Efficient Negation Using Abstract Interpretation

Susana Muiioz, Juan José Moreno, Manuel Hermenegildo

Department of Computer Science, Technical U. of Madrid *

Abstract. While negation has been a very active area of research in
logic programming, comparatively few papers have been devoted to im-
plementation issues. Furthermore, the negation-related capabilities of
current Prolog systems are limited. We recently presented a novel method
for incorporating negation in a Prolog compiler which takes a number of
existing methods (some modified and improved by us) and uses them in
a combined fashion. The method makes use of information provided by
a global analysis of the source code. Our previous work focused on the
systematic description of the techniques and the reasoning about cor-
rectness and completeness of the method, but provided no experimental
evidence to evaluate the proposal. In this paper, we report on an im-
plementation, using the Ciao Prolog system preprocessor, and provide
experimental data which indicates that the method is not only feasible
but also quite promising from the efficiency point of view. In addition,
the tests have provided new insight as to how to improve the proposal
further. Abstract interpretation techniques are shown to offer important
improvements in this application.

Keywords: Negation, Constraint Logic Programming, Program Analy-
sis, Logic Programming Implementation, Abstract Interpretation.

1 Introduction

The fundamental idea behind Logic Programming (LP) is to use a computable
subset of logic as a programming language. Probably, negation is the most sig-
nificant aspect of logic that was not included from the start due to the significant
additional complexity that it involves. However, negation has an important role
for example in knowledge representation, where many of its uses cannot be simu-
lated by positive programs. The different proposals differ not only in expressivity
but also in semantics. Presumably as a result of this, implementation aspects
have received comparatively little attention. A search on the The Collection of
Computer Science Bibliographies [13] with the keyword “negation” yields nearly
60 papers, but only 2 include implementation in the keywords, and fewer than
10 treat implementation issues at all. Perhaps because of this, the negation tech-
niques supported by current Prolog compilers are rather limited.

Our objective is to design and implement a practical form of negation and
incorporate it into a Prolog compiler. In [19] we studied systematically what

* Mail: Facultad de Informética, Universidad Politécnica de Madrid, Campus de Mon-
tegancedo s/n, 28660, Madrid, SPAIN. email: susana|jjmoreno|herme@fi.upm.es.
voice: +34-91-336-7455. fax: +34-91-336-7412.

we understood to be the most interesting existing proposals: negation as fail-
ure (naf) [8], use of delays to apply naf in a secure way [15], intensional nega-
tion [1],[2], and constructive negation [6],[7]. We could not find a single technique
that offered both completeness and an efficient implementation. However, we
proposed to use a combination of these techniques and that information from a
static analysis of the program could be used to reduce the cost of selecting among
techniques. We provided a coherent presentation of the techniques, implementa-
tion solutions, and a proof of correctness for the method, but we did not provide
any experimental evidence to support the proposal. This is the purpose of this
paper. One problem that we face is the lack of a good collection of benchmarks
using negation to be used in the tests. One of the reasons has been discussed
before: there are few papers about implementation of negation. Another fact is
that negation is typically used in small parts of programs and it is very difficult
to find it because it is not one of their main components. Additionally, the lack of
sound implementations makes programmers avoid negations, even complicating
the code or changing its semantics. We have had to collect a number of examples
using negation from logic programming textbooks, research papers, and our own
experience teaching Prolog.

We have tested these examples with all of our techniques in order to establish
their efficiency. We have also measured the improvement of efficiency thanks to
the use of the static analyzers. We have used the Ciao system [4] that is an
efficient Prolog implementation and incorporates all the needed static analyses.
However, it is important to point out that the techniques used are fairly standard,
so they can be incorporated into almost any Prolog compiler.

In both cases the results have been very interesting. The comparison of the
techniques has allowed us to improve the right order in which to apply them.
Furthermore, we have learned that the impact of the use of the information from
the analyzers is quite significant.

The rest of the paper is organized as follows. Section 2 presents more de-
tails on our method to handle negation and how it has been included in the
Ciao system. Section 3 presents the evaluation of the techniques and how the re-
sults have helped us reformulate our strategy. The impact of the use of abstract
interpretation is studied in 3.3.

2 Implementation of a Negation System

In this section we present shortly the techniques from the literature which we
have integrated in a uniform framework. The techniques and the proposed com-
bination share the following characteristics:

— We are interested in techniques with a single and simple semantics. The
simplest alternative is to use the Closed Word Assumption (CWA) [8] by
program completion and Kunen’s 3-valued semantics [11]. These semantics
will be the basis for soundness results.

— Another important issue is that they must be “constructive”, i.e., program
execution should produce adequate goal variable values for making a negated

goal false. Chan’s constructive negation [6],[7] fulfills both objectives. How-
ever, it is difficult to implement and expensive in terms of execution re-
sources. Our idea is to use the simplest technique for each particular case.
— The formulations need to be uniform in order to allow the mixture of tech-
niques and to establish sufficient correctness conditions to use them.
— We also provide a Prolog implementation of each of the techniques so that
they can be easily combined and we obtain a portable implementation.

2.1 Disequality constraints

An instrumental step in order to manage negation in a more advanced way
is to be able to handle disequalities between terms such as t; # t,. Prolog
implementations typically include only the built-in predicate /== /2 which can
only work with disequalities if both terms are ground and simply succeeds in the
presence of free variables. A “constructive” behavior must allow the “binding”
of a variable with a disequality. On the other hand, the negation of an equation
X = t(Y) produces the universal quantification of the free variables in the
equation, unless a more external quantification affects them. The negation of
such an equation is VY X # #(Y).

We have defined a predicate =/= /2, used to check disequalities, in a similar
way to explicit unification (=). The main difference is that it incorporates nega-
tive normal form constraints instead of bindings and the decomposition step can
produce disjunctions. When a universal quantification is used in a disequality
(e.g., VY X # ¢(Y)) the new constructor £A/1 is used (e.g., X / c(£A(Y))).

2.2 Negation Techniques

— Negation as failure and delays: Typical Prolog systems implementation
of naf (Q) is unsound unless the free variables of () are ground. The sound
version ensures that the call to naf is made only when the variables of the
negated goal are ground (although it has the risk of floundering). It replaces
a call to -p(X) by: ..., when(ground(X),naf(p(X))),...

— Constructive negation for finite solutions: We have implemented a
Prolog predicate cnegf (Q) to implement finite constructive negation, that
can be used if the number of solutions can be determined to be finite. It
calculates the negation of the disjunction of all solutions of Q. It is a simple
and efficient version of the constructive negation.

— Intensional negation and universal quantification: Intensional nega-
tion is a novel approach to obtain the program completion by transforming
the original program into a new one that introduces the “only if” part of
the predicate definitions (i.e., interpreting implications as equivalences). We
reformulate the transformation by using a single constraint to express the
complement of a term, instead of a set of terms. The transformation is fully
formalized in [19].

— General constructive negation: Full constructive negation is needed when
all the previous techniques are not applicable. While there are several papers
treating theoretical aspects of it, we have not found papers with full descrip-
tions of implementations. We have completed a simple implementation from
scratch (cneg/1) which is complete, although it can certainly be improved.

2.3 Strategy

Our starting point is a (pseudo)predicate neg/1 which computes constructively
the negation of any Prolog (sub)goal =G(X), selecting the most appropriate tech-
nique at run-time. However, the program is analyzed and optimized at compile-
time to generate specialized versions of neg for each negated literal in the pro-
gram (each call to neg), using only the simplest technique required. The basic
decision steps are:

1. Groundness of X is checked before the call to G. If proved true statically, then
simple negation as failure is applied, i.e., -G (X) is compiled to naf (G(X)).!
2. Otherwise, a new program is generated replacing the goal —-G(X) by
when (ground(X), naf(G(X))) and the “elimination of delays” technique
is applied to it. If the analysis and the program transformation are able to
remove the delay (perhaps moving the goal) the resulting program is used.?

3. Otherwise, if the finiteness analysis over G(X) succeeds, then finite construc-
tive negation can be used, transforming the negated goal into cnegf (G(X)).

4. Otherwise, the intensional negation approach is tried by generating the cor-
responding negated predicates and replacing the goal by call not (G(X),
S) that will call not__G(X). During this process, new negated goals can ap-
pear and the same compiler strategy is applied to each of them. If S is bound
to success or fail then negation is solved, otherwise we continue.

5. If everything fails, full constructive negation must be used and the executed
goal is cneg(G(X)).

The strategy is complete and sound with respect to Kunen 3-valued seman-
tics. This follows from the soundness of the negation techniques, the correctness
of the analysis, and the completeness of constructive negation.

Let us illustrate the behavior of the method by using some simple examples.
Consider the following program:

! Since floundering is undecidable, the analysis only provides an approximation of the
cases where negation as failure can be applied safely. This means that in some cases
the technique will not be applied even it might provide a sound result.

2 Again, the approximations made during analysis could result in the method not
being applied in some cases in which it might still provide a sound result.

less (0, s(Y)). member (X, [X|L]).

less(s(X), s(Y)) :- less(X, Y). member (X, [YIL]) :- member(X, L).

pl(X) :- member(X, [0, s(0)]), p3(X) :- neg(less(X, s(s(0)))).
neg(less(X, s(0))). p4(X) :- neg(less(s(0), X)).

p2(X) :- neg(less(X, s(0))), p5(X) :- neg(less(X, s(X))).

member (X, [0, s(0)]1).

Each of the p; predicates requires a different variant. For p1, the groundness test
for variable X succeeds and naf/1 can be used, so it behaves as:
pl1(X) :- member(X, [0, s(0)]), 7- p1(X).

naf (less(X, s(0))). X = s(0)
Applying the “elimination of delays” analysis to the program:

p2(X) :- when(ground(X), naf(less(X, s(0)))),

member (X, [0, s(0)]).
the delay can be eliminated, reordering the goals as follows:
p2(X) :- member(X, [0, s(0)1), 7- p2(X).

naf (less(X, s(0))). X = s(0)
The case for p3 is solved because the finiteness test can be proved to succeed,
so the program is rewritten as:
p3(X) :- cnegf(less(X, s(s(0)))). 7- p3(X).

X/0, X/ s

p2 needs intensional negation, so the generated program is:

not__less(W, Z) :- W =/= 0, 7- p4a(X).
fA(X, W =/= s(X)), X=07;
fACY, Z =/= s(Y)). X = s(0)

not__less(s(X), s(Y)) :-

not__less(X, Y).
p4(X) :-

not__less(s(0), X).
Finally, p5 needs full constructive negation because the intensional approach is
not able to give a result:
p5(X) :- cneg(less(X, s(X))). 7- p5(X).

no

3 Evaluating the strategy

3.1 Example programs

As mentioned earlier, one problem that we have faced is the lack of a good
collection of benchmarks using negation to be used in the tests. We have, how-
ever, collected a number of examples using negation from logic programming
textbooks, research papers, and our own experience teaching Prolog:

— disjoint: Code to verify that two lists have no common elements. Negation
is used to check that elements of the first list are not in the second one.

— jugs: Classical jugs puzzle. A sequence of actions is planned that will produce
4 gallons of water in the larger jug. Negation is used to check that the state
of the jugs is not repeated during the process.

robot: Simulation of the behavior of a robot. Negation is used to check that
possible new positions for the robot are not dangerous.

trie: Tt finds the list of word-FileList couples that shows the sublist of files
where each word appears (from an initial list of words and files). Negation
is used when reading words to find the first non alphanumeric character.
numbers9: It uses negation to detect impossible cases in balanced trees.
closure: Transitive closure of a network. Negation is used to avoid infinite
loops (detecting repeated nodes). From [16] page 169.

union: It is used neg(member (X, L;)) to check if an element X appears
in both lists (for union of two lists without repetitions). From [16] page 154.
include: include(P, Xs,Ys) is true when Ys is the list of the elements of
X s such that P(X) is true. Negation is used to detect elements that do not
satisfy the property P(X). From [16] page 227.

flatten: Flattening a list using difference-lists. Negation is used to consider
lists that are not empty. From [12] Program 915.2, page 241.

lessNodd: Returns the list of odd natural numbers that are less than a
number N. Negation is used to control that a number is not even.

friend: Deduces the relationship between two people using the stored infor-
mation from a database. Negation is used to exclude ancestors and descen-
dants from the category of friends of a person.

3.2 Experimental results

We have first measured the execution times in milliseconds for the previous ex-
amples when using all the different (applicable) negation techniques that we
have discussed, and also noted which technique is selected by our strategy (in
boldface). A ‘~’ in a cell means that the technique is not applicable. All mea-
surements were made using Ciao Prolog® 1.5 on a Pentium II at 350 Mhz. Small
programs were executed a sufficient number of times to obtain repeatable data.
The results are shown in Table 1, where each column means:

const. shows the time taken by general constructive negation (cneg).
naf/delay uses either naf directly or within a delay directive. A ‘D’ is placed
before the time in the second case.

fin.const. is the time of the finite version of constructive negation, cnegf.
intens. uses the not__‘p’ predicate from the intensional negation program
transformation.

ratio columns measure the speedup of the technique to their left w.r.t. con-
structive negation. An ‘x’ means the ratio is extremely high.

It is clear that the technique chosen by our strategy is always equal to or

better than general constructive negation. In many cases, it is also the best
possible of the examined techniques. We now study each technique separately:

3 The negation system is coded as a library module (“package” [5]), which includes the
corresponding syntactic and semantic extensions (i.e. Ciao’s attributed variables).
Such extensions apply locally within each module which uses this negation library.

programs| const. naf/delay ratio|fin.const.|ratio| intens.|ratio
disjoint1 7440 780| 9.5 2740 2.7 - -
disjoint2 3330 - 1120 2.9 -
jugs 8140 859| 94 2175 3.7 <1 x
robot 4600 1310 3.5 1900 2.4 - -
trie 8950 1850, 4.8 2140 4.1 - -
numbers9 286779 - - - -l 25230(11.3
closurela 5100 730 6.9 1450, 3.5 140| 36.4
closure2a 3520 560 6.2 900/ 3.9 100| 35.2
closure3a 10550 1700| 6.2 2700(3.9 280| 37.6
closurelb 26350 D2240| 11.7 16460 1.6 8570 3.0
closure2b 17400 D1500| 11.6 10580 1.6 5420 3.2
closure3b 16700 D4510| 3.7 10120 1.6 16070 1.0
unionl 1150 300, 3.8 320 3.5 189 6.0
union2 20930 - - 9470 2.2 2040, 7.1
includel 9020 1270 7.1 2680 3.3 170| 53.0
include2 9910 - - 2995 3.3 - -
flatten 32379 8500, 3.8 12570 2.5 10 x
lessNodd1 58980 4850| 12.1 17550 3.3 1270| 46.4
lessNodd2 7750 1490, 5.2 2700 2.8 - -
lessNodd3 |>3600000 - - - - 1540 x
friendla 16150 2280 7.0 - - 39500 0.4
friend2a 17630 <1 X - - 10 b'd
friend3a 447200 D4430(100.9 - - 43200| 10.3
friend4a |>3600000 D8750 x - -|>3600000 x
friend1b 17350 3020| 5.74 - - 9 X
friend2b 17650 <1 X - - 10 x
friend3b 92500 D3060| 30.2 - - 43200f 2.1
friend4b |>3600000 D6050 x - - 171290 x
||average | | | 13.0| | 2.9| | 18.3”

Table 1. Comparing different negation techniques

— Using naf instead of const. results in speed-ups that range from 3.5 to 30.2.
The average is more than 8.

— The delay technique, when applicable, has a considerable impact, speeding
programs up to 100 times.

— The fin.const. technique is around 3 times faster than const..

— intens. has a more random behavior. Very significant speed-ups are inter-
leaved with more modest results and even some slow-down (friendla).

The most surprising result is the efficiency of intensional negation. The trans-
formational approach seems the most adequate in those cases, provided that we
restrict the use of the technique to the case where there are no universal quan-
tifications in the resulting program. On the other hand, it is possible that the
intensional program may not be able to produce a result (wasting time) and its
use is a dynamic decision. Although these problems do not arise often in practice,

they are a serious risk. As a result we modified the strategy to use intensional
negation as the preferable technique, but only when it can be used safely.

The overall conclusion is that, at least for the benchmarks studied, our strat-
egy produces notable benefits. It preserves the completeness of general construc-
tive negation but typically at a fraction of the cost.

3.3 Measuring the impact of abstract interpretation

As mentioned above, the selection strategy and the program optimizations per-
formed make use of information from global program analysis. We have obtained
the information and performed the transformations using the analyzers and spe-
cializers that are part of the Ciao system’s preprocessor, CiaoPP [10]. In particu-
lar, from the analysis point of view, the groundness analysis has been performed
using the domain and algorithms described in [14]. In order to eliminate delays
a technique is used which, given a program with delays, tries to identify those
that are not needed, perhaps after some safe reordering of literals, as described
in [9,17]. Finally, the upper bounds complexity and execution cost analysis *
has been used to determine finiteness in the number of solutions.

The transformations have been implemented using the specializer in CiaoPP [18].
The source programs always make calls to a version of the generic predicate simi-
lar to the neg predicate presented in section 2. The specializer creates specialized
versions of the generic predicate for each literal calling neg in which tests and
clauses are eliminated as determined by the information available from the an-
alyzers. For example, if the groundness test is proven true at compile-time, the
specializer will eliminate the test and the rest of the clauses of neg and eventu-
ally even replace the literal calling neg with a direct call to naf. This is done
automatically by CiaoPP without having to write any additional code.

In order to estimate the advantages obtained by using this approach we
now present some experimental results comparing the execution time of the
programs that might be generated without the help of the analyzers and the
versions produced automatically by the Ciao preprocessor. In the first case, the
calls to neg always call (a slightly modified version of) the full version of the neg
predicate. Thus, for example, the groundness test is performed at execution time.
The clause to check the finiteness of the goal and then call cnegf is removed since
such checking cannot be made safely at run-time. Moreover, the delay technique
is not used because, in general, it has the risk of floundering. In contrast, the
version obtained with the help of the analyzers can remove the groundness check,
use the reordering proposed by the elimination of delays, and use the information
of the finiteness analysis to call cnegf.

Table 2 presents the results. We have also added for reference columns show-
ing the execution time of using naf directly and a secure version of naf, i.e.,
checking groundness before. Finally, we have also added the time taken by
CiaoPP to perform the analysis and transformation.

4 Note that an upper bound cost that is not infinity implies a finite number of solutions
(an alternative is [3].

program |with pp.|without pp.|ratio| naf|ratio|secure naf|ratio|prep.
disjoint1 1020 1700, 1.66| 780| 0.76 1469| 1.44 78
jugs 969 8419| 8.68| 859| 0.88 1690 1.74| 227
robot 1960 3100| 1.58(1310(0.66 1800 0.91| 700
trie 1890 2450| 1.29|1850| 0.97 1900 1.00| 508
unionl 300 350 1.16| 230| 0.76 300| 1.00] 119
closurela 730 2600 3.56| 730 1.00 900| 1.23| 257
closure2a 570 1970 3.45| 560 0.98 670| 1.17| 257
closure3a 1710 5050| 2.95|1700| 0.99 2010| 1.17| 257
includel 1099 1180 1.07|1080| 0.98 1270| 1.15| 178
flatten 8859 9300| 1.04(8500| 0.95 8080| 0.91| 168
lessNodd1 7310 8670 1.18]4850| 0.66 6300 0.86 58
lessNodd2 1780 1830 1.02{1490| 0.83 1590 0.89 58
friend1b 3220 3360| 1.04(3020(0.93 3180 0.98| 198
friendla 2820 2860| 1.01|2280| 0.80 2840| 1.00] 198
average 2.33 0.86 1.10
closurelb 610 8610(14.11 - - - -| 257
closure2b 570 5700|10.00 - - - -| 257
closure3b 1800 16300 9.05 - - - -| 257
friend3a 3100 43350(13.98 - - - - 198
friend4a 6210 >3600000 X - - - -l 198
friend3b 3100 43400(14.00 - - - -l 198
friend4b 6210 171495|27.61 - - - - 198
average 14.79

disjoint2 1125 3700| 3.28 - - - - 78
union2 9590 21010| 2.19 - - - - 119
include2 3070 10010| 3.26 - - - -l 178
average 5.65

||average | | | 2.37| | 0.86| | 1.10| ||

Table 2. Impact of program analysis

The table reveals that the impact of abstract interpretation is significant
enough to justify its use. For those examples where naf is applicable, the analyzer
is able to detect groundness statically in all the cases, so the call to neg is
replaced by naf. It is worth mentioning that the implementation of the dynamic
groundness test in Ciao is quite efficient (it is performed at a very low level,
inherited from its &-Prolog origins). Even so, the speedup can reach a factor
of over 8, and the average is 2.33. The impact of the elimination of delay is
even better in general. Notice that if the delay technique is not used, intensional
negation could be used instead, which in many cases is a very efficient approach.
Even with this drawback, the use of abstract interpretation is helpful. When the
finiteness analysis avoids the use of full constructive negation the speed-ups are
greater than 3. The difference between the programs after preprocessing and the
direct use of naf is negligible. The code produced by the preprocessor is better
than the secure use of naf because of the elimination of groundness tests.

Acknowledgments

We are grateful to M. Carro and D. Cabeza for providing examples and to
F. Bueno, and G. Puebla for their support while using the Ciao system prepro-
cessor. This work was funded in part by MCyT project EDIPTA (TIC99-1151).

References

1.

2.

10.

11.
12.
13.
14.
15.
16.
17.
18.

19.

R. Barbuti, D. Mancarella, D. Pedreschi, and F. Turini. Intensional negation of
logic programs. Lecture notes on Computer Science, 250:96-110, 1987.

R. Barbuti, D. Mancarella, D. Pedreschi, and F. Turini. A transformational ap-
proach to negation in logic programming. JLP, 8(3):201-228, 1990.

C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis
of Prolog. In ILPS, pages 457-471. The MIT Press, 1994.

. F.Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lépez-Garcia, and G. Puebla.

The Ciao Prolog System. Reference Manual. Technical Report CLIP3/97.1, School
of Computer Science, Technical University of Madrid (UPM), August 1997. System
and manual at http://www.cliplab.org/Software/Ciao/.

D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In CL2000,
number 1861 in LNAI, pages 131-148. Springer-Verlag, July 2000.

D. Chan. Constructive negation based on the complete database. In Proc. Int.
Conference on LP’88, pages 111-125. The MIT Press, 1988.

D. Chan. An extension of constructive negation and its application in coroutining.
In Proc. NACLP’89, pages 477-493. The MIT Press, 1989.

K. L. Clark. Negation as failure. In J. Minker H. Gallaire, editor, Logic and Data
Bases, pages 293-322, New York, NY, 1978.

M. Garcia , K. Marriott, and P. Stuckey. Efficient analysis of constraint logic
programs with dynamic scheduling. In ILPS, pages 417-431. MIT Press, 1995.
M. Hermenegildo, F. Bueno, G. Puebla, and P. Lépez-Garcia. Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In 1999 ICLP,
pages 52—-66, Cambridge, MA, November 1999. MIT Press.

K. Kunen. Negation in logic programming. JLP, 4:289-308, 1987.

E. Shapiro L. Sterling. The Art of Prolog. The MIT Press, 1987.

The Collection of Computer Science Bibliographies.
http://liinwww.ira.uka.de/bibliography/LogicProgramming/index.html.

K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable de-
pendency using abstract interpretation. JLP, 13(2/3):315-347, July 1992.

L. Naish. Negation and Control in Prolog. In LNCS, number 238. Springe, 1985.
R. A. O’Keefe. The Craft of Prolog. The MIT Press, 1990.

G. Puebla, M. Garcia , K. Marriott, and P. Stuckey. Optimization of Logic Pro-
grams with Dynamic Scheduling. In 1997 International Conference on LP, pages
93-107, Cambridge, MA, June 1997. MIT Press.

G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Appli-
cation to Program Parallelization. JLP, 41(2&3):279-316, November 1999.

J.J. Moreno S. Mufioz. How to incorporate negation in a prolog compiler. In
V. Santos Costa E. Pontelli, editor, 2nd International Workshop PADL’2000, vol-
ume 1753 of LNCS, pages 124-140, Boston, MA (USA), 2000. Springer.

