
On the Correctness and Efficiency
of Independent And-Parallelism in
Logic Programs
M a n u e l H e r m e n e g i l d o
F r a n c e s c a R o s s i 1

M C C
3500 West Balcones Cen te r Dr .
Aus t in , T X 78759
he rme@mcc .com, rossi@mcc.com

Abstract

This paper presents and proves some fundamental results for independent
and-parallelism (IAP). First, the paper treats the issues of correctness and
efficiency: after defining strict and non-strict goal independence, it is proved
that if strictly independent goals are executed in parallel the solutions ob-
tained are the same as those produced by standard sequential execution.
It is also shown that , in the absence of failure, the parallel proof proce-
dure doesn't genérate any additional work (with respect to standard SLD-
resolution) while the actual execution time is reduced. The same results
hold even if non-strictly independent goals are executed in parallel, pro-
vided a trivial rewriting of such goals is performed. In addition, and most
importantly, treats the issue of compile-time generation of IAP by propos-
ing conditions, to be written at compile-time, to efficiently check strict and
non-strict goal independence at run-time and proving the sufficiency of such
conditions. It is also shown how simpler conditions can be constructed if
some information regarding the binding context of the goals to be executed
in parallel is available to the compiler trough either local or program-level
analysis. These results therefore provide a formal basis for the automatic
compile-time generation of IAP. As a corollary of such results, the paper
also proves that negative goals are always non-strictly independent, and
that goals which share a first occurrence of an existential variable are never
independent.

1 Introduction

There has been significant interest (e.g. see [8], [11], [13], [6], [3], [5], [10],
[14], [22], [23], etc.) in parallel execution models for logic programs which
exploit "independent and-parallelism" (IAP). These models appear to have
(in common with OR-parallel models - see [20] and its references) the very
desirable characteristics of offering performance improvements through the
use of parallelism, while at the same time preserving the conventional "don't

1On leave from the Computer Science Dept. of the University of Pisa, Italy, and
supported by a grant from the Italian National Research Council.

mailto:herme@mcc.com
mailto:rossi@mcc.com

know" semantics of logic programs. However, so far these claims remained
to be formally proved: there was a need for a formal definition of goal
independence and of a parallel proof procedure. Also, some results regarding
the complexity of such procedure and the proof of its equivalence with the
conventional one were missing.

Furthermore, goal independence can be trivially checked at run-time,
but it involves significant overhead. If the objective is the automatic gen-
eration of parallelism (and/or to check user annotations for correctness), it
is important to be able, at compile-time, to either identify unconditional
goal independence, or construct correct and sufficient conditions for efficient
run-time checking of independence. This has to be done under realistic as-
sumptions about the binding information available to (or obtainable by) the
compiler. Although some independence conditions have been informally pro-
posed they generated redundant work, they applied only to a special case
of independence ("strict independence"), and they remained to be proved
sufficient. This paper a t tempts to fill the above mentioned gaps.

The rest of the paper proceeds as follows: in Section 2 strict goal inde­
pendence and and-parallel resolution of strictly independent goals are first
defined, and then it is proved that if strictly independent goals are executed
in parallel the solutions obtained are the same as those produced by stan­
dard SLD-resolution. It is also proved tha t , in the absence of failure, the
parallel proof procedure doesn't produce any additional work while the total
execution time is reduced. In Section 2.4 and 2.6 two sets of efficient condi­
tions for checking strict goal independence are proposed and proved correct,
corresponding to the cases in which the goals to be run in parallel are con-
sidered in isolation or, respectively, as part of a program. Finally, non-strict
independence is defined in Section 3 as a relaxation of the concept of strict
independence. The corresponding properties are then proved and conditions
shown for the case of parallel execution of non-strictly independent goals.
The special and important cases of clauses which have existential variables
and negative goals are treated respectively in Sections 2.7 and 3.3.

We also show in a running example how these results can be applied
to the automatic compile-time generation of &-Prolog's Conditional Graph
Expressions (CGEs) for controlling independent/restricted and-parallelism.
The results presented in this paper can also be used to prove the correctness
of the bit-vector method of Lin and Kumar [14], the SDDA approach of
Chang et al. [5], and of the Conditional Dependency Graphs and EGE
generation rules of Jacobs and Langen [12].

2 Strict Goal Independence and Parallelism

In this section we introduce the concept of strict independence of a set of
goals. Then we prove that if such a set is strictly independent and the
goals in the set are executed in parallel, the answer substitution obtained is
identical to that which would be obtained if they were executed sequentially.
Intuitively, this result guarantees that the answers to a query obtained by
executing a program in independent and-parallel will be the same as those
obtained from a sequential system.

Furthermore, we show that , except in the case of failure, the total amount

of work (resolution steps) performed by the parallel system is the same as
in a sequential system, and we also show that the total execution time is
lower than the sequential time. Finally, we show how to obtain a sufficient
condition for the strict independence of a set of goals. This is done first
by considering the goals in isolation, and then by considering them as part
of a program. These results are of particular importance because they can
be used for the generation at compile-time of sufficient conditions for strict
independence which can be checked at run-time with low overhead. Thus,
they represent the theoretical basis for automatic parallelization tools.

2.1 Strict Goal Independence

In the following definitions, as throughout the paper, the notation used
follows that of Lloyd [15] and Apt [2, 1].

Defini t ion 1 (variables in a goal) : Given any goal g, let us cali var(g)
the set of all the variables occurring in g . j

Defini t ion 2 (strict goal independence) : Two goals gi and g^ are said
to be strictly independent for a given substitution 9 iff var(g\9) n var(g20)
= $. N goals gi, • • • ,gn

 are said to be strictly independent for a given 9 if
they are pairwise strictly independent for 9. Also, two goals are said to be
strictly independent if they are strictly independent for any 9 (and again, we
can extend this definition to a set of goals).g

This same definition of strict independence can be applied also to terms
without any change. Note that the above definition considers the goals
after applying the substitution 9 to them. This means that g\ and #2 may
have no variables in common but at the same time they may not be strictly
independent for a given 9.

E x a m p l e 1 : Let us consider the two goals p(x) and q(y). They do not
have any variable in common, but they may be not strictly independent for
some substitution. For example, given 9 = {x/y}, we have p(x)0 = p(y)
and q(y)9 = q(y), so p{x) and q(y) are not strictly independent for this
substitution, because p(x)9 and q(y)9 share the variable y. On the contrary,
given 9 = {x/w,y/v}, we have p(x)9 = p(w) and q(y)9 = q(v), so p{x)
and q(y) are strictly independent for the given 9 because p(w) and q{y) do
not share any variable. Finally, note that p(a) and q(b), where a and b are
constants, are strictly independent for any d.g

Note that if a term (or a goal) is ground, then it is strictly independent
from any other term (or goal). In fact, if a term is ground, its set of variables
is empty, so the intersection of this set with any other set of variables will
be empty, which is a sufficient condition for strict independence.

Also, note that strict independence is not transitive, i.e. if we know that
<7i and #2 a r e strictly independent and also that 32 a n d #3 are strictly inde­
pendent, then we cannot conclude that g\ and gs are strictly independent.
Let us consider for example the goals p(x), q(y), and r(z) and the substi­
tution 9 = {x/f(w),y/a,z/g(w)}. It is easy to see that p(x) and q(y) are
independent w.r.t. 9, as well as q(y) and r(z). However, p(x)9 = p(f(w))
and r(z)9 = r(g(w)) so these two goals are not strictly independent w.r.t. 9,
because they share the variable w.

2.2 Parallel Execution of Strictly Independent Goals
The usual SLD-resolution proof procedure is sequential, in the sense that at
each step it selects only one goal in the current resolvent. If we want to run
some of the goals in this resolvent in parallel (because we have discovered
that they are strictly independent) we have to allow the selection of more
than one goal.

Suppose that we have G¿ = (gi,- • • ,gn)
 a s the current resolvent, and

that we know that g\ and #2 a r e strictly independent. The normal SLD-
resolution proof procedure with left-to-right selection rule would first select
<7i and, only when the proof of g\ has been completed, it would select and
try to prove «72- But we know that these two goals do not share variables,
so any binding created by one of them will never affect the other one. This
means that we can select g\ and 32 simultaneously, wait for the end of their
proofs and, if they both succeed, apply both the substitutions that they have
generated to the remaining goals gz, • • • ,gn- Note that the standardization
apart step (ensuring that all variables are "fresh") is still performed every
time a new input clause is selected during the proofs of both g\ and 32,
and needs to ensure that all the fresh variables are distinct in both of these
proofs.

We will prove that this parallelization of SLD-resolution maintains its
correctness and does not change the result of the whole proof. Also, we will
prove tha t , in the absence of failure, it does not introduce any new work
with respect to the sequential versión, this meaning that in the worst case
it is as efficient as its sequential versión.

2.3 Strict Goal Independence is Sufficient for Parallelizing

Looking at the sequential versión of the SLD-resolution proof procedure in
more detail, suppose that both g\ and 32 c a n D e proved true, and suppose
also that the corresponding proofs take k\ steps for g\ and k<¿ steps for g<¿-
This means that if we select g\ first, we end up with the new resolvent
Gi+ki = [92^1, • • • ,gn0i)- On the contrary, if 32 is selected first, then we
have Gi+k2 = (<7i#2> <7302> • • • ,gn&2)- We will prove that 0\ does not affect g2,
and also that 02 does not affect g\.

T h e o r e m 1 : If gi and 32 are strictly independent and 0; is the substitution
obtained from the proof of gi, i=l,2, then g20\ = 32 and g\02 = <7i-

Proof: We only prove that g20\ = g2, the other result having the same proof.
Due to the fact that 0\ is obtained in k\ steps, we have 0\ = 0\\,... ,0\kx-
Now, each 0u contains variables which come from gi0n . . . 0u-i and/or vari­
ables from an input clause, which are all fresh variables because of the stan­
dardizaron apart step that is performed every time an input clause is se­
lected. This means that dom{0n) n var(g2) = $ for each i = 1 , . . . , k\, so
also dom{0\) n var(g2) = $ because dom{0\) C (var(0n) U . . . U var{0\kx))-
Thus, 0i cannot affect any variable in 32, and therefore g20i = 32••

Let us now continué to follow the two alternatives, tha t one in which
<7i is selected first and the other one in which 32 is. In the first case, and
using the result of Theorem 1, we have Gi+¡ei = (g2,g30i, • • • ,gn&i), so now

<72 is selected and, because of the fact that no binding has been applied to
it, its proof will take exactly &2 steps (as if it were selected first). So we
have Gi+ki+k2 = {93^1^2, ••• ,9n^i^2)- In the other case (first we select g<¿
and then gx) we have Gi+k2+kl = (g302Oi, • • • jffnMi)-

From the switching lemma in [15] we have that G¿_|_¿1+¿2 = G¿_|_¿2+¿1,
i.e that the order in which g\ and 32 a r e selected in the sequential SLD-
resolution is not significant for the resulting binding over the remaining goals.
This is true in general (also for non independent goals), but in our case we
have more: because of Theorem 1 we know that g\ and 32 do not need to
exchange any binding information, so not only can we run them sequentially
in any order, but also we can run them in parallel without changing the
result and without incrementing the number of resolution steps.

Thus, if we define 9 = 9\92 = 929\, then after having run g\ and 32 m

parallel we have the new resolvent (g39,... ,gn9) in max{k\, k2} steps, given
that two theorem provers are applied in parallel. Also, the total amount of
work performed is the same as in the sequential case, i.e. k\ + k2 steps.2

2.4 A Correct Local Condition for Strict Goal Indepen-
dence

Checking the strict independence of a set of goals in the resolvent at run-time
is trivial, since it is sufficient to apply the definition. However, computing
the set of variables for each goal and checking that their intersection is
empty could originate large amounts of run-time overhead. In general, given
a collection of goals we would like to be able to genérate at compile-time an
efficient, sufficient condition for their strict independence. We will first treat
the case in which goals to be run in parallel are considered in isolation, rather
than as part of a program. This means that we have to give a condition that
does not depend on any particular substitution, but which when checked
later at run time during the proof of some given query (in which those goals
are called) only succeeds if the goals are strictly independent. We would of
course also like that this condition involve less run-time overhead than the
trivial check for goal independence. One particularly useful way of defining
such a condition is as follows:

Defini t ion 3 (i_cond) : Given a collection of goals gi,...,gn>
 an i-cond

(independence condition) is either "true" or a conjunction of one or more
of the following goals: ground(x), indep(x,y).^

To understand the semantics of i_cond, note that x and y can be vari­
ables, terms, or goals, tha t ground(x) succeeds when x is ground, and that
indep(x, y) succeeds when x and y do not share variables, i.e. indep(x, y) cor-
responds to a test for goal- and/or term independence as defined in Section
2.1.
Also, for syntactic convenience, we can write indep([(xi, y\),..., (xm, ym)])
which is equivalent to indep(xi, y\),..., indep(xm,ym) and we can also write
indep([(xi, [yn, • • •, J/in]])> • • • instead of the equivalent form indep(xi, j / n) ,
. . . , indep(x1,yln),

2In a practical implementation this is only true, of course, if the parallelism overhead
is sufñciently low. However, low overhead appears to be attainable in most cases as
demonstrated by systems such as RAP-WAM [10, 9] and APEX [14].

E x a m p l e 2 :

• ground(x) fails for the substitutions 0\ = {x/f(y)}, 02 = {x/y}¡ and
03 = {x/f(g(l, y, 3))} but succeeds for all of 0\ = {x/f(a)}, 02 =
{x/a}, and03 = {x/f{g{l,2,S))};

• indep(x,y) fails for the substitutions 0\ = {x/y}, 02 = {x/f{w),
y/[l,2,w]}, and 03 = {x//(gr(l , y, 3))} but succeeds for all of 0\ =
{x/f{w), y/[l,2,z]}, 02 = {x/f{a)}, and 03 = {x/f{y),y/a};

• ground([a, b, c]) always succeeds, while indep(f(x),g(y)) succeeds for
0 = {x/a}, but not for 0 = { y / z } . |

For an i_cond to be locally correct w.r.t. strict independence, we have to
be sure that such i_cond is sufficient for the strict independence of the goals

9l,---,9n-

Defini t ion 4 (local correctness of an i_cond w .r . t . strict ind.) : An
i_cond is said to be locally correct w.r.t. strict independence for a set of
goals <7i,... ,gn iff, for any substitution 0, it holds that if ijcond 0 succeeds
then <7i,... ,gn are strictly independent for d.g

As mentioned before, a trivial (but very inefficient) locally correct i_cond
w.r.t. strict independence can always be constructed as the conjunction of all
indep(goali,goalj)Vi,j,i 7̂ j . We will now show how to genérate at compile
time a more efficient, locally correct ijcond w.r.t. strict independence for a
set of goals.

Defini t ion 5 (S V G , S V I) : Given a collection of goals g\,... ,gn, let us
define the two sets SVG and SVI as follows:

• SVG = {v such that 3i,j,i 7̂ j with v £ var(gi) and v £ var(gj)};

• SVI = {(v,w) such that v ^ SVG and w ^ SVG and 3i,j,i 7̂ j with
v £ var(gi) and w £ var^gj)}.^

Let us now consider a particular ijcond, tha t is

ground(SVG), indep(SVI).

We will show that this ijcond is locally correct w.r.t. strict independence.

T h e o r e m 2 : The i.cond ground(SVG),indep(SVI), where SVG and SVI
are computed on the collection of goals g\,...,gn, is locally correct w.r.t.
strict independence for those goals.

Proof: We will prove the theorem for n = 2. The extensión to a larger
number of goals is straightforward and based on the same idea. We have to
prove tha t , for any substitution 0, if both ground(SVG0) and indep(SV 10)
succeeds, then var(gi0)r¡var(g20) = $. Recall tha t ground(SVG0) succeeds
iff Vu £ SVG, v0 is ground, and indep(SVI0) succeeds iff V(ui,U2) £ SVI,
var(vi0)r¡var(v20) = $. Now, suppose, by contradiction with what we want
to prove, that there exists a variable v in var{g\0) n var(g20). This variable
v can be the result of applying 0 either to some variable already shared by
<7i and 32, o r to two different variables occurring in g\ and 172- In a n v case,
a contradiction arises. In fact:

• » / xO^x e SVG, because we have assumed ground(SVGO) to suc-
ceed, and

• /9(ui,U2) with vi £ uar(<7i) and V2 £ far(<72) such that v £ uar(ui#)
and v £ uar(u2^) because we have assumed indep(SV 10) to succeed.

This means that no variable can be in var{g\9) n uar(<72#), so 31 and 32 a r e

strictly independent.B

Precise conditions for the local correctness of an i_cond w.r.t. strict inde-
pendence were first proposed, to the best of our knowledge, in [10]. Those
conditions are herein proved correct and enhanced by checking independence
on a minimal set of pairs of variables (rather than on a list, which can incur
in unnecessary checks). For efficiency reasons, we can improve the condi­
tions further by grouping pairs in SVI which share a variable x, such as
(x, y i) , . . . , [x, yn) (let us cali this set of pairs Sx), by writing only one pair
of the form (x, [j / i , . . . , yn]), let us cali it Px. Computing indep(x, y) implies,
at least in a naive implementation, computing the var(x) and var(y) sets,
and then their intersection. Although indep(x, [y\,... ,yn]) can be expanded
syntactically to the n indep{x,y\),... ,indep(x,yn) checks, it can be more
efficiently implemented directly by first computing var(x), and then each
one of the var(yi) sets, checking their intersection with var(x). In this way,
the var(x) set needs to be computed only once.

When, for some two variables x and y appearing in SVI, we have Sx n
Sy = S ^ $, then we have to choose whether the pairs in S are to be grouped
in Px or in Py. This choice should be made in such a way that it minimizes
the number of variable occurrences in the resulting SVI.

E x a m p l e 3 : The following table lists a series of sets of goals, their asso-
ciated SVG and SVI sets, and a correct local i_cond w.r.t. strict indepen­
dence:

G o a l s
P{x),q{y)
p(x),q(x)
p{x),q{y),r(y)
p(x,y),q(x,y)
P(x,y),q(y,z)
p(y,z),q(w)
p(y,z),q(w)

SVG
$

{x}
{y\

{x,y}
{y}
$
$

SVI
{(«,»)>

$
$
$

{(*,*)}
{{y,w),{z,w)}

{(w>[y>*])}

i_cond
indep(x, y)
ground(x)
ground(y)

ground([x,y])
ground(y), indep(x, z)
indep([(y,w),(z,w)})

indep([(w,[y,z})})

2.5 Applicat ion Example: Local Correctness o f C G E s w.r . t .
Strict Independence

The results presented in the previous sections apply in general to all paral-
lel execution models for logic programs which exploit IAP. As an example,
in this section we will apply such results to a particular approach: inde-
pendent/restricted and-parallelism. This approach combines compilation
technology and parallel execution: it introduces parallelism in a given pro-
gram by adding at compile time "graph expressions" to some clauses. The

evaluation of such expressions results in parallel execution of sets of goals
at run-time. The discussion will be presented in terms of the "RAP-WAM"
model [10]. This model extends DeGroot's seminal work on Restricted AND-
Parallelism [8] by providing backward execution semantics, improved graph
expressions (&-Prolog's "Conditional Graph Expressions" - C G E s - and other
constructs),3 and an efficient implementation model based on the Warren
Abstract Machine (WAM) [19]. &-Prolog, the source language in this model,
is basically Prolog, with the addition of the parallel conjunction operator
"&" and a set of parallelism-related builtins, which includes several types of
groundness and independence checks, and synchronization primitives. Par­
allel conditional execution graphs (which cause the execution of goals in par­
allel if certain conditions are met) can be constructed by combining these
elements with the normal Prolog constructs, such as "->" (if-then-else). For
syntactic convenience (and historical reasons) an additional construct is also
provided: the Conditional Graph Expression (CGE).

Defini t ion 6 (C G E s) : A CGE (Conditional Graph Expression) is a struc-
ture of the form (i_cond => goali & goa¡2 & . . . & goal^¡) , where the
i_cond is an independence condition as defined previously, and each goali,
i = 1 , . . . ,n, is either a literal or (recursively) a CGE. g

CGEs appear as literals in the bodies of clauses. From an operational (Pro­
log) point of view, a CGE can be viewed simply as syntactic sugar for the
&-Prolog clause:

(i_cond -> goali & goa¡2 & . . . & goal^¡
; goali . goal2 fifoa/jv)

Therefore, the operational meaning of the CGE is "check i_cond, if it succeeds
execute the goali m parallel, else execute them sequentially." Since goal^ c a n

themselves be CGEs, CGEs can be nested in order to créate more complex
execution graphs.

Defini t ion 7 (local correctness of a C G E w . r . t . strict ind.) : A CGE
(i_cond => goal\ & goa¡2 & . . . & fifoa/jv) is said to be locally corred
w.r.t. strict independence iff i_cond is a corred local condition for goali, • • •,
goaln w.r.t. strict independence.g

Le., a CGE is locally correct w.r.t. strict independence if for any substitu-
tion 9, it holds that if i_cond 9 succeeds then goali,... ,goaln are strictly
independent for 9.

The problem of automatically annotating a given program with &-Prolog
constructs (such as CGEs), for which the results in this paper are funda­
mental, involves repeatedly selecting (grouping) a particular set of goals,
generating a correct ijcond for their independence, and rewriting the pro­
gram so that the selected goals are executed in parallel only if the ijcond

3&-Prolog's constructs offer Prolog syntax -so that it is possible to view the annotation
process as a rewriting of the original program- and permit conjunctions of "checks," thus
lifting limitations in the expressions proposed by DeGroot which prevented the use of the
i_conds presented in this paper.

succeeds. Heuristic measures can be used in the goal selection process, based
on minimizing the overhead involved in the evaluation of ijcond, maximizing
the probability of success of i_cond, and granularity considerations. Further
discussion of these heuristics is outside the scope of this paper (see [18] for
more details). A system which automatically performs such an annotation
process, MA3, and which also uses global information as described in sec-
tion 2.6, is described in [21, 9]. Some examples of locally correct CGEs w.r.t.
strict independence are given in the following example.

E x a m p l e 4 : The following CGEs are locally correct w.r.t. strict indepen­
dence:

(indep(X.Y)
(ground(X)
(g round([X,Y])
(g round(Y) , indep(X,Z)
(ground(Y)
(groundCXj.indepCCCY.Wl.CZ.W]])

2.6 A Correct Global Condition for Strict Goal Indepen­
dence

In Section 2.4 we described a way to write a correct local condition for the
strict independence of a given set of goals. We also proved that such a con­
dition, obtained using only local information about the goals, is sufficient
for the strict independence of the goals. However, if the goals in the set are
not considered in isolation, but rather as part of a clause, sometimes this
condition may be too strong, i.e. it may be that simpler i_conds than those
presented in Section 2.4 are sufficient for guaranteeing the strict indepen­
dence of these goals for the substitutions affecting them in any proof which
can be constructed with the given clause. Performing clause-level analysis
in order to gather information about such substitutions is common, for ex­
ample, in current Prolog compilers. Furthermore, if the whole program in
which the clause appears is also considered, even more information can be
available at compile-time (at least in "abstract" form) regarding the substi­
tutions affecting these goals in any proof which can be constructed with the
given clause in the given program. This is, for example, the case if global
analysis techniques are applied to the program (e.g. see [5, 7, 21, 16, 4]).

In order to handle the availability of such information, we define now a
new kind of correctness for an i_cond which is less strong than the previous
one but it is still sufficient for the strict independence of the goals under such
circumstances. To do tha t , we first have to introduce some other concepts.

Given a logic program, during the proof of some goal its variables can
be bound to any term of its first order language. This set of terms can be
infinite, but an elegant way to represent it in a finite structure is by using an
abstract domain, i.e. a finite set each element of which is used to represent
an entire class of terms. This switch from the set of all terms to the abstract
domain is then used to replace substitutions with abstract substitutions that
bind variables to elements of the abstract domain. Obviously, any abstract
substitution represents a possibly infinite set of normal substitutions.

=> p(X) & q(Y)
=> p(X) & q(X)
=> p(X,Y) & q(X,Y)
=> p(X,Y) & q(Y,Z)
=> p(X) & q(Y) & r(Y)
=> p(X,Y,Z) & q(X,W)

E x a m p l e 5 : Consider the following abstract domain {free, any,ground,
bottom}. A possible abstract substitution binds a free variable to "free", a
variable bound to a ground term to "ground", a variable that cannot be bound
consistently with others to "bottom", and any other variable to "any".^

Defini t ion 8 (entry m o d e) : An entry mode, or query form, for a given
program is a query whose arguments belong to a given abstract domain.^

Thus, an entry mode may represent a possibly infinite set of queries for the
given program.

E x a m p l e 6 : The query form p^ground, ground) represents all the possible
queries p{t\,t<i) where t\ and ti are ground terms.^

Defini t ion 9 (global correctness of an i_cond w .r . t . strict ind.) : Let
us consider a program P, a collection of goals gi,...,gn in the body of a
clause of P and a set S of entry modes for P. Let p be a path which leads
from an actual query represented in S to this collection of goals, and let 9
be the composition of all the substitutions in p. Also, let SS be the set of all
the Os in all such paths. An i_cond is said to be globally corred w.r.t. the
strict independence of gi,... ,gn iff, for each 9 in SS, it holds that if i_cond9
succeeds then gi, • • • ,gn

 are strictly independent for d.g

In words, we relax the local correctness of an i_cond w.r.t. strict indepen­
dence by restricting our attention from the set of all the substitutions to the
set of the substitutions that can really occur at the considered point of the
program. Note that the set SS is represented in the abstract domain by the
l.u.b. of all the abstract substitutions corresponding to the substitutions in
SS.

The following example shows that we are really relaxing the definition,
because there exist some ijconds tha t are globally correct but not locally cor-
rect for strict independence, i.e. the set of locally correct i_conds is included
in the set of globally correct i_conds.

E x a m p l e 7 : Consider the program
p(x) <- q(x),r(x),s(x).
q(a).
Suppose that we want to parallelize the execution of r(x) and s(x) in the first
clause. Following the approach of Section 2.4, we would consider the i_cond
ground(x), which we already know to be locally correct. Let us now consider
the query form p(any), which represents queries such as p(a) and p(x). The
SS set for r(x),s(x) given this query form is {{x/a}} (and, in abstract form,
perhaps {{x/ground}}), so it can be easily seen that the empty ijcond, which
is not locally correct, is on the contrary globally correct.^

As we did for local correctness, we will now show how to write, for a given set
of goals, an ijcond that is always globally correct for the strict independence
of those goals.

Defini t ion 10 (SVGg,SVIg) : Given a logic program P and a sequence of
goals <7i,... ,gn appearing in the body of some clause of P, we define the two
sets SVGg and SVIg as follows:

• SVGg = SVG — {x such that V0 £ SS x0 is ground.};

• SVIg = SVI — {(x,y) such that V0 £ SS x0 and y9 are strictly
independent} .g

Note that the set SS used in the above definition is as in Definition 9.
Now we can consider, given a logic program P and a sequence of goals

<7i,... ,gn appearing in the body of some clause of P, the i_cond

(ground(SV G g), indep(SV Ig)).

It is worth noting tha t , while in general this i_cond has less checks than
the corresponding locally correct one, thus gaining in efficiency at run time,
it needs to use the global information about the given logic program and
query form in order to construct the SVGg and SVIg sets.

T h e o r e m 3 : Given a logic program P, a sequence of goals gi, • • • ,gn
 aP-

pearing in the body of some clause of P, and the two sets SVGg and SVIg as
defined in Definition 10, the i_cond (ground(SVGg),indep(SV Ig)) is glob-
ally correct for the strict independence of these goals.

Proof: Obvious from the definition of global independence and of the sets
SVGg and SVIg.u

E x a m p l e 8 (global correctness of C G E s w .r . t . strict ind.) : The
CGE in the following clause is globally correct w.r.t. strict independence,
given SS = {91,92},91 = {x/f(a),y/a,z/w},92 = {x/b,y/b,z/a,w/b} (rep-
resented perhaps by {x/ground, y/ground, z/any, w/any}):
s(X,Y,Z,W) : - (indep(Z.W) => p(X,Y,Z) & q(X,W)) .
Note that SVG = {x}, SVI = {(y,w),(z,w)}, SVGg = $; and SVIg =
{(z,w)}. Also, note that this same CGE is not locally correct w.r.t. strict
independence.g

2.7 Existential Variables

In this section we will treat the case of clauses in which existential vari­
ables (defined below) occur. This case turns out to be of great practical
importance. We will show that , by looking at such variables and using the
definition of global correctness of i_conds, it is in some cases possible to pre-
dict the unconditional failure of an ijcond corresponding to a collection of
goals and in others to simplify the i_cond by simply looking at the clause
containing such goals.

Defini t ion 11 (ex is tent ia l variable) : A variable x which appears in a
clause C is an existential variable iff it doesn't appear in the head ofC.^

Defini t ion 12 (first occurrence) : The first occurrence of a variable x in
a clause C is the leftmost occurrence of that variable.^

T h e o r e m 4 : Consider a collection G of goals in the body of a given clause,
and the set Vex of existential variables appearing in G. If any variable in Vex

occurs in more than one goal of G, and one of these occurrences is the first
occurrence of that variable, then the goals in G are not strictly independent.

Proof: Since an existential variable does not appear in the head of the
clause, it cannot be bound before its first occurrence. Therefore, the goals
cannot be strictly independent because they share a variable.g

T h e o r e m 5 : Consider a collection G of goals in the body of a given clause,
and the set Vex of existential variables appearing in G. Consider also the set
F of all the variables of Vex which appear only once in G and such that
this one occurrence is their first occurrence. Then the variables in F are
(pairwise) strictly independent.

Proof: Consider two variables in F, say x and y. Again, since an existen­
tial variable cannot be bound before its first occurrence, var(x) = {x} and
var(y) = {y}, so var{x) n var(y) = $.>

This means that the independence condition for each pair of these variables
can be avoided from the i_cond.

Except for cases such as those which will be treated in Section 3, the
appearance of existential variables in a clause implies a "hard" data depen-
dency between goals and it can be used as the primary heuristic in the goal
selection (grouping) process mentioned in Section 2.5.

E x a m p l e 9 (ex is tent ia l variables and C G E s) : The CGE in the fol-
lowing clause is globally corred w.r.t. strict independence:
s(X,Y) : - (ground(Y) => p(X,Y) & q(Y,Z)) , t (Y , Z) .
Note that the indep(x, z) check is not required. However, note that this CGE
is not locally corred w.r.t. strict independence. Conversely note that the
following CGE, although locally corred w.r.t. strict independence, can never
succeed since p(x, y) and q(x, y) cannot be strictly independent:
s(X) :- (grornid([X,Y]) => p(X,Y) & q(X,Y)) m

3 Non-Strict Goal Independence

In order to open the possibility of making more goals available for parallel
execution, in this section we relax the concept of independence, by allow-
ing the goals to be run in parallel to share some variables, even if only in
a restricted situation. We will first define a new independence condition,
called non-strict independence, and then show properties of the parallel exe­
cution of non-strictly independent goals which are similar to those of strictly
independent goals.

Defini t ion 13 (v- and nv-binding) : A binding x/t is called a v-binding
if t is a variable, otherwise it is called an nv-binding.^

Defini t ion 14 (non-strict independence) : Consider a collection of goals
<7i,... ,gn and a given substitution 9. Consider also the set of shared variables
SH = {v | 3i,j,l < i,j < n,i ^ j,v £ (var(gi0) n var(gj0))} and the set
of goals containing each shared variable G(v) = {gi | v £ var(gi0), v £ SH}.
Let O; be the answer substitution for giO. The given collection of goals is
non-strictly independent for 9 if the following two conditions are satisfied:

• for all v £ SH, at most the rightmost g £ G{y) nv-binds v;

• Vi = l,...,n, if var(gi0) contains more than one shared variable, say
xi,... ,Xk, then x\9i,... ,Xk9i are strictly independent.^

Intuitively, the first condition of the above definition requires that at most
one goal further instantiates a shared variable. The choice of the rightmost
goal is not arbitrary. In fact, not only do we want to parallelize goals that
do not need any communication during their execution, but also we would
like not to introduce any additional work with respect to the sequential
execution. If the goal that nv-binds x is <7¿ and there is another goal gj, with
j > i, that also contains x, then in the sequential execution with the usual
left to right selection rule the execution of <7¿ will restrict the search space of
gj, because 0¿ will affect gj. In the parallel execution, g¡ will be executed as
it is (without any further instantiation of x), therefore leading to a possibly
greater number of steps.

The second condition eliminates the possibility of aliases (of different
shared variables) which are created by the execution of one of the parallel
goals. In fact, an alias is not only a restriction of the search space (to be
avoided because of the reason just discussed), but it also creates an indirect
dependence among different shared variables.

A particular case of non-strict independence was hinted at by DeGroot
in the "qsort" example given in [8]. The MA3 system, presented in [21],
incorporated an earlier concept of non-strict independence. The two prob-
lems that the above definition tries to characterize and avoid have also been
informally discussed by Winsborough and Waern in [23].

Corollary 1 If a collection of goals is strictly independent for a given 9,
then it is also non-strictly independent for 9.

Proof: The two conditions in the definition of non-strict independence are
always satisfied for a collection of strictly independent goals. In fact, strictly
independent goals do not share any variable, while the two conditions are
only about shared variables .g

3.1 Non-Strict Independence is Sufficient for Parallelizing

In this section we will show that if we have a set of goals that are non-strictly
independent, then we can run them in parallel (after a variable renaming
phase) while obtaining the same result as in the usual proof procedure. This
is a significant improvement on the result of Section 2.3, in the sense that
we now show that we can relax the condition of strict independence and still
maintain parallelism. But it is now necessary to perform a global analysis
of the program to check this independence condition, i.e. no locally correct
i_cond can in general be generated for checking the non-strict independence
of a set of goals. It has been shown, however, that the overhead involved in
such an analysis can be reasonable ([21]).

Let us consider a sequence of goals gi, • • • ,gn
 m the current resolvent G¿,

and the sequential SLD-resolution as proof procedure. Suppose also that
9 i = 9*j9 f ° r each j , tha t g\ and g\ are non-strictly independent for 9, tha t
each gj can be proved in the given program in kj steps, for j = 1,2, and
that 9j is the binding obtained by proving gj, for j = 1,2.

If <7i is selected first, then we have Gi+k1 = (g2^i, • • • ,9n^i)- Now, it
cannot be proved, as we did in Section 2.3, that 32^1 = 92, because there
may be some variables shared by g\ and 32 that have been bound in 9\. A
simple example can show that :

E x a m p l e 10 Consider the program:
p{z,z).
q(a).
and the goal <— p(x,y),q(y). The two goals p(x,y) and q(y) are non-strictly
independent, because only q will nv-bind the shared variable y and p contains
only one shared variable. If we use a left-to-right selection rule, we have
9\ = {x/z, y/z} from the proof of p(x, y), and 9'2 = {z/a} from the proof
of q{y)0\, i.e q(z). So at the end we obtain the substitution 9 = 9i9'2 =
{x/a,y/a,z/a}. If on the contrary we use a right-to-left selection rule, then
we have ^2 = {y/a} from the proof of q(y), and 9[= {x/a,z/a} from the
execution of p(x,y)92, i.e. p(x,a). So the final substitution in this case
is again 9 = ^2^1 = {y/a, x/a, z/a}, which is the same as before as we
know from the switching lemma in [15]. The main thing to note here is that
9\ 7̂ 9\ and ^2 7̂ 9'2, which means that p(x,y) and q(y) need to exchange
some kind of binding information during their proofs. In fact, if we try to
prove them in parallel as they are, we will obtain 9\ from the proof of p(x, y),
92 from the proof of q(y), and 9\92 = {x/z, y/z} or ^2^1 = {y/a,x/z} as

final substitution, that is obviously incorrecta

We will now show that a simple renaming of the shared variables in g\ and
<72 will solve the problem and will allow us to run the two goals in parallel
without changing the result of the whole proof and maintaining the same
number of resolution steps.

In this section we talk about the parallelization of only two non-strictly
independent goals, but the result can be easily generalized to an arbitrary
number of goals. While there is no conceptual difference in the overall proof,
the renaming algorithm for two goals is only a special case of the general
one, so we will here describe the general algorithm.

Defini t ion 15 : Given a collection of non-strictly independent goals g\,...,
gn, let us define, for every x shared by two or more of the goals and nv-bound
by one of them, X(i) as the set of all the occurrences of the variable x in the
goal gi. Also, let us cali b(x) the goal that is going to nv-bind x. Now, for
every x, we rename all the occurrences of x except those contained in b(x),
such that, for every gi, all the occurrences of x in X(i) have the same ñame
and, given gi and gj, the occurrences of x in X(i) have a ñame different from
the ñame of those in X(j). Then, for every new variable x' introduced in
this renaming process of x, we add a new goal x' = x to the given collection.^

The idea is that we want different occurrences of x in different goals to have
different ñames. These goals of the form x' = x are called "back-binding"
goals, and are somewhat related to the back-unification goals defined in [13],
and the closed environment concept of [6].

Now we can show that the problem described in Example 10 can be
solved by the renaming.

E x a m p l e 11 Let us consider again the program of Example 10 and the col-
lection of goals p(x,y),q(y). The renaming algorithm will obtain the new col­
lection p(x,y'),q(y),y' = y. Now we execute p(x,y') and q(y) in parallel ob-
taining the respective answer substitutions 0p = {x/z,y'/ z} and 0q = {y/a}.
Then we execute the goal y' = y with the substitution 0pq = 0p0q applied
(note that 0p0q = 0q0p because the two goals are strictly independent after
the renaming), that is z = a, which returns the obvious answer substitution
01 = {z/a}. Now it is easy to see that 0pq0i, = {x/a,y' /a,y/a, z/a}, which
is equivalent to the original 0 computed in Example 10. Thus we obtain the
corred answer substitution.^

Let us now show the result of the renaming algorithm on a more compli-
cated collection of goals.

E x a m p l e 12 Consider the collection of goals (r(x,z,x), s(x,w,z), p(x,y),
q(y)) in the resolvent. Suppose, in order to make them non-strictly indepen­
dent, that p(x,y) is the only goal that will nv-bind x, q(y) is the only one
nv-binding y, and that no goal will nv-bind z. According to the renaming
algorithm, we will write this new collection of goals:
r(x',z,x'),s(x",w,z),p(x,y'),q(y),x' = x,x" = x,y' = y.m

Note that in the case of only two given goals, every shared variable introduces
at most one new variable, while in the general case it can introduce as many
new variables as the number of goals in which it occurs.

Having dealt with the need to rename shared variables, we can now con­
tinué with the problem of showing that non-strict independence is sufficient
for parallelizing.

Starting with the given collection of goals g\,... ,gn, where g\ and #2 a r e

non-strictly independent, we will obtain, after the renaming, the new collec­
tion of goals fifí, <72) T\,... , r¿ ,gs , ... ,gn, where g\ is <7¿ with some variables
renamed (as described in the algorithm), and r\,..., r¿ are the back-binding
goals introduced by the renaming.

It is easy to see that the renaming algorithm does not change the result
of the proof of the given goals, since the renaming simply explicitates some
bindings. So the two collections of goals gi, • • • ,gn

 a n d g'i, g<¿, T\, ..., r¿,
93, • • • 5 9n produce the same final substitution (up to bindings of the new
variables). But now, due to the renaming, g[and g'2 are obviously strictly
independent (in fact, the renaming makes sure that they do not share any
variable), so they can be run in parallel, as shown in Section 2.3.

Also, due to the first condition of the definition of non-strict indepen­
dence, we are also sure not to introduce any additional step in the parallel
execution of a collection of non-strictly independent goals.

Now we have to consider the steps in the execution of the back-binding
goals r i , . . . , r ¿ . Each one of them is of the form x' = x, where x' is a new
variable introduced by the renaming of x. While x can be nv-bound during
the proof of <72> x' is v-bound by all goals. So the goal x' = x always succeeds
and needs only one resolution step.

Thus, we can conclude that g[and g'2 can be run in parallel without
changing the result of the whole proof. Also, the number of steps necessary
to prove them goes from k\ + &2 to max{k\, ^2) + k if two theorem provers
to be used in parallel are available.

3.2 A Correct Global Condition for Non-Strict Indepen-
dence

Given a logic program P and a collection of goals gi, • • • ,gn
 m the body

of some clause of P, and assuming that some amount of global information
about the bindings occurring in P is available at compile-time, we would like
to be able to write a condition (i.e., an i_cond) on the variables in these goals
that is sufficient to guarantee their non-strict independence at run-time, i.e.,
a condition similar to that of Section 2.6 but applied to non-strict indepen­
dence. However, it is important to note that whereas determining strict
independence only requires knowledge of 0, non-strict independence requires
information on 0¿ as well, which cannot be obtained from an i_cond check
previous to the parallel execution of the goals. This information can only
be obtained from global analysis and, therefore, only a global independence
condition can be generated for non-strict independence. Therefore, we only
define global correctness of an i_cond w.r.t. non-strict independence.

Defini t ion 16 (global corr. of an i_cond w .r . t . non-str ict ind.) : An
i_cond is said to be globally correct w.r.t. non-strict independence for a set
of goals gi,...,gn in a program P and with a set of entry modes SS iff,
V0 e SS, if i_condO succeeds, then gi,...,gn

 are non-strictly independent
for 0.u

Above, the set SS is as defined in Definition 9. Also, in the following para-
graphs SVI and SVG are as defined in Section 2.4, and SVGg and SVIg

are as in Section 2.6.
The main difficulty in generating a globally correct ijcond for non-strict

independence comes again from the fact that the definition of non-strict
independence is given in terms of variables in 0 and OÍ, whereas during com-
pilation, and unless an extremely sophisticated global analysis is available,
we can only refer to variables in the program. Therefore, we would like to
transíate the conditions in definition 14 into conditions involving the pro­
gram variables. The nature of such conditions will of course be very closely
tied to the power of the global analysis. Here we present conditions cor-
responding to a type of information which appears feasible to obtain with
current abstract interpretation techniques: information about whether pro­
gram variables will be v- or nv-bound at run-time, and about the possible
sharing of variables among terms. Relatively conventional abstract analyz-
ers can obtain the former kind of information. Recently, such techniques
have been extended in order to accurately obtain the latter kind of informa­
tion, as in [17]. Given such global information, a set S can be constructed
which contains all shared program variables which are known to be v-bound
in all Os in SS, whose occurrences are all v-bound by all <7¿ in which they
appear, except at most the rightmost one, and which are independent from
other variables in S appearing in the same goal. It will later be shown
that the variables in S meet the conditions in the definition of non-strict
independence.

Given the set S, consider the set SD = 5 x 5 — {{x,x),x £ 5 } —
{(x,y),3gi,x £ <7¿,y £ g{\ (i.e., the set of pairs of variables of 5 that need
to be checked for independence), the set of non-shared variables SI = {x
such that x appears in at least one pair in SVIg}, and the set SSI of pairs

of variables in S and SI which may be dependent, i.e., SSI = {(x,y) such
that x £ S and y £ SI and they are in different goals}.

Defini t ion 17 (SVGns, SVIns) : Given a logic program P and a sequence
of goals gi,... ,gn in the body of some clause of P, we define two sets SVGns

and SVIns as follows:

• SVGns = SVGg - S;

• SVIns = (SVIg USDU SSI) - SIP,
where SIP is the set of pairs in (SVIg U SD U SSI) which are known
to be independent due to global analysis.^

In words, SVGns contains all SVGg except those variables meeting the non-
strict independence conditions (S). SVIns makes sure that , in addition to
the normal pairs to be checked for strict independence (SVIg), also variables
in S are mutually independent and independent from those in the pairs in
SVIg. The pairs that are known to be already independent (SIP) are, of
course, excluded.

Now we can consider this particular i_cond:

ground(SVGns),indep(SV Ins).

The following theorem shows that this i_cond is sufficient for the non-strict
independence of g\,... ,gn.

T h e o r e m 6 : The i_cond (ground(SVGns),indep(SVIns)), where SVGns

and SVIns are computed on the collection of goals gi,...,gn
 and by using

abstract analysis on the given program P, is globally corred w.r.t. non-strict
independence for those goals.

Proof: The definition of non-strict independence imposes conditions on the
set of variables actually shared by the goals g\,... ,gn. These variables will
appear in one or more of the terms to which the variables in the program
are bound by the Os in SS. Such program variables belong in principie to
SVGuSI. Except for the program variables in S, all other variables in SVG
are either known to be ground or checked for groundness and thus contain
no variables. Therefore, variables can only appear in the terms to which the
program variables in S and SI are bound. The success of the independence
check on the pairs in SVIg assures that none of the variables in SI is shared.
Therefore, only the variables in the terms to which the variables in S are
bound can be shared. By definition of the set S, these variables will not
be aliased upon success of their corresponding goals (provided they weren't
before) and they meet the binding conditions. However, these variables
could not have been aliased before (either directly among themselves or
indirectly through the variables in SI) because of the success of the checks
for independence of the pairs in (SD U SSI).^

E x a m p l e 13 : Given the collection of goals p(f(x), g(y,z,l,m,n)), q(x,w,
m,v), r(y,h(k,n,v)) and the global knowledge that m is ground in SS, that
w and z as well as x and k are independent in SS, and that x,y meet the
single, rightmost goal nv-binding and non-aliasing conditions, we have the

sets: SVGg = {x,y,n,v}, S = {x,y}, SVIg = {(z,k),(l,w),(l,k),(w,k)},
SD = $; SI = {z,w,k,l}, SSI = {(x,k),(y,w)}, SIP = {(w,z),(x,k)}.
Thus, SVGns = {n,v}, and SVIns = {(w,k), (z,k), (l,w), (l,k), (y, w)}. •

E x a m p l e 14 (global correctness of C G E s w . r . t . non-str ict ind.) :
Given the following goals in a difference-list quick-sort program
q s o r t (S , S o r , [P | L s]) , qsort (L,Ls ,R)
and the knowledge that s,l,p are ground in SS, that ls is a first occurrence
(and therefore independent from all other variables), and that the first qsort
cali nv-binds ls, the following CGE is globally corred w.r.t. non-strict inde-
pendence:
(i ndep (So r ,R) => q s o r t (S , S o r , [P | L s P]) & q s o r t (L , L s , R)) , LsP=Ls. a

The type of global information needed for the construction of the sets
SVGns and SVIns can be provided only by a relatively sophisticated ab­
stract interpreter, which has to be able to detect both groundness and pos-
sible sharing in a set of variables. For example, such an abstract interpreter
which can be used for non-strict as well as for strict independence is de-
scribed in [17].

3.3 A Special Case of Non-Strict Independence: Negative
Goals

Because of the definition of negation in Prolog as negation by failure, we can
easily see that no negative literal can ever nv-bind any variable or produce
any alias. In fact, even when a negative goal succeeds, this means that
the corresponding positive one failed, so that any bindings created by the
positive one are undone.

Let us now consider a collection of goals g\,... ,gn in the body of a clause
of a Prolog program, and let us suppose that some of the <7¿ are positive and
some negative literals. Because of the above consideration about negative
literals (that can be formally derived also by appropriate global analysis),
the following facts hold:

• for each shared variable x, if x occurs only in negative goals or in at
most one positive goal which is to the right of the negative ones, then
x £ S;

• for each pair of non-shared variables (x,y), if both x and y occur in
negative literals, or if at most one of them occurs in a positive literal
to the right of the negative ones, then (x, y) £ SIP.

As a result of that , the following corollary holds.

Corollary 2 : Given a collection of goals gi, • • • ,gn-\,gn, if gi is a negative
goal Vi = 1 , . . . ,n — 1, then they are non-strictly independent for any non-
alias 9.

Proof: If all the goals are negative, or even if gn is positive, then each
shared variable is in S and each pair of non shared variables is in SIP. So
the correct i_cond for their non-strict independence is t r u e . j

E x a m p l e 15 : Consider the following clause:
P{x,y,z,v,w)<-^r(x,v),^s(y,w),q(x,y),t(y,z).
For the four goals in the body of this clause, entered with a non-alias 9,
x is in S. Similarly, (v,w), (w,z), (v,z), (x,v), (x,w), and (x,z) are in
SIP. Therefore, if no other global information is available, a globally corred
i_cond for these four goals is simply ground(y) . |

4 Conclusions

Much work has been done and is currently in progress in the compilation and
implementation of IAP in its various forms. In this paper we have provided
a theoretical justification to such efforts and a formal basis for the automatic
generation of IAP.

We have proved the correctness and efficiency of running in parallel
strictly independent goals. Le., tha t the solutions obtained through par­
allel execution are the same as those produced by standard sequential SLD-
resolution and that the total number of resolution steps is the same as in
the sequential versión, while the execution time is reduced. We have then
introduced the concept of non-strict independence and we have shown that
the same results hold for non-strictly independent goals, provided a trivial
rewriting of the goals is performed, thus expanding the applicability of the
method.

Most importantly, we also proposed different sets of efficient conditions
which can be constructed at compile-time and then used at run-time to check
for strict and non-strict independence. These different conditions apply to
the cases when the goals to be executed in parallel are considered in isolation
and also when they are considered as part of a clause or of a program. In
this latter case we have shown how to make use of whatever clause level or
program level binding information is available. Simplifications of the above
conditions have also been pointed out for the interesting cases of existential
variables and negative goals. In particular, we have proved that negative
goals are always non-strictly independent, and that goals which share an
existential variable (and one of them contains its first occurrence) are never
independent. Moreover, all the proposed independence conditions have been
proved to be sufficient.

The condition generation algorithms which we have presented can also
be used in parallel execution methods that do not use run-time checks. In
this case, it is sufficient to require that the generated compile-time condition
be empty for each set of goals to be (unconditionally) executed in parallel.
Furthermore, they can be used also for checking at compile- or run-time
user-provided annotations.

References

[1] K. Apt. Introduction to Logic Programming. Technical Report TR-87-
35, Dept. of Computer Science, The University of Texas at Austin, July
1988.

[2] K. Apt and M. van Emden. Contributions to the theory of logic pro­
gramming. Journal of the ACM, 29(3):841-863, July 1982.

[3] P. Biswas, S. Su, and D. Yun. A scalable abstract machine model to
support limited-or restricted and parallelism in logic programs. In Fifth
International Conference and Symposium on Logic Programming, pages
1160-1179, 1988.

[4] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic
Programs. Technical Report CW62, Department of Computer Science,
Katholieke Universiteit Leuven, October 1987.

[5] J.-H. Chang, A. M. Despain, and D. Degroot. And-Parallelism of Logic
Programs Based on Static Data Dependency Analysis. In Compcon
Spring '85, pages 218-225, February 1985.

[6] J. S. Conery. Binding Environments for Parallel Logic Programs in
Nonshared Memory Multiprocessors. In Symp. on Logic Prog., pages
457-467, August 1987.

[7] S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog
Programs. Journal of Logic Programming, pages 207-229, September
1988.

[8] D. DeGroot. Restricted AND-Parallelism. In International Conference
on Fifth Generation Computer Systems, pages 471-478. Tokyo, Novem-
ber 1984.

[9] M. V. Hermenegildo et al. An overview of the pal project. Technical Re­
port ACT-ST-234-89, Microelectronics and Computer Technology Cor­
poration (MCC), Austin, TX 78759, 1989.

[10] M. V. Hermenegildo. An Abstract Machine Based Execution Model for
Computer Architecture Design and Efficient Implementation of Logic
Programs in Parallel. PhD thesis, U. of Texas at Austin, August 1986.

[11] M. V. Hermenegildo and R. I. Nasr. Efficient Management of Back-
tracking in AND-parallelism. In Third International Conference on
Logic Programming, number 225 in Lecture Notes in Computer Science,
pages 40-55. Imperial College, Springer-Verlag, July 1986.

[12] D. Jacobs and A. Langen. Compilation of Logic Programs for Restricted
And-Parallelism. In European Symposium on Programming, pages 284-
297, 1988.

[13] L. Kale. Completeness and Full Parallelism of Parallel Logic Program­
ming Schemes. In Fourth IEEE Symposium on Logic Programming,
pages 125-133. IEEE, 1987.

[14] Y.-J. Lin. A Parallel Implementation of Logic Programs. PhD the-
sis, Dept. of Computer Science, University of Texas at Austin, Austin,
Texas 78712, August 1988.

[15] J. W. Lloyd. Logic Programming. Springer-Verlag, 1984.

[16] C.S. Mellish. Abstract Interpretation of Prolog Programs. In Third
International Conference on Logic Programming, number 225 in Lecture
Notes in Computer Science, pages 463-475. Imperial College, Springer-
Verlag, July 1986.

[17] K. Muthukumar and M. Hermenegildo. Determination of Variable De-
pendence Information at Compile-Time Through Abstract Interpreta­
tion. In 1989 North American Conference on Logic Programming. MIT
Press, October 1989.

[18] K. Muthukumar and M. Hermenegildo. Methods for Automatic
Compile-time Parallelization of Logic Programs using Indepen-
dent/Restricted And-parallelism. Technical Report ACA-ST-233-
89, Microelectronics and Computer Technology Corporation (MCC),
Austin, TX 78759, March 1989.

[19] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report
309, SRI International, 1983.

[20] D. H. D. Warren. OR-Parallel Execution Models of Prolog. In Proceed-
ings of TAPSOFT '87, Lecture Notes in Computer Science. Springer-
Verlag, March 1987.

[21] R. Warren, M. Hermenegildo, and S. Debray. On the Practicality of
Global Flow Analysis of Logic Programs. In Fifth International Confer­
ence and Symposium on Logic Programming. MIT Press, August 1988.

[22] H. Westphal and P. Robert. The PEPSys Model: Combining Back-
tracking, AND- and OR- Parallelism. In Symp. of Logic Prog., pages
436-448, August 1987.

[23] W. Winsborough and A. Waern. Transparent and- parallelism in the
presence of shared free variables. In Fifth International Conference and
Symposium on Logic Programming, pages 749-764, 1988.

