were solutions
achievable by traditional PE, i.e., solutions using alwaysone global
control rule and one local control rule for all atoms.

However, in practice, it is often the case that programs being
partially evaluated cannot be fully unfolded since the static infor-
mation available is not sufficient to do so. In our experimentation
with the technique we have found out that, at least for the com-

Input query #solutions
rev(L,R) 6
rev([|L],R) 48
rev([, |L],R) 117
rev([, , |L],R) 186
rev([, , , |L],R) 255
rev([1|L],R) 129
rev([1,2|L],R) 480

Table 2. Solutions generated by PCPE for rev benchmark

bination of control rules used, the number of candidate speciali-
zations grows rapidly with the amount of static data available in
the specialization query. In order to illustrate this phenomenon, let
us consider the program in Listing 8, which implements a naive
reverse algorithm:

:- module(_,[rev/2] ,[]).

:- entry rev([_,_|L],R).

rev ([] ,[]).
rev([H|L],R):-

rev(L,Tmp),
app(Tmp ,[H],R).

app([],L,L).
app([X|Xs],Y,[X|Zs]):-

app(Xs ,Y,Zs).

Listing 8. Therev/2 example

In CiaoPP, the description of initial queries (i.e., the set of
atoms of interestS in algorithms 1 to 3) is obtained by taking
into account the set of predicates exported by the module, inthis
caserev/2, possibly qualified by means ofentrydeclarations. For
example, theentrydeclaration in Listing 8 is used to specialize the
naive reverse procedure for lists containingat leasttwo elements.
Table 2 shows the number of candidate solutions generated by
Algorithm 3 in all solutions mode (eliminating equivalent config-
urations in the search tree), for severalentry declarations. As can
be observed in the table, as the length of the list provided asentry
grows, the number of candidate solutions computed quickly grows.
Furthermore, if the elements of the input list are static, then the
number of candidates grows even faster, as can be seen in the last
two rows in Table 2, where we provide the first elements of the list.
From this small example, it is clear that, in order to be able to cope
with realistic Prolog programs, it is mandatory to reduce the search
space.

In spite of the phenomenon just described, we have been able
to test our approach on a heterogeneous set of benchmarks, and
compare these results against those produced by traditional partial
evaluation. The set of benchmarks used in our experiments follows:

examplepcpe The motivating example from Listing 5.

nrev The naive reverse algorithm described in Listing 8. It does
not contain builtins nor negations. With the specialization query
used, this benchmark cannot be fully unfolded.

permute A program which computes all possible permutations
of the elements of the input list. An important feature of this
program is that its results, when fully unfolded, are much larger
than the original program. The specialization query used isa
fully-instantiated, closed list.

qsortapp A naive quicksort algorithm implemented using append.
It contains arithmetic builtins. With the specialization query
used it cannot be fully unfolded.

Benchmark Compiled size #versions
examplepcpe 5504 27
permute 4687 70
nrev 4623 117
qsortapp 5390 40
sublists 5638 58
relative 5909 61

Table 3. Size and number of versions of benchmarks

Benchmark Specialization query
examplepcpe main(A,B,2,D)
nrev rev([, |L],R)
permute permute([1,2,3,4,5,6],L)
qsortapp qsort([, |L],R)
sublists sublists(A,B,C)
relative relative(john,X)

Table 4. Specialization queries used in our experiment

relative A Lam & Kusalik [7] simple expert system which contains
neither builtins nor negations. With the specialization query
considered it can be fully unfolded.

sublists A predicate taking a list of pairs of numbers as the first
argument, and an arbitrary list as a second argument. Every
pair of numbers of the first list denotes the beginning and end
of a sublist of the second argument. Sublists are returned in
the third argument of the predicate. This benchmark contains
builtins. For the specialization query considered it cannot be
fully unfolded.

Table 3 shows the size in bytes of the compiled bytecode of
each benchmark, as well as the number of candidate solutionsbeing
generated by the PCPE approach. In order to keep the number of
candidate solutions reasonable, in most cases we have provided
specialization queries containing small static data. As a result, in
some of the programs the speed-up achieved by partially evaluating
the program is not very high using any of the strategies, since little
information is known at specialization time. The specialization
queries used in our experiments for each benchmark are shownin
Table 4.

As we have mentioned previously, the solutions computed by
PCPE are evaluated using a fitness function, and the best solution
is considered to be the output of the whole algorithm. In our
experiments, we have used the following three different fitness
functions:

speedupcompares programs based on their time-efficiency, meas-
uring run-time speedup w.r.t the original program. For this, the
user needs to provide a set of run-time queries with which to
time the execution of the program. Thus, such queries should
be representative of the real executions of the program. It is
computed as

speedup=Tspec/Torig,

where Tspec is the execution time taken by the specialized
program to run the given run-time queries, andTorig the time
taken by the original program.

reduction compares programs based on their space-efficiency,
measuring reduction of size of compiled bytecode w.r.t the
original program. It is computed as

reduction=(Sorig − Sempty)/ (Sspec − Sempty),

ID Global control Local control
c1 hom emb one step
c2 hom emb df hom emb as
c3 dynamic one step
c4 dynamic df hom emb as

Table 5. Combinations of local and global control rules

where Sspec is the size of the compiled bytecode of the
specialized program,Sorig is the size of the compiled bytecode
of the original program, andSempty is the size of the compiled
bytecode of an empty program.

balance a combination of the previous two. It is defined as

balance=speedupα × reductionβ .

Exponentsα andβ can be given different weights depending
on whether time- or space-efficiency are considered more im-
portant for our purposes. In our runs, we usedα = β = 0.5.

8.1 Benefits of PCPE

We now try to evaluate whether PCPE can actually produce better
results than traditional PE. Tables 6, 7, and 8 show how PCPE
solutions behave when compared to the solutions obtained by
traditional PE, using different fitness functions. In orderto be as
informative as possible, the best solution obtained by PCPEhas
been compared against all specialized programs obtained byPE
when runningeverycombination of the selected global and local
control rules.

Each table shows the benchmark being considered, the fitness
value obtained by the solution of poly-controlled partial evaluation,
and its composition(columns c1 through c4, see below), and
the fitness value of every solution found by traditional partial
evaluation using the different combinations of local and global
control rules. Note that all fitness functions are defined in such
a way that the original program has fitness 1, and values greater
than one indicate improvements over the original program, whereas
values less than one indicate that the considered program isworse
than the original program (under the corresponding criterion).

For brevity, each of the four combination of global and local
control rules is given an identifier, described in Table 5. Inthe
case of the PCPE solution, columnsc1 throughc4 describe the
percentage of atoms in the selected best solution whose specializa-
tion behaviour can be achieved using the corresponding combina-
tion of global and local control. Note that the addition of the values
of c1 throughc4 for a given program will be 100 or more. The
latter can occur because different controls can result in exactly the
same specialization for certain atoms. A value of a 100 in a given
column means that such best solution can be obtained by traditional
partial evaluation by using the corresponding combinationof global
and local control rules. Note that in our implementation, when
eliminating equivalent configurations in the search tree, we still
keep track of their control rules, in order to produce accurate
percentages.

Table 6 shows the results achieved when we usespeedupas a
fitness function. In general, speedup values in most cases should be
greater than 1. However, since we are providing very little static
information to the partial evaluation algorithms, in the case of
nrev, qsortapp, andsublistthe speedup achieved w.r.t. the original
program is very small, and in many cases (especially in traditional
partial evaluation) the specialized program is somewhat slower than
the original one. Speedups are however evident in therelativeand
permutebenchmarks, since they can be fully unfolded. In these
two cases, and considering only speedup as the fitness function,

the solution obtained by PCPE is a solution that can be obtained
by traditional PE. In the case ofpermute, it is achieved byc2, i.e.,
usinghom emb as a global control rule anddf hom emb as as
a local control rule. This is indicated by the 100 inc2 column.
We can also observe that the speedup of both the PCPE solution
and the solution obtained by traditional PE using such control rules
are pretty much the same and the difference lies only in timing
errors during the experiments, since they correspond to thesame
program. In the case ofrelative, PCPE obtains two (best) solutions,
one containing a 100 in columnc2, not shown in this table, and one
containing a 100 in columnc4. As can be seen in the table, this
speedup value is very similar to the one obtained by traditional PE
using such control rules since, again, they correspond to the same
code. For this particular fitness function, the rest of benchmarks are
the interesting ones, since the solution obtained by PCPE cannot be
obtained by PE, as there is no 100 in any column. In all cases the
PCPE solution gets a better fitness value than any of the solutions
provided by traditional PE, i.e., the obtained specializedprogram
is faster. The PCPE solution in these cases is between 6% and 95%
faster than the corresponding best PE solution. Note that this result
is interesting in itself: PCPE can achieve better results than any
single control rule even in the case where only speedup is taken
into account. These experiments were performed on a 1.5 GHz
PowerPC G4 processor, with 1Gb of RAM, running on a Darwin
8.5 kernel. Times are given in milliseconds and are computedas the
arithmetic mean of five runs.

Table 7 compares PCPE and traditional PE usingreduction
as a fitness function. As can be expected from the selected set
of benchmarks, the solutions obtained by PE have a fitness value
below 1 in most cases, indicating that the specialized programs are
larger than the original one. This usually is due to the fact that these
benchmarks contains just a few predicates, and partial evaluation
creates many new specialized predicates which then cannot be
unfolded very much. When programs can be fully unfolded, as
is the case ofrelative and permute, the use ofdf hom emb as
as a local control rule usually achieves such full unfolding. In
the case ofpermute, the fitness is almost 0 forc2 since the final
fully unfolded program is much larger than the original one.
Furthermore, programs produced usingc3, i.e., dynamic as a
global control rule andone step as a local control rule, are indeed
isomorphic to the original program. In this case, fitness values are
slightly lower than 1 (0.98) due to predicate renamings, which
creates slightly larger predicate names. As can be seen in the
table, most of the programs returned by PCPE are not achievable
using PE. The only exception issublists, where the best PCPE
corresponds to the original program. Thus, it seems that PCPE is
able to find a solution that is smaller than any of the solutions found
by PE.

Finally, Table 8 shows the results achieved by usingbalanceas
a fitness function. As can be seen, most of PCPE solutions cannot
be obtained via traditional PE, with the exception of the solution for
sublists, where the optimal coincides with not partially evaluating
the program, i.e., the original program. In most cases, PCPEobtains
better fitness values than any of the solutions obtained by PE,
meaning that PCPE outperforms PE in most cases when both time-
and space-efficiency are simultaneously considered.

8.2 Cost of PCPE

We now evaluate the cost of performing PCPE when compared
to PE. Though one can argue that, in the case of compile-time
specialization, the time required to specialize a program is not
very important, the results presented here provide some informa-
tion of the additional compile-time cost of PCPE when compared
to PE. Depending on the situation, the developer may choose to

Benchmark Best PCPE Fitness Trad PE
c1 c2 c3 c4 Fit c1 c2 c3 c4

examplepcpe 75 50 50 25 1.96 0.91 0.57 1.01 0.49
permute 0 100 0 0 5.26 0.75 5.14 1.01 2.00
nrev 57 57 0 14 1.20 0.51 0.77 0.99 0.91
qsortapp 50 50 83 67 1.06 0.86 0.87 0.99 0.94
sublists 57 43 71 43 1.08 0.97 0.99 0.98 0.88
relative 0 0 0 100 14.08 0.98 14.05 0.98 14.02

Table 6. PCPE behaviour (speedup).

Benchmark Best PCPE Fitness Trad PE
c1 c2 c3 c4 Fit c1 c2 c3 c4

examplepcpe 75 50 50 25 1.22 0.82 1.15 0.98 0.39
permute 25 50 50 50 1.15 0.37 0.00 0.98 0.80
nrev 20 60 60 80 0.98 0.55 0.29 0.98 0.76
qsortapp 33 67 67 83 0.98 0.78 0.43 0.98 0.66
sublists 100 25 100 25 0.98 0.98 0.52 0.98 0.61
relative 20 60 40 60 1.17 0.66 0.89 0.98 0.13

Table 7. PCPE behaviour (reduction).

Benchmark Best PCPE Fitness Trad PE
c1 c2 c3 c4 Fit c1 c2 c3 c4

examplepcpe 75 50 50 25 1.54 0.87 0.81 0.99 0.44
permute 40 40 40 40 1.30 0.54 0.14 1.01 1.29
nrev 60 60 0 40 1.12 0.52 0.48 0.98 0.82
qsortapp 50 50 83 67 1.00 0.81 0.61 0.99 0.78
sublists 100 25 100 25 1.01 1.00 0.70 0.99 0.73
relative 20 60 40 80 4.05 0.80 3.55 0.98 1.33

Table 8. PCPE behaviour (balance).

Benchmark
Specialization Time

PE PCPE PCPE
Analys Gen Total Analys Gen Total /PE

examplepcpe 26 43 69 111 304 415 6
permute 1153 744 1897 1271 1242 2513 1
nrev 16 27 44 453 1166 1619 37
qsortapp 22 39 61 153 425 578 10
sublists 22 41 63 206 649 854 14
relative 216 166 382 1038 1187 2225 6

Table 9. Cost of PCPE (Specialization Time in msecs.)

spend more resources on specializing the program in return for a
(hopefully) better specialized program.

Specialization in both traditional and poly-controlled partial
evaluation involves a phase commonly referred to asanalysis
(corresponding to algorithms 1 to 3 described in this paper),
and another phase for code generation. Table 9 shows the times
(expressed in milliseconds) spent for both approaches during these
two phases. The last column shows the ratio between PCPE and
PE. As can be seen, the burden introduced by the PCPE approach
is usually acceptable. In many cases this overhead is directly related
with the amount of candidate solutions generated by the algorithm.
Thus,nrev is the benchmark where the ratioPCPE/PEis bigger,
since there are 117 candidate solutions produced by the algorithm.
Observe that in those cases that can be fully unfolded, i.e.,permute
andrelative, specialization time is usually high in both approaches,

so the ratioPCPE/PEis not very high. In the rest of benchmarks
this ratio ranges between 6 and 14.

However, PCPE involves an additional step of evaluation after
code generation which is not required in PE. In this step, all
candidate solutions are evaluated using the correspondingfitness
function, and the solution having the highest fitness value represents
the output of the algorithm for the given input queries. Notethat
there may exist several solutions sharing the same fitness value.

When evaluating all candidates, the fitness function used for
such purpose makes an important difference in the time required
by such phase. In the case ofreduction, we need to compile
each candidate solution and compare the sizes of the compiled
code of all of them. Even though this involves disk accesses,the
comparison among solutions can be done pretty quickly, and thus,
the increment in time due to evaluation is acceptable, as shown

Benchmark
Evaluation Time(speedup)

PE PCPE
Spec Eval Total

examplepcpe 69 415 11540 11955
permute 1897 2513 19971 22484
nrev 44 1619 66692 68312
qsortapp 61 578 17159 17737
sublists 63 854 77104 77958
relative 382 2225 17007 19232

Table 10. Total Cost of PCPE (Time in msecs.)

in Table 11. In most cases, evaluation takes between two and four
times the time spent in the previous two phases.

However, when the fitness function involves measuring time-
efficiency, i.e. in speedupand balance, we need to run each
specialized program a number of iterations in order to obtain
more accurate measurements, thus increasing the time spentin
evaluation (see tables 10 and 12). In our implementation, wehave
a constantK for estimating the desired amount of time we want
to evaluate each candidate. By running the original programfor
K milliseconds, we estimate the amount of iterations to be run
for each of the final candidates. By increasing or decreasingthis
constantK, we increase or decrease the time spent by the evaluation
step of our algorithm. In this way, we have a trade-off between the
time spent in this phase, and the accuracy of the obtained solution.
For our experiments, we set this constant to 500 milliseconds. As
a result, we spend roughly about 500 milliseconds evaluating each
candidate solution.

9. Discussion and Related Work
In this work we have introduced a framework for on-line partial
evaluation which allows using different global and local control
rules for different atoms, obtaining results that are not achievable
by traditional partial evaluation. The framework is self-tuning,
employing resource-awarefitness functionsto select the best so-
lutions from a resulting set of candidate solutions.

The poly-controlled partial evaluation framework opens upthe
door to many interesting possibilities. Experiments have shown
that results obtained by poly-controlled partial evaluation are very
promising, in the sense that often these results cannot be obtained
using traditional partial evaluation, and they obtain better fitness
values than their PE counterparts, for fitness functions assessing
time- and space-efficiency performance.

As regards related work, the work in [3] is probably the most
related one. There, a self-tuning, resource awareoff-linespecializa-
tion technique is introduced. The algorithm is based on mutation of
annotations for offline partial evaluation. In contrast, our approach
performson-linepartial evaluation, and thus can take advantage of
the great body of work available foron-line partial evaluation of
logic programs. To the best of our knowledge, there are no similar
approaches foron-line partial evaluation. Arguably, on-line tech-
niques for partial evaluation of logic programs are very relevant,
since on-line techniques have received a lot of attention inthe logic
programming paradigm.

It remains as future work to develop effective techniques for
reducing the search space in PCPE and then apply the resulting
algorithm on a larger set of programs, using different search
controls. For this purpose, we would like to be able to prune away
branches which are not promising, or even guaranteed not to lead
to an optimal solution, as in branch and bound algorithms. For this,
we need to be able to apply the fitness function not only to config-
urations which are final, but also to intermediate configurations.

Benchmark
Evaluation Time(reduction)

PE PCPE
Spec Eval Total

examplepcpe 69 415 1230 1645
permute 1897 2513 3587 6100
nrev 44 1619 5826 7444
qsortapp 61 578 2332 2909
sublists 63 854 4016 4870
relative 382 2225 5173 7399

Table 11. Total Cost of PCPE (Time in msecs.)

Benchmark
Evaluation Time(balance)

PE PCPE
Spec Eval Total

examplepcpe 69 415 12887 13302
permute 1897 2513 24408 26920
nrev 44 1619 73538 75157
qsortapp 61 578 19886 20463
sublists 63 854 82898 83752
relative 382 2225 22755 24980

Table 12. Total Cost of PCPE (Time in msecs.)

In addition to this, there are a number of relatively simple
ideas which we hope can be used in order to greatly reduce
the complexity of PCPE. For example, different procedures have
different relative importance on the overall time efficiency of the
program. Thus, it can be a good idea to obtain data on the cost of
the different procedures by means of profiling, in order to beable
to make more informed decisions at partial evaluation time.For
example, for procedures with little impact on the run-time of the
program, less aggressive control strategies can be used, whereas in
calls to predicates with an important cost, more aggressivestrat-
egies should be used. Also, the branching factor could be varied
for different atoms according to the importance of the atom being
handled. If the atom has important weight, we should probably
try out more different alternatives than in other less important
predicates.

Acknowledgments
The authors would like to thank Michael Leuschel for his comments
on a preliminary version of this work. This work was funded
in part by the Information Society Technologies program of the
European Commission, Future and Emerging Technologies under
the IST-15905MOBIUS project, by the Spanish Ministry of
Education under the TIN-2005-09207MERIT project, and the
Madrid Regional Government under thePROMESASproject.

References
[1] E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Unfolding in

Partial Evaluation of Logic Programs with Impure Predicates. In
14th International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR’05), LNCS. Springer-Verlag, 2006.

[2] M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion
for Avoiding Infinite Unfolding during Partial Deduction.New
Generation Computing, 1(11):47–79, 1992.

[3] Stephen-John Craig and Michael Leuschel. Self-tuning resource
aware specialisation for Prolog. InPPDP ’05: Proceedings of the 7th
ACM SIGPLAN international conference on Principles and practice
of declarative programming, pages 23–34, New York, NY, USA,
2005. ACM Press.

[4] Saumya K. Debray. Resource-Bounded Partial Evaluation. In
Proceedings of PEPM’97, the ACM Sigplan Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 179–
192. ACM Press, 1997.

[5] J.P. Gallagher. Tutorial on specialisation of logic programs. In
Proceedings of PEPM’93, the ACM Sigplan Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 88–
98. ACM Press, 1993.

[6] Manuel V. Hermenegildo, Gerḿan Puebla, Francisco Bueno, and
Pedro Ĺopez-Garćıa. Integrated Program Debugging, Verification,
and Optimization Using Abstract Interpretation (and The Ciao System
Preprocessor).Science of Computer Programming, 58(1–2):115–140,
October 2005.

[7] J. Lam and Kusalik A. A comparative analysis of partial deductors for
pure prolog. Technical report, Department of Computational Science,
University of Saskatchewan, Canada, May 1991. Revised April 1991.

[8] M. Leuschel and M. Bruynooghe. Logic program specialisation
through partial deduction: Control issues.Theory and Practice of
Logic Programming, 2(4 & 5):461–515, July & September 2002.

[9] Michael Leuschel. On the power of homeomorphic embedding
for online termination. In Giorgio Levi, editor, Static Analysis.
Proceedings of SAS’98, LNCS 1503, pages 230–245, Pisa, Italy,
September 1998. Springer-Verlag.

[10] Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling
generalisation and polyvariance in partial deduction of normal logic
programs. ACM Transactions on Programming Languages and
Systems, 20(1):208–258, January 1998.

[11] J. W. Lloyd and J. C. Shepherdson. Partial evaluation inlogic
programming. The Journal of Logic Programming, 11:217–242,
1991.

[12] J.W. Lloyd. Foundations of Logic Programming. Springer, second,
extended edition, 1987.

[13] B. Martens and D. De Schreye. Automatic finite unfoldingusing
well-founded measures.Journal of Logic Programming, 28(2):89–
146, 1996. To Appear, abridged and revised version of Technical
Report CW180, Departement Computerwetenschappen, K.U.Leuven,
October 1993.

[14] G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local
Unfolding with Ancestor Stacks for Full Prolog. In14th International
Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’04), number 3573 in LNCS, pages 149–165. Springer-
Verlag, 2005.

[15] M.H. Sørensen and R. Glück. An Algorithm of Generalization in
Positive Supercompilation. InProc. of ILPS’95, pages 465–479. The
MIT Press, 1995.

