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1 IMDEA Software Research Institute, Madrid (Spain)
2 School of Computer Science, T. U. Madrid (UPM), (Spain)
{josef.morales,manuel.hermenegildo}@imdea.org
remy@clip.dia.fi.upm.es, herme@fi.upm.es

Keywords

Compilation; Modules; Modular Program Processing; Separate Compilation; Prolog; Ciao.

ii



Abstract

Modularity allows the construction of complex designs from simpler, independent units that
most of the time can be developed separately. In this paper we are concerned with developing
mechanisms for easily implementing modular extensions to modular (logic) languages. By
(language) extensions we refer to different groups of syntactic definitions and translation rules
that extend a language. Our application of the concept of modularity in this context is twofold.
We would like these extensions to be modular, in the above sense, i.e., we should be able
to develop different extensions mostly separately. At the same time, the sources and targets
for the extensions are modular languages, i.e., such extensions may take as input separate
pieces of code and also produce separate pieces of code. Dealing with this double requirement
involves interesting challenges to ensure that modularity is not broken: first, combinations of
extensions (as if they were a single extension) must be given a precise meaning. Also, the
separate translation of multiple sources (as if they were a single source) must be feasible. We
present a detailed description of a code expansion-based framework that proposes novel solutions
for these problems. We argue that the approach, while implemented for Ciao, can be adapted
for other languages and Prolog-based systems.
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Towards Modular Extensions for a Modular Language 1

1 Introduction

The choice of a good notation and adequate semantics when encoding a particular problem
can dramatically affect the final outcome. An extreme example are programming pearls whose
beauty is often completely lost when translated to a distant language. In practice, large projects
are bigger than pearls and often no single language fulfills all expectations (which can include
many aspects, such as development time or execution performance). The programmer is forced
to make a commitment to one language —and accept sub-optimal encoding— or more than one
language —at the expense of interoperability costs.

An alternative is to provide new features and idioms as syntactic and semantic extensions
of a language, thus providing the notational convenience while avoiding inter-language com-
munication costs. Macros have been used traditionally in many languages (such as, e.g., C,
C++, or Lisp) as a way to extend the syntax and optimize the code. Despite being a powerful
language extension mechanism, their pure syntactic nature and poor semantic integration with
the underlying language have made them a generally despised concept that is as a result being
avoided in many newly designed languages. Some of their uses are being replaced by tamed
features such as, e.g., for C++, function inlining or code templates. In the case of Prolog,
expansion systems have traditionally offered a quick way to develop variants of logic languages
and semantics, and to enhance program representation. These facilities have been used to
develop many language extensions such as experimental domain specific languages, constraint
systems, optimizations, debugging tools, etc.

A more elaborate extension system than that offered by traditional Prolog systems is imple-
mented in Ciao [CH00, HBC+10]. Ciao allows defining extension units called packages, which
are custom source files containing syntactic definitions (e.g., new operators), the declaration
of language extension hooks, and the dependencies to compilation modules (which define the
actual extension code for each hook). The fundamental novelty of the Ciao approach w.r.t.
traditional Prolog systems is the separation between translation code (executed at compile-
time) and source code (executed at run-time), which eliminates the uncertainty with regards to
when expansions are applied, as well as providing a richer set of hooks. The code in packages
is distributed among several files. The main file defines the syntax of the language, e.g., new
operators and new declarations. It also includes declarations that point to the expansion mod-
ule, containing compile-time code which defines the hooks called by the compiler (optionally
expansions can also be defined to be applied to read operations at run time). This system has
been used to implement new dialectic extensions such as DCGs, languages (e.g., CHR), code
instrumentation (e.g., profiling, debugging), optimizations (e.g., unfolding), etc.

The Ciao approach has been successful at adapting the Prolog notion of expansions to a
system where full separate compilation is available. However, it also has some shortcomings
that have become apparent over time and which we discuss in the following.

Combination of Extensions. In practice it is often the case that more than one extension is de-
sired for the same module (for example functional notation, DGCs, and profiling). Determining
if the application of such a set of extensions on the same source will have the expected results is
complicated, since, among other issues, the application order is often relevant. The user has to
control the order in which packages are applied by enumerating them in the correct sequence in
order to obtain the desired effect. In other Prolog systems [Wie10] where language extensions
are enabled by modules (using the use module directive), the problem is aggravated, since then
the order in which modules are imported becomes relevant. Thus, a solution for the problem of
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Towards Modular Extensions for a Modular Language 2

combining extensions that does not involve explicit ordering by the user is very desirable and
would benefit systems taking both of the approaches mentioned above.

In some cases, complex extensions are designed to work on monolithic code units (e.g., CHR
to Prolog) and this often means that many combinations, although conceptually feasible, are
not allowed in practice. For example, suppose that we would like to combine functional notation
[CCH06] and CHR [Fw09] to use functional syntax in the rule constraints. Unfortunatelly, code
like:

Y = ~neg(X) \ Z = ~and(X,Y) <=> Z=0.

cannot be translated to

neg(X,Y) \ and(X,Y,Z) <=> Z=0.

since we would like to normalize functional syntax before the CHR translation, but there is no
way to indicate to the functional expansion that the constraints have to be treated syntactically
as goals (that should be defined by CHR).1

Module-aware Extensions The integration with the underlying module system is weak: e.g., it
is not straightforward to determine during expansion to what module a goal being expanded
belongs, or to export new declarations. For example, any the :- argnames declarations (from
the named records package) are only visible locally. It is thus necessary to make the extensions
module aware, while at the same time constraining them to respect the module system. It is well
known that modularity, if not designed carefuly, can make static analysis impossible [Car97]. A
flexible extension system that however allows breaking modularity renders any efforts towards
static transformations useless.

This paper presents a number of novel contributions aimed at addressing these problems. The
context of our work is that of dynamic languages, where code can be loaded at any time during
execution, and thus there is no explicit distinction between the compile- and run-time phases.
We adopt the Ciao [CH00] approach to conciliating dynamic features with static techniques
(separate compilation, analyisis, etc.), where code is separated in modules, compilation is hidden
from the user, but there exist module invariants that constrain the dynamic features when
required. We contribute a formal description of the compilation model, that includes the
loading of compilation modules and its use during compilation of other modules. We discuss
based on this model the different phases and the information that is treated and available at
each phase. These considerations will determine the expressiveness required from the extension
rules. Based on this, we propose a set of rule-based extension mechanisms that we argue
generalizes previous approaches and allows us to provide better solutions for a good number of
the problems mentioned earlier.

The paper is structured as follows. Section 2 provides a formal specification of the compilation
model. Section 3 gives a detailed description of the translation process for extensions. We
consider this an appropiate abstraction for the problem. However, the final implementation
language does not necessarily need to follow this style. Section 4 illustrates the rules defined
in the previous section by defining several language features and extensions. We close with a
discussion of related and future work in Section 5, and conclusions in Section 6.

1The CHR translation could invoke the functional syntax translation directly. However that breaks the
mechanisms for language extension. This necessity motivates our work.
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Towards Modular Extensions for a Modular Language 3

2 A Modular Compilation Model

2.1 Separate Compilation in a Dynamic Language

Program execution can be specified and performed directly on the source code, but in practice
most languages require some preprocessing (at least parsing). In a static and monolithic setting,
the simplest trace from source to execution can be formulated as follows:

〈s0〉 comp(p,m) # load(m) # e 〈s〉

where: # is relation composition (s(R # S)t ≡ sRs′ ∧ s′St), comp(p,m) relates the input and
output states during compilation of program p, storing the results in the state and identifying
them by m, load loads m in the state, and e is some arbitrary code invoking code from m.

Although this scheme has advantages (like easily supporting whole-program optimizations),
it is also often costly and impractical. Even when the program is designed as distinct parts that
are updated separately, compilation and loading require processing the whole source. In the
case of separate compilation, advantage can be taken of the logical decomposition of programs
into smaller units (modules) to perform compilation and load individually. Let mi be each
of the unique identifiers for modules (the module name) and pmi

the source code for each of
them. The modules are compiled and then loaded separately (or linked and loaded) before the
program execution takes place:

〈s0〉 comp(pm1 ,m1) # . . . comp(pmn
,mn) # load(m1) # . . . load(mn) # e 〈s〉

This allows reduced compilation, analysis, and preprocessing time, and the distribution of
precompiled libraries. In the case of a dynamic language, module compilation and loading can
happen in the middle of the execution. The execution trace, that can be extended indefinitely,
will have the form:

〈s0〉 . . . ei−1 # comp(pmi
,mi) # load(mi) # ei . . . 〈s〉

Since the value of the module source pmi
may be dynamic too (i.e., dependent on the execution

state or environment), in principle the only way to ensure in all cases that we are loading the
latest source is by preceding each load by a compilation. A way to overcome this limitation
is to keep in the state the compilation results2 and only recompute them when necessary. In
order to define the conditions for recompilation and what information can be saved between
compilations, we define a set of compilation equations in Section 2.2.

Supporting Dynamic Semantics

We start from the observation that in dynamic languages, not only arbitrary programs can
be loaded at runtime, but also their contents may change during execution. Thus, we need to
separate the invariant part from the dynamic one:

Definition 2.1 (Module Invariant) The module invariant of module i is the set of defini-
tions (e.g., predicate code and properties, imported modules) that will not change during the
execution, once it has been loaded. Relaxed invariants allow more dynamic programs, tigher
invariants allow more aggressive compilation techniques. �

2In a realistic scenario, persistent storage such as disk would be included as part of the state.
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In order to support fully dynamic semantics, each module has an associated state. E.g., for
a dynamic predicate, the invariant states the initial state for the predicate, and thus gives the
initial values for the dynamic interface, while asserting a clause modifies the module state.

2.2 Compilation Equations

We will assume for programmer convenience that the use of properties bound to an identifier
is allowed to precede the definition of the identifier.3 This implies that the compilation of a
single module needs at least two global phases. In the first phase, the source code (for brevity
denoted as pi) is read, parsed, and normalized. The information about local definitions (e.g.,
defined predicates) and the module interface (e.g., exported predicates) is available only at the
end of this phase. We call this the syntactic phase, since we are not yet able to fully provide a
semantics for the program, which may depend on external definitions from imported modules.4

In the second phase, the interface of the imported modules is collected and processed alongside
with the normalized code. The output, which we say is in the kernel language, can be passed
to the input of the code generation phase to generate executable object code (e.g., bytecode) or
treated by program analysis tools. We name this the semantic phase. Additionally, the use of
compilation modules in each module can be declared to define custom transformations in both
the first and second phase.

Definition 2.2 (Parsed Module) Reading a source pi yields a parsed module $i, a set of
propositions including the contents of the module. It will contain at least the dependen-
cies and code, where judgement ϕi ` use-mod(j) states that module j is used by module
i, ϕi ` use-cmod(j) that j is a compilation module required for the compilation of i, and
ϕi ` sents(s1 . . . sn) specifies the sequence of module sentences (clauses and declarations). We
will identify the parsed module just after read as $0

i , while $i will be the final normalized
value. �

Definition 2.3 (Interface Projection) Given a parsed module $i its interface projection ϕi

(or simply interface) denotes the subset of exported properties (e.g., exported predicates), that
are visible from importing modules. �

Definition 2.4 (Dependency Relations) We define the following shorthands for dependency
relations between modules i and j:

i
d−→ j ≡ (ϕi ` use-mod(j)) (1)

i
c0

−→ j ≡ ($0
i ` use-cmod(j)) (2)

i
c−→ j ≡ (ϕi ` use-cmod(j)) (3)

where Eq. (1) is the dependency due to module i using module j, and Eq. (3) the dependency
due to module i requiring compilation module j. Eq. (2) is equivalent to Eq. (1), except that
the former is known at the moment when the module is read (required in order to know the
compilation modules that alter the normalization process), while the latter is in the module
interface. �

3Unlike in languages like C, where functions must be defined before its use.
4It is important not to confuse importing a module with including a file. The latter is purely syntactic and

can be performed during program reading. For the sake of clarity, we omit dependencies to included files in
further sections.
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Definition 2.5 (Link Set) The link set of a module is defined as the reflexive transitive
closure of the relation d−→, that we will denote as ( d?−→) , ( d−→)?. The link set of a module i is
the minimum set of additional modules that are required during execution.

Definition 2.6 (Compilation Equations) The equations that describe all the compilaton
phases for each module i, explained below, are the following:

$0
i = parse(pi) ∧$i = comp-syn($0

i ) ∧ ϕi = πitf($i) (4)

ωi = comp-sem($i ∪ {itf(j, ϕj) | i d−→ j}) (5)

ω?
i = {ωj | i

d?−→ j} (6)

where:

comp-syn , linkJsyn-tr,
⋃

i
c0−→j

ω?
j K (7)

comp-sem , linkJsem-tr,
⋃

i
c−→j

ω?
j K (8)

Eq. (4) defines the syntactic phase, which reads pi as $0
i , transforms it to $i, and projects

ϕi as the interface. The semantic phase is defined in Eq. (5), which takes as input the parsed
module $i enlarged with the interface information of imported modules. We will abbreviate
judgements on imported interfaces as ($i `j P ) ≡ ($i ` itf(j, ϕj)) ∧ (ϕj ` P ). Finally, Eq. (6)
describes not a real phase, but a fake variable that denotes the link set. This set is the input for
module linking (i.e., runtime loading or generation of executables), which happens in Eq. (7)
and Eq. (8). These last two definitions describe, respectively, the result of dynamically linking
(denoted as linkJf, ·K) the syntactic and semantic translation code (part of the compiler) with
the required compilation modules (a process that happens at compilation time). Figure 1 shows
the processes required for the incremental compilation of a module i depending on module j
and compilation module module k.

Compilation Module Loops and Bootstrapping In general, we cannot provide a solution if i ( c−→ d?−→
)? i, i.e., if a module i uses a compilation module that depends on i, or another module
which depends on a compilation module that depends on i, etc. These loops cause a deadlock
situation, where the compilation module cannot be compiled because it requires its compiled
code beforehand. However, it is common to have languages that must compile themselves.
We solve the issue by distinguishing between normal and static modules. Static modules have
been compiled previously and their ωi and ϕi are kept for following compilations (say ωS

i and
ϕS

i respectively). In that case, (ϕi = ϕS
i ∧ ωi = ωS

i ). The set of all static modules for the
compiler constitutes the bootstrap system. Note that self-compiling modules require caution,
since accidentally losing the bootstrap will make the source code useless.

Proposition 2.7 (Compilation Dependencies) The previous equations showed how each
non-source variable is computed. Every time some input is modified, the changes need to
be propagated through all the variables until all of them have been updated. The graph of
dependencies between the variables in the equations in Definition 2.6 has the following edges
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Towards Modular Extensions for a Modular Language 6

($0
i does not need to be kept; we can collapse edges by removing the node):

$i L99 pi $i L99 ω
?
k0 (for each i

c0

−→ k0)
ϕi L99 $i

ωi L99 $i ωi L99 ϕj (for each i
d−→ j) ωi L99 ω

?
k (for each i

c−→ k)

ω?
i L99 ωl (for each i

d?−→ l)

Note that the graph is not static since the dependency relations between modules ( d−→, c−→, c0

−→)
depend on data obtained from the contents of pi.

This problem is related to self-adjusting computations, as treated in [Aca09]. Nevertheless,
we use an ad-hoc algorithm specialized for the shape of our graph. As a safe over-approximation
to look for changes, we will use timestamps for some dependencies, so that each time a variable
is updated its timestamp is incremented. If an input is more recent than an output, it will
need recomputation. In order to avoid excessive recompilations, the algorithm treats interfaces
specially and only triggers recomputations if their contents actually changed. The algorithm to
update the compilation variables, 〈F 〉 update(g) 〈F ′〉, will take a variable name to be updated
g, a mapping between variable names and values F , and return an updated mapping F ′ where g
and all its dependencies has been updated.5 An interesting expected property is that updating
a sequence of modules must not be affected by order or repetition.

Module Invariants and Extensions Although the kernel language may provide low-level path-
ways if necessary (e.g., to implement debuggers, code inspection tools, or advanced transfor-
mation tools), it is important not to break the module invariants. One invariant is ϕj , which
once computed cannot be changed without invalidating the compilation of any module i that
imports it. For this reason, a semantic expansion cannot modify the module interface.

3 Language Extensions

We define the language extensions as translations that manipulate a symbolic representation
of the module. For simplicity we will use terms representing abstract syntax trees, denoted by
T as following the usual definition of ground terms in first order logic. For easier notation, we
include sequences of terms (Seq(T)) as part of T.6 We also assume some standard definitions and
operations on terms: term-fn(x) denotes the (name, arity) of the term, get-args : T→ Seq(T)
obtains the term arguments (i.e., the sequence of children), and set-args : T × Seq(T) → T
replaces the arguments of a term.

3.1 Translation Rules and Algorithm

We use a homogeneous term representation for the program, but terms may represent a variety
of language elements. The interpretation of each term is given by its surrounding context. In
order to reflect this, we label the input term during translation with a symbolic kind annotation.
That annotation indicates how the term is going to be treated during transformation. We define

5Note that data can be kept in persistent disk storage or in memory.
6We will assume –for simplicity and contrary to common practice– that when compiling a program variables

are read as special ground terms.
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pk

$0
k

$kϕk

ωk

parse

comp-syn

πitf

comp-sem

Module k

pi

$0
i

$iϕi

ωi

parse

comp-syn

πitf

comp-sem

Module i

pj

$0
j

$jϕj

ωj

parse

comp-syn

πitf

comp-sem

Module j

c

c d

ω?
k = {ωk, . . .} ω?

i = {ωi, ωj , . . .}

Figure 1: Compilation dependencies for module i, which imports module j, and requires
compilation module k.

a main transformation algorithm trJx : κK = x′ (Fig. 2), which, given a term x of kind κ, obtains
a term x′ by applying the available rules. It will be called from both syn-tr and sem-tr, which
appeared in Definition 2.6.

There are some special kinds, whose meaning is as follows: the try(t, κ1, κ2) kind tries to
transform the input with the relation t. If it is possible, the resulting term is transformed with
kind κ1. Otherwise, the untransformed input is retried with kind κ2. This is useful to compose
translations. The final kind stops translation. The seq(κ) kind indicates that the input term
is a sequence of elements of kind κ.7 The remaining transformations are driven by rules. Note
that the rules may contain guards in order to make them conditional on the term. Rule κ � κ′
denotes that every term of kind κ must be translated as κ′. Rule x : κ =⇒ x′ : κ′ is the same,
but the term is modified. Finally, rules deconsbx : κxc  ~a : ~κ and consb~a : ~κ, xc  κx : x′

allow the decompositon (decomp) of a term into smaller parts, which are translated and then
put together (comp). We will see examples of all these rules later.

We divided expansions into fine-grained translations because we want them to be interleaved
with other rules. We want to combine them. Monolithic expansions would render their combi-
nation infeasible in many cases.

Composition of Transformations Note that the transformation algorithm does not make any
assumptions regarding the order in which rules are defined in the program, given that the rules
define a fixed order relation between kinds. We will see in Section 4 how to give an unambiguous
meaning to conflicting rules (targeting the same kind).

Example 3.1 (Combining Transformations) The example shown in the introduction about

7In the Prolog implementation sequences are replaced by lists.
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trJx : try(t, κ1, κ2)K =
{

trJx′ : κ1K if t(x, x′)
trJx : κ2K otherwise

trJx1 . . . xn : seq(κ)K = (trJx1 : κK . . . trJxn : κK)
trJx : finalK = x

trJx : κK = trJx : κ′K (if κ � κ′)
trJx : κK = trJx′ : κ′K (if x : κ =⇒ x′ : κ′)

trJx : κxK = trJx′ : κ′xK (if deconsbx : κxc ~a : ~κ)
where
a′i = trJai : κiK ∀i.1 < i < |~a|

consbx : κx, ~a′c x′ : κ′x

Figure 2: The Transformation Algorithm

merging CHR and functional syntax, can be solved now with rules such as:

deconsb(a \ b <=> c) : chrclause1c (a b c) : (sgoal sgoal sgoal)
consb : chrclause1, (a b c)c (a \ b <=> c) : chrclause2

meaning that in the middle of the translation from the hypothetical kinds chrclause1 and
chrclause2 we allow treatment of a kind sgoal (which, e.g., could be treated by the functional
syntax package). �

Customized Compilation Stack Note that the same mechanism described to transform terms
representing pieces of code can be used to treat full program modules. E.g., for the argnames
example, shown in the introduction, it is possible to insert additional passes that store decla-
rations in the module interface.

4 Examples and Applications

We will illustrate the extension framework with examples and applications. First we will
show an encoding of the translation hooks available in Ciao using the new translation rules.
Then we will provide examples of how some non-trivial language features can be handled.

Note on Implementation For conciseness and consistency, we continue using the formal notation
in all the following sections. Writing the Prolog equivalent of both the rules and the driver
algorithm presented here is straightforward. As implemented in the Ciao compiler, Prolog
terms can be used to represent the abstract syntax tree. The different stages of compilation
can be kept in memory as facts in the dynamic database, with extra arguments to identify the
module. Since the transformation approach proposed is still an experimental feature, we have
not studied performance fully, but there is no reason to expect lower performance than with
the previous approach. In the Ciao implementation the older hooks are still being preserved for
backwards compatibility.
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sents � sents ~Es

sentsts � seq(sentts)
sent[t|ts] � try(t, sentsts, sentts)

sent[] � term

term � term ~Et

term[t|ts] � try(t, termts, termts)
term[] � rterm

deconsbx : rtermc get-args(x) : (term . . . term)
consbx : rterm, ~ac set-args(x,~a) : final

Figure 3: Emulating term trans and sentence trans

4.1 Emulating Ciao (and Prolog) Translations

Let us define a transformation specification as the tuple E = (Et, Es, Ec, Eg), so that Et, Es, Ec,
Eg ⊆ T × T, and they are partial functional relations. Respectively, they correspond to term,
sentence, clause, and goal translations, respectively. We will denote with ~E = (E1 . . . En) the
transformation specifications that are local to a module, and by ~Ek the sequence of translations
(E1k

. . . Enk
), for a particular k ∈ {t, s, c, g}.

Figure 3 defines the translations made during the syn-tr phase, started with trJ · : sentsK.
Subscripts will be used to represents families of kinds. A term of kind sents represents a
sequence of sentences, that is translated as a sents ~Es

. The kind sentsts represents the sequences
of sentences that require the translation sentts. The third rule indicates that a sentence of
kind sent[t|ts] (we extract the first element of the list of transformations) will be transformed
by t, yielding a term of kind sentsts (i.e., a sequence of sentences) on success.8 In case of
failure, the untransformed term will be treated as a sentts. In this way, all transformations
in ~Es (i.e., all sentence trans) will be applied. Once ts is empty, the result is translated as
kind term, equivalent to term ~Et

. Similarly to the previous case, all transformations in ts (i.e., all
term trans) are tried and removed from the list of pending transformations. When ts is empty,
the datum is treated as an rterm, which divides the problem into the translation of arguments
as kind term and reuniting them as a final (non-suitable for further translations) result. Both
transformations are applied in the same order as specified in Ciao.

Figure 4 shows the translations made during the sem-tr phase, in this case started with
trJ · : clausesK. Sequences of clauses are treated in a similar way as for sentences, with the
difference that the translation of a clause always gives one clause (not a sequence). When all
translations in ~Ec (all clause trans) have been performed, the head and body are treated.
We show no successor for the head kind in this figure, since this will be done in the following
examples (we could add head � final to mark the end of the translation). For body, we apply
the same body translation on the arguments of control structures (e.g. ,/2, ;/2, etc.). If we

8We assume that concatenation of sequences is implicit. We can adapt all the discussion to work with lists
of sentences, but that would obscure the exposition.

Report No. CLIP 2/2011.0 January, 2011



Towards Modular Extensions for a Modular Language 10

clauses � seq(clause)
clause � clause ~Ec

clause[t|ts] � try(t, clausets, clausets)
clause[] � rclause

deconsbcl(h, b) : rclausec (h b) : (head body)
consb : rclause, (h b)c cl(h, b) : final

x : body =⇒ x : control (if term-fn(x) ∈ control-fn)
deconsbx : controlc get-args(x) : (body . . . body)
consbx : control, ~ac set-args(x,~a) : final

x : body =⇒ x : goal (if term-fn(x) /∈ control-fn)
goal � goal ~Eg

goal[t|ts] � try(t, body, goalts)

goal[] � resolv

control-fn = {,/2, ;/2, ->/2, \+/1, !/0}

Figure 4: Emulating clause trans and goal trans

are not treating a control structure, the translations in ~Eg are applied (all goal trans). Note
that the first kind in the try kind of goals is goal. In contrast with other translations, when
a goal translation is successfully applied, it is not removed from the list; all translations are
applied again. This fixpoint semantics was required for the original translation hooks, and has
been preserved here (of course, with the same termination problems; tackling those issues is out
of the scope of the paper). Similarly to head, resolve is kept open here, for the same reasons.

Note the flexibility of the base framework. E.g., introducing changes in the expansion rules
at fundamental levels can be done, even modularly.

Priority-based Ordering of Transformations Although the transformations in the presented
framework establish a fixed ordering, we lose it when considering the sentence, term, clause,
and goal translations here. A solution for this issue is the introduction of priorities in each
hook, so that all transformations in ~E can be ordered beforehand. E.g., directives like :-
use package([dcg, fsyntax]) and :- use package([fsyntax, dcg]) are totally equivalent
and both apply the transformations in the right order. This represents a very large advantage
in practice for users of packages.

4.2 More Advanced Transformations

We show here fragments of two translations that deal with the module system and meta-
predicates, and which are not expressible in the old transformation hooks (indeed, they were
hardwired in the compiler). We indicate the current module as cm. We will assume that
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we have access to the information visible during the translation, such as parsed module code,
declarations, interfaces, etc.

Example 4.1 (Predicate-based Module System) The following rules perform the module
resolution and qualification of all goals in the clauses. Instead of duplicating the logic to locate
goal positions, the translations are inserted in the right place just after goal expansions are
perfomed (Fig. 4).

The translation of head replaces the term by one where its symbol has been module-annotated
with cm (resolved as another symbol that is unique for each module and not directly accesible
by user code). The rule for resolv does the same, but uses the module obtained from lookup
(that indicates where the predicate is defined).9

x : head =⇒ term-mod-concat(cm, x) : final

x : resolv =⇒ term-mod-concat(m,x′) : meta (if lookup(x,m, x′))
x : resolv =⇒ error(”module error”) : final (if ¬lookup(a, , ))

lookup(a,m, a′) ≡


¬qual(a, , ) ∧ ($cm ` defined(fn)) ∧m = cm ∧ a′ = a
¬qual(a, , ) ∧ ($cm `m exported(fn)) ∧ a′ = a
qual(a, cm, a′) ∧ ($cm ` defined(fn)) ∧m = cm
qual(a,m, a′) ∧m 6= cm ∧ ($cm `m exported(fn))

where fn = term-fn(a′)

The complete specification is lengthy, but not more complicated. It requires checking for
ambiguity on import (e.g., m in lookup must be unique, etc.). As an example we showed
here error reporting as translation to an error term. More elabortated error handling can be
performed by extending the translation algorithm (e.g., to carry source numbers transparently
alongside the terms). �

Example 4.2 (Rules for Meta-predicates) The meta translation decomposes the term into
meta-arguments, translates them (which gives a pair of the transformed term and an optional
goal), and composes back the term by replacing the goal arguments and prefixing the goal with
the optional goals from meta-argument expansion. Looking up in the domain of the resolved
module the meta-predicate properties we get the meta-type of each argument in the goal:

deconsbg : metac ~x : ~κ where
~x = get-args(g)
$cm ` meta-pred(term-fn(g), ~τ)
κi = marg(τi) ∀i.1 < i < |~τ |

consbg : meta, ~ac g′ : final where
ai = (xi, si) ∀i.1 < i < |~a|
g′ = to-conj((s1 s2 . . . set-args(g, ~x))

We assume that meta-pred (relating the module-expanded predicate name with its :- meta predicate
declaration) has been added to $cm. The to-conj function transforms the input sequence into
a conjunction of literals, and ε denotes the empty sequence.

9qual(mg, m, g) is true iff the term mg the qualification of term g with term m (e.g.,
lists:append([1],[2],[1,2])). We use it to avoid ambiguity with the colon symbol used elsewhere in rules.
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In the expansion of an argument the predicate needs-rt is valid if the term, assuming that it
represents a goal, is not known at compile time, that is needs-rt(x) ≡ (v is variable∨ (x = qm :

and qm is not an atom)). In such case the rule emits code that will perform an expansion at
run time (which however may share code with those rules).

x : marg(τ) =⇒ (x, ε) : final (if τ 6= goal)
x : marg(τ) =⇒ (x′, (rtexp(x, τ, cm, x′))) : final (if τ = goal ∧ needs-rt(x))

where x′ is a new variable
deconsbx : marg(τ)c x : body (if τ = goal ∧ ¬needs-rt(x))
consb : marg(τ), xc (x, ε) : final

5 Related Work

In addition to the classic examples for imperative languages, such as the C preprocessor, or
more semantic approaches like C++ templates and Java generics, much work has been carried
out in the field of extensible syntax and semantics in the context of functional programming.
Modern template systems such as the one implemented by the Glasgow Haskell compiler [SJ02]
generally provide syntax extensions mechanisms in addition to static metaprogramming. The
Objective Caml preprocessor, Camlp4 [dRP] provides similar features but focuses first on the
syntax extension aspects. Both systems allow the combination of different syntax within the
host language by using explicit mechanisms of quotations/antiquotations.

An other elegant approach consists on defining language extensions based on interpreters.
In [Hud98] a methodology for building domain-specific languages is shown, which combines the
use of modular monad interpreters with a partial evaluation stage to reduce or eliminate the
interpretation overhead. Although this approach provides a clean semantics for the extension,
it has the disadvantage of requiring the (not always automatable) partial evaluation phase for
efficiency and not being easy to integrate with the rest of the language and with the compilation
architecture.

Another solution explored has been to expose the abstract syntax tree, through a reasonable
interface, to the extensions. Racket (formerly PLT Scheme) [FP10] has an open macro system
providing a flexible mechanism for writing language extensions. It allowed the design of domain-
specific languages (including syntax), but also language features such as, e.g., the class and
component systems, which in Racket are written using this framework. To the extent of our
knowledge, there is no formal description of the framework nor whether and how multiple
language extensions interact when specified simultaneously. However, it is interesting to note
that despite growing independently, Ciao and Racket, both dynamic languages, have developed
similar ideas, like separation of compile-time and run-time affairs and the necessity of expansions
at different phases.

Finally, extensibility has also been achieved by making use of rewriting rules. For instance,
by mixing such features with compilation inlining, the Glasgow Haskell compiler provides a
powerful tool for purely functional code optimization [JTH01]. It seems however the the result
of the application of such rules can quickly become unpredictable [EFdM03]. In the context
of contraint programming, a successful language transformation tool is Cadmium [DDKS08],
which compiles solver-independent constraint models. For this application, the language takes
advantage of the distributive property of conjunction to write rules that match against the
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conjunctive context.

Although our approach is akin to a rewrite rule system that obtains normalized forms, note
that it is easy to combine it with other methods such as, e.g., customized syntactic parsers
(beyond defining operators on the fly), more expressive rewrite rules, and reflection of source
properties in the abstract syntax tree, e.g., for error reporting or for debugging or analyzing
applications (where the original or some prior term is required).

6 Conclusions

We have described an extensible compilation framework for dynamic programming languages
that is amenable to performing separate, incremental compilation. Extensibility is ensured by
a language of rewrite rules, defined in pluggable compilation modules. Although the work is
mainly focused on Prolog-like languages, most of the presentation deals with common concepts
(modules, interfaces, declarations, identifiers), and thus we believe that it can be adapted to
other paradigms with minor effort.

In general, the availability of a rich and expressive extension system is a large advantage for
language design. One obvious improvement is that it helps in accommodating the programmers
need for syntactic sugar while keeping changes at the kernel language minimum. It also offers
benefits for portability, since it makes it possible to keep a common front end (or a set of
language features) and plug in different kernel engines (e.g., Prolog systems) at the back end,
as long as they provide access to the same kernel language (or one that is rich enough) [WSC11].

Beyond the obvious usefulness of the framework as a separation of concerns during the de-
sign of extensions, the support for extension composition and separate compilation, etc., the
translation rules can also be seen as a complementary specification mechanism for the language
features designed. If such rules are succinct and clear enough, which is not that hard in practice,
they can actually be exposed to programmers alongside standard documentation. We plan to
modify the lpdoc tool [Her00] to provide support for this.

We believe that the model proposed makes it easier to provide unambiguous, composable
specifications of language extensions that should not only make reasoning about correctness
easier, but also avoid causing and propagating erroneous language design decisions (such as, e.g.,
unintended compilation dependencies between modules that would ruin any parallel compilation
or analysis efforts) that are normally hard to detect and correct. We also hope that our
contribution will help, in the context of logic programming, set a basis for interoperability and
portability of language extensions among different systems.
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A Summary of Notation

i, j, k names for modules (unless used explicitly as sequence indices)
pi source code for module i
ϕi interface of module i
$i parsed module i
ωi object code for module i

f, g, . . . interpreted (if defined) or uninterpreted function symbol
c, t, . . . names of kinds (in translation rules)

~s sequence with elements s1, . . . sn

|~s| length of sequence ~s
ε empty sequence

T the set of terms (representing the abstract syntax tree)
foo, bar concrete symbol names for terms in T (in translation rules)
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