
In CICLOPS 2002 (ICLP Workshop), Copenhagen

A Simple Approach to Distributed Objects in Prolog?

Manuel Carro Manuel Hermenegildo

Computer Science School
Technical University of Madrid

Boadilla del Monte, E-28660,Spain
{mcarro,herme}@fi.upm.es

Abstract. We present the design of a distributed object system for Prolog, based on adding remote
execution and distribution capabilities to a previously existing object system. Remote execution brings
RPC into a Prolog system, and its semantics is easy to express in terms of well-known Prolog builtins.
The final distributed object design features state mobility and user-transparent network behavior. We
sketch an implementation which provides distributed garbage collection and some degree of tolerance
to network failures. We provide a preliminary study of the overhead of the communication mechanism
for some test cases.
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1 Introduction

Distributed objects are the natural sequel to object oriented programming and distributed programming.
They can be used to implement a wide range of software systems: remote databases, service migration to
improve access speed, automatic caching, implementation of stateful agents, etc. A good deal of proposals
combining distribution and objects have been developed in the realm of procedural and OO languages;
however, many of them boil down to adding convenient libraries to an existing host language which did
not have any provision for distributed execution [BGL98]. Among the proposals which address OO and
distribution from scratch we may cite Emerald [Jul88], Obliq [Car95], and, to some extent, Jini [We+00].

Although there have been several proposals for coupling LP and OO in the logic programming arena (e.g.,
SICStus objects [Swe99], Prolog++ [Mos94], LogTalk [Mou00], O’Ciao [PB02], and others), few proposal
have been made, to the best of our knowledge, to couple objects and distribution. We can cite the mobility
capabilities of Jinni [Tar99], and the distributed object system of Mozart Oz [RHB00,RHB+97]. The model we
propose shares some points with Jinni (because it builds on Prolog syntax and semantics of the host language)
and also with Mozart Oz (because of the way objects are perceived). It has, however, several characteristics
which make it different from both. What we aim at is a simple scheme for objects, distribution, and mobility
which does not depart too much from the semantics of Prolog, and which has some tolerance to external
faults.

The techniques we will show are relatively easy to incorporate in a modern Prolog system, but we will
occasionally resort to certain Ciao Prolog [HBC+99] features. Ciao Prolog subsumes ISO-Prolog, supports
concurrency with communication through the (shared) built-in database [CH99], features an object sys-
tem [PB02], attributed variables [Hol92], and a mature WWW/Internet interface [CHV99]. Ciao Prolog

incorporates also a module system that allows defining syntactic (and semantic) extensions in a very user-
friendly way [CH00]. In particular, modules can have local operators and translation rules which are used
only at compile time and under the compiler control. These facilities are particularly helpful to define in
a modular way higher level programming constructs. The language also allows assertions [PBH00] describ-
ing types, modes, determinacy, non-failure, execution cost, program documentation, etc. The assertions are
also defined in source-level modules, and are thus extensible. Many of these characteristics facilitate the
implementation of the model proposed.

The rest of this paper is organized as follows: Section 2 gives some background on the object system of
Ciao Prolog ; Section 3 describes the basic mechanism for communication with servers; Section 4 describes
the design of the distribution primitives; finally, Section 5 shows preliminary performance measures.
? The authors were partially supported by MCYT projects TIC-99-1151 and HI2000-0043 (EDIPIA and Adela) and

by ESPRIT project IST-2001-34717 (AMOS ).



Primitive Meaning

:- class(stack) Starts the definition of the class stack

X new stack S is a new object instantiating stack

X:op(Args) op(Args) is executed on object X

X:destroy X is destroyed (invoked explicitly or on GC)
Table 1. Builtins to handle objects

2 The Ciao Prolog Object System

As we will use the notation and semantics of the Ciao Prolog object system (O’Ciao) in Section 4, we will
summarize the basic ideas behind it here (see [PB02] for more details). We will cover only class declarations,
object creation, and object access. Many useful characteristics of O’Ciao will be left out: inheritance, virtual
interfaces, user-defined object identifiers, etc., some of which need an involved implementation, including
hierarchy trees and dispatching tables, runtime support, state initialization, etc.

The notion of object in O’Ciao is an extension of that of a module, its state being that of the dynamic
facts in the module.1 Dynamic facts not explicitly exported are local to the module where they are declared.
Therefore, their scope allows maintaining a private state not accessible from outside unless explicitly stated
so. Objects are constructed as instances of modules with a private state (i.e., a set of dynamic facts), which is
reachable only through the module (i.e., class) interface. Different instances of modules are distinguishable by
means of system-wide unique identifiers, and the state of every instance is private to that instance. There is
a special syntax (Table 1) that allows defining classes, creating objects, and invoking methods (e.g., Prolog
procedures) on them. Method visibility is controlled by simple scope rules: only exported predicates are
callable from outside. Since objects are a grow-up of modules and dynamic facts, their behavior is easy to
understand and to reconcile with that of traditional Prolog.

Let us examine an example: the code in Figure 1, left, defines the class of card decks, with two public
methods. The code on the right creates two instances of the deck class (two decks of cards, accessible through
variables S1 and S2). A card is then drawn from one of the decks and placed in the other. This changes the
state of both decks; these states do not interfere with each other, although they are defined using the same
code. Note that objects can be created and used from code that is not an object itself, and vice versa.

The current implementation transforms the source code of a class in a user-transparent way. Relevant
predicates are given an additional argument, which will hold at run time the (unique) identifier of the object,
generated by the new/2 primitive. This identifier is used to distinguish each object state from that of other
objects of the same class.

:- class(deck,[addcard/1,drawcard/1]).

:- dynamic card/2.

card(1, hearts). % initial state

card(8, diamonds).

addcard(card(X,Y)):- asserta(card(X,Y)).

drawcard(card(X,Y)):- retract(card(X,Y)).

:- module(player, [main/0]).

:- use_package(objects).

:- use_class(deck).

main:-

S1 new deck,

S2 new deck,

S1:drawcard(C),

S2:addcard(C).

Fig. 1. A deck of cards implemented as an object (left) and code using it (right)

1 In what follows we will be only interested in dynamic facts, although most of the discussion is applicable also to
dynamic predicates.



3 Predicate Servers and Basic Communication

We want to achieve a communication scheme among distributed objects which gives network transparency
to the user. In this section we will sketch how that communication can be performed. For simplicity we will
not introduce objects yet, and we will use instead processes which serve predicates and processes which call
these served predicates remotely. We will then present the basic communication mechanism and describe
the server behavior without having to take into account complexities brought about by object management.
Most of the ideas in this section can be lifted to the object-oriented case.

We assume the existence of a number of servers : processes that listen on a designated TCP/IP port,
accept queries of clients, and react accordingly to them, either interpreting them directly or taking them as
goals to be executed. A predicate server basically behaves as a traditional Prolog toplevel: wait for a query,
execute it, return the answer to the caller, and wait again. A served predicate is a predicate whose code is
accessible to the server and for which the server provides external access. Communication among caller and
server can in principle use any sensible format, but an structured, easy to parse one is advisable in terms of
speed (see Section 5).

Clients which invoke served predicates are farming out computations and using resources of the machine
where the server lives. This also allows clients to access data pertaining to different hosts homogeneously
across Internet by means of predicate servers. We will assume that a server is uniquely identified by an
address (of the form, e.g., host name:port) and that this address is known by all clients willing to access
the server.

:- use_package(ciao_client).

:- use_module(library(system_info),

[current_date/1]).

access(Site, Delta, LastVersion):-

last_version(LastVersion) @ Site,

current_date(D1) @ Site,

current_date(D2),

Delta is D2 - D1.

Fig. 2. Accessing remote predicates

:- module(sample_server,

[last_version/2,

current_date/1]).

:- use_package(ciao_server).

:- use_module(library(system_info),

[current_date/1]).

last_version(1.1).

Fig. 3. Serving predicates

3.1 Calling Served Predicates

The syntactical construction we will use to express that a computation is to be performed at a server is
the placement operator: G @ Site specifies that goal G is to be executed at the address Site. The caller is
blocked until the answer is retrieved from the remote site; i.e., the call is synchronous. Declaratively G @ Site

behaves similarly to call(G) for side-effect-free goals: bindings created with the execution of G at Site are
seen locally upon end of the call, failure of G at Site leads to failure of G @ Site, and exceptions are also
propagated locally. However, side effects (e.g., assertions or device access) caused by the execution of G take
place at Site (which is needed in order to have the distributed object semantics shown in Section 4).

The definition (and operator declaration) of @/2 are located in the libraries ciao server and ciao client.
Figures 2 and 3 show code for a client and a remote server. The client code (on the left) accesses a server
located at Site, calls a predicate (last version/1) stored there, and computes the difference between the
local and server dates. The code on the right corresponds to the server and exports the predicates called by
the client.

There are several features which can be added to the remote communication scheme with very little cost.
We will mention some of them because of their usefulness.



A Shorter Notation for Remote Modules It is easy (and maybe a common scenario) to state at compile time
that a predicate always lives in a fixed remote site. All that is needed is to understand a declaration such as

:- use remote module(server name, [pred/n])

which states that pred/n is located at server name to translate a call to pred(Arg) into pred(Arg) @

server name:default port. This approach to remote execution was termed active modules [CH01,CB01].

Remote Execution and Concurrency Since @/2 is blocking, but the computation is farmed out, local concur-
rency can be used to perform other tasks while data is on transit or execution is proceeding remotely, thereby
reducing the impact of network latency and optimizing resource usage. As an introductory example, Figure 4
initializes two remote sensors at different sites and starts daemons to monitor them. (Remote) initializations
are launched in separate local threads, and monitoring starts when the setup phase of both monitors has
finished completely. The concurrency primitives we will use here have been proposed in [CH99,HCC95].

G &&> HG and HG <&& denote, respectively, task creation and data-driven task dependency. These opera-
tors are defined in a user-level library, and based on lower-level blocks. The first construct starts goal G in a
new, independent thread while the local task proceeds, and leaves in HG a handle to the goal G. Argument
passing to the new thread is performed transparently to the user. HG <&& waits for G to finish and (similarly
to the @/2 operator) makes results of the execution of G (bindings, failure, and exceptions) available.

G && behaves similarly to G &&> HG, but no
system_monitor(Site1, Site2, TLimit):-

setup_sensors @ Site1 &&> S1,

setup_sensors @ Site2 &&> S2,

S1 <&&, S2 < &&,

watch_temp(TLimit) @ Site1 &&,

watch_temp(TLimit) @ Site2 &&.

Fig. 4. Monitoring remote sensors

handle is returned, and therefore no further com-
munication is possible. In Figure 4 remote calls are
executed in separate threads (B @ S &&> HG ≡ G

&&> HG, therefore G ≡ B @ S), the two remote ini-
tializations can be executed simultaneously, and
the local thread proceeds when they finish. Han-
dles make explicit a relationship among data de-
pendencies and control, and can be used reorder

(concurrent) goals so as to improve the amount of distribution / parallelism [Zur02].

Threaded Servers As a toplevel, a predicate server would block while executing a client goal. The standard
solution to handle several incoming requests is to thread the server; however, this could lead to data conflicts
both in the server code and in the data managed by the served predicates. Internet (e.g., ftp, WWW, . . . )
servers are explicitly designed to avoid these conflicts by using locks on shared variables or by forking out
children in a separate address space. Several levels of interaction between served predicates can be identified.
While this classification can be made of a finer grain, it will be enough to illustrate what information a
predicate server would need to guarantee a safe execution.

We will resort to adding declarations to the main server module (the one in Figure 3) to specify which
predicates can (not) be executed concurrently. The assertion mechanism [PBH00] of Ciao Prolog is a con-
venient means to do that: new declarations and their treatment can be defined in library modules. The
declarations in the server code could be added either by the programmer or by an analysis tool, and be
conveniently processed at compile time:

:- pred quicksort/2 + reentrant.

Calls to quicksort/2 can execute concurrently with any other calls at any time. The same would apply
to other pure (non-side-effects) goals.

:- pred update my db/2 + non reentrant.

Calls to update my db/2 are to be executed in mutual exclusion. This is a conservative, safe approxima-
tion for side-effect predicates which can potentially cause data conflicts.

On the other hand, served predicates that start threads on their own must ensure their correct behavior.
Besides, a client could try to start a non-thread-safe predicate in a separate thread in the server with a call
such as G && @ Site (≡ (G &&) @ Site). But, as &&/1 is just a library predicate which cannot be called
by a client unless exported by the server, disallowing these calls boils down to non importing the relevant
module.



Sending and Receiving Terms with Attributes Goals to be remotely executed can be automatically inspected
for the presence of attributed variables [Hol92], and the associated attributes (including attributes of variables
present into attributes, and so on) can be sent and rebuilt upon reception. The ability to send and retrieve
attributes is interesting because of their use to implement constraint solving capabilities, delay mechanisms,
etc. It is possible, for example, to send and receive constrained terms just by sending them together with
their attributes, which in many cases represent a completely self-contained projection of the constraint store
over the variables in the original term.

3.2 Implementation Notes

The implementation of G @ S can be described with the following piece of code:

G @ S :- send_remote(goal(G), S, G’),

( G’ = success(G) -> true ;

G’ = exception(E), throw(E)).

send remote/3 sends (a copy of) goal G as a
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Decoding
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G = G’

...
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Publish

G
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Fig. 5. How remote goal execution works

term and waits for the returned answer. This an-
swer can be success/1, meaning that the remote
call returned with an exit substitution, fail/0,
which will cause local backtracking, or exception/1,
if the remote goal raised an exception uncaught
in the server. The server is quite straightforward:
it waits for goals, executes them, and returns an-
swers. The overall procedure is depicted in Fig-
ure 5.

send remote/3 also takes care of extracting the
attributes of the goal in a first-order term. Back-
tracking of remote goals has to take place in the server, which might have several pending, unfinished calls.
This is best handled with multiengine support (which Ciao Prolog has, as it is needed to implement concur-
rency) which provides independent engine creation and backtracking.

Terms can obviously be sent and received using a standard ASCII-based representation with write/2 and
read/2 (which we will call plain representation); however, the textual format is often relatively expensive in
terms of time, due to e.g. tokenization and the overhead of having to cater for (perhaps inexistent) operators.
A marshaled representation, which packs a term into a linear stream such that reconstructing the terms is
easy (it does not have operators, commas, or parentheses, and each symbol is preceded with its type and
arity) has proven to be comparable in terms of size and advantageous in processing time for other purposes
(namely, to store compilation files intended to be read by the Ciao compiler). send remote/3 takes care of
encoding/decoding terms using such a representation, which is basically the same as the one used by SICStus
in the fast term I/O routines.

4 Objects and Distribution

Remote predicate calls provide additional computing power and resource access across the Internet. However
they have some drawbacks: state migration to other servers is difficult to implement (the same module might
already be present in the destination, for example), and they cannot maintain state separation but at the
expense of contaminating the interface with per-client unique identifiers.

In this section we will devise a notation to include notions of distribution in the object framework of
Section 2. We will assume a general infrastructure composed of (in general) several object servers where
objects (state and method code) are actually held. This avoids creating per-object processes and makes
objects lightweight. Client processes access servers where new objects can be created, invoke methods on
objects, and move objects to other servers. All these interactions go through the corresponding object server,
which takes care of message forwarding and garbage collection, when needed. We assume that the code of
the class the objects instantiate is present in the server at compile time, and does not need to be transmitted



Primitive Meaning

X new Class @ Site Create an object X, instance of class Class, at Site

X @ Site X is placed at Site (either returns Site or moves X )

X send ref Site Informs the server of X that we will send a reference to Site

X meta id Meta Meta includes the object identifier X plus its current location

X provides Service register object X as providing Service

X accesses Service @ Site which object X at Site provides Service ?

Table 2. New object and distribution primitives

over Internet (as it is done in, e.g., Mozart Oz). Note that code transmission is not actually a technical
problem, since Prolog systems can traditionally include easily interpreters or compilers in executables.

We pursue a final design that offers the programmer a level similar to that of non-distributed execution,
thus facilitating the implementation of network-based applications. We will discuss some problematic issues
and sketch solutions for them. For the sake of simplicity, we will ignore authentication, although very impor-
tant in practice: we will assume that all clients have permissions to perform whatever operations are possible
on object servers, and we will focus on how these operations can be performed.

4.1 A Notation for Remote Objects

Clients receive an identifier for every object they create. This identifier must be unique in the system and
immutable, so that equality can be used to implements object identity. Clients communicate with objects
with a set of primitives that are either new (Table 2) or which expand those for regular, local objects:

Obj new Class @ Site allows the new/2 operation to create a new object at Site, where a server should be
running. Obj is the object identifier, which is location-aware, i.e., it has additional information to locate
where the object is actually stored. Uniqueness of identifiers can be ensured by using other (unique)
identifiers such as host addresses, process number in a host, etc., to construct new identifiers.

Obj:M invokes method M on Obj and waits for an answer. The remote location does not have to be explicit
(e.g., Obj:M @ Site) since it can be found through Obj. The distributed object library will locate the
relevant server, communicate with it, and pass on the method call.

Obj @ Site expresses object placement, and it is used to move the object represented by Obj from its
current location to Site. If Site is a free variable, it is bound to the name of the current location of
the object. In the former case, the holder of Obj is contacted and a migration to the new server started;
this takes place at the server level. It should be noted that the object state, being fundamentally a
collection of facts, can be very easily transmitted over the Internet. Method calls on relocated objects
are transparently forwarded to the appropriate location, and arguments are sent to and from the object,
as in the remote predicate case (Section 3.1).

Destruction of remote objects by a client is performed by contacting the object server and issuing the
necessary actions there. Object destruction can be triggered either by local garbage collection (GC) or by
an explicit call to destroy/1. In general, a client’s request of object deletion does not remove the object
immediately, since other clients may be accessing the object. We will come back to this issue in Section 4.4.

Mobility in Other Systems Object relocation differs from that of Mozart Oz in that Mozart moves the object
to the computation site of the caller thread [RHB+97,RBHC99] (i.e., object movement is implicit, while our
proposal makes it explicit). This simplifies parts of the protocol and improves locality in many undoubtedly
relevant cases [HRBS98]. However it also could turn out to be a drawback in some situations: e.g., centralized
data accessed by different clients would bounce, generating additional traffic on the net, unless protected
inside a port. Also, calls to objects which are part of a hierarchy would probably make the whole hierarchy
migrate to the caller space.2 If desired, automatic object migration can be expressed in our approach by
means of an invocation operation ::/2 defined as
2 There is an extension to the Oz mobile object protocol designed to achieve better performance in this case [HR99].



X::M :- X @ localhost, X:M.

which moves object X to the site executing the caller thread.
Jinni’s mobility model actually moves the computation thread to and from a designated server. Coordi-

nation and data exchange among several threads can be performed thanks to Linda-like [CG89] primitives
and an implementation of a shared blackboard.
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Fig. 6. Moving an object and forwarding requests

4.2 Object Migration

Migration takes place by means of a protocol between object servers which replicates the object state. In
order to move an object, the server blocks new requests to the object and waits until the current call has
finished before transferring the object state. Servers keep, for each object, a list of entities (external processes
or other objects) that are known to have a reference to the object. This list (termed the scion list, in GC
jargon) is initialized when the object is created, and is updated when an unlisted client accesses the object.
It is used to ensure that objects are not deleted from the server when clients may still access them. When
an object A is moved by a client C, the reference to C is also transferred to the new location. The former
server of a relocated object can keep a trace A’ of the original object together with part of the scion list (the
initial list without the reference to C). Any client which has a reference to the trace is transparently notified
of the relocation at the next connection attempt, and the corresponding entry of the scion list is transferred
to the new location. The object trace is removed when its scion list is empty, because all the clients know
about the migration.

Figure 6 shows an example. In the initial state, left, S1 holds object A which is referenced by C1 and
C2. C2 moves A to S2. S1 acts as a proxy, keeping a trace of A (middle). When S1 receives a message
addressed to A, further communication (dotted arrow) updates the view of C1 about the current placement
of A (right) and the trace is deleted.

Unbound length chains caused by repeated object relocations can be avoided by making servers take into
account where objects came from. In Figure 7, client C3 relocates an object from S2 to S3, and S2 informs
S1 about the new location, thus shortening the reference chain (i.e., messages are forwarded to S 3 by S1

without having to go through S2). Emerald [Jul88] applies a similar scheme.
Object addresses change after relocation, and since object identifiers must be immutable, addresses cannot

be encoded within the identifier. A simple solution is to store the up-to-date object address as part of an
internal table of tuples 〈ObjId, ObjRef〉 which is kept in each and consulted client by the remote object
library as needed.

4.3 Communicating Object References

Clients in a cooperative environment should be allowed to pass object identifiers to other clients. Sending
them in the presence of object mobility can cause races [AR98] that result in trying to access inexistent
remote objects. Consider the scenario in Figure 8: C1 gives C2 the identifier plus remote location of A
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Fig. 7. Shortening forwarding chains

(denoted by @A); before C2 accesses A (so that S1 can register it in the scion list), C1 moves A to S2. S1

does not keep a trace of A (since the only known client with access to it has just requested a relocation),
and C2 founds that neither A nor a trace is present.

Simple protocols to avoid this situation involve sending control messages both to the receiver of the object
identifier and to the server [BGL98]. One additional primitive allows clients to hand out object identifiers to
other clients with the cooperation of the server. send ref(Object, Client) creates an entry in the scion
list of Object pointing to Client. The situation in Figure 8 cannot happen: if C1 performs

..., A send ref C2, A @ S2,...

S1 will not remove the trace of A because there is a new reference to it from C2. This handshaking avoids
undesired object removal at the expense of a more involved communication of object identifiers.
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Fig. 8. Giving away a reference to an object which is suddenly moved

A client which receives the identifier of an object from another client does not have any means to access the
object: object identifiers do not contain references to the actual object placement, as placement information
is stored as a tuple in a hidden, library-managed table. It is necessary to send and install this tuple in
the client which receives the object identifier. Object meta id AddressData retrieves the placement data
pertaining to Object (if Object is bound), or installs it locally and generates the corresponding Object

identifier if AddressData is bound. It is intended to be used in conjunction with send ref/2 as in

communicate_object(Object, DestClient):-

Object send_ref DestClient, %% Tell server DestClient will know

Object meta_id AddressData, %% Retrieve placement data

<...send AddressData to DestClient...>

and also by DestClient upon reception of the data representing the object placement.



4.4 Garbage Collection

Distributed GC [PS95] is more difficult than GC: in general the address space cannot be completely scanned.
Additionally, distributed GC cannot be made both correctly and completely in the presence of link or node
failures[Lyn97]. We will outline a simple method for automatic garbage collection based on the use of the
scion list together with a timeout for the connections.

When a client destroys a remote object, its reference is removed from the scion list. If the scion list
becomes empty, the object can clearly be removed (same as for an object trace). Each client listed in the
scion list of an object is said to have a ticket on the object with an associated deadline. Renewing a ticket
is performed by making any operation on the object. If a client does not renew a ticket on time, the server
assumes the client has finished, crashed, or it is just disconnected, and the client reference is removed from
the scion list. While this protocol can mistake a long enough transient network failure for a definitive broken
link or client crash, real client crashes or permanent network disconnections will be treated properly. 3 It
will also work in the cases where isolated objects reference each other (Figure 9): in that case a reference
counting method or a scan-based algorithm will not work (because the reference count will never drop down
to zero and because there is no bounded address space to scan). Timeouts will eventually remove all the
references in the scion list, thus leading to object deletion. This management is similar to that used in the
Java-based Jini architecture [We+00] under the name of leasing (with the Lease.ANY time value). Starting
with this idea, some points have to be addressed in order to make the system behave properly.

Keeping Objects Alive If some object is not accessed frequently enough by its clients as to renew the associated
tickets, it could be (mistakenly) deleted once its deadline expires. Liveness is ensured by having a separate,
library-managed thread in the client, which periodically traverses a (local) list of live objects and performs
an empty action (e.g., G @ ) on every of them. Local GC, besides destroying the remote object should
remove its identifier from that list — or just remove it and let ticket expiration remove the object. Should
the client die unexpectedly, the thread would also die and the tickets expire, eventually leading to the object
scion list shortening.

Using the Scion List to Ensure Liveness Objects referenced by other objects (as B in Figure 10) should
also be taken into account for (non) deletion. While activity of client C1 can keep A alive, this does not
necessarily mean that B will be contacted, and therefore could be removed if its deadline expires. The liveness

of a client is to be transmitted to all the objects reachable from it.
Instead of broadcasting accesses from clients across all the referenced objects (redundant for multiply

referenced objects), or starting a thread associated to every object (which could turn out to be too expensive),
we propose using the scion lists, which maintain a graph expressing the relation “is referenced by”. Every
time a component of the scion list of an object O is candidate to be removed because its deadline has
come, the graph that starts in that component is scanned (using, e.g., some variation of the Probe and Echo

algorithm [Lyn97]) for live objects. If a live object is found by the scan, then O is potentially reachable,
should not be deleted, and its ticket is renewed to the deadline of the found live object (in order to avoid
objects with cyclic references to “pull” from each other). Note that this protocol takes place at the level of
object servers, the objects themselves being unaware of it.

In Figure 10, B would face deletion if A does not access it frequently enough. However, a traversal
following the dotted edges starting at B would find that A is alive, and therefore B should not be deleted.
On the other hand, C will stay alive as long as D and E are. Eventually they will be removed, and so will
C. The same idea can be applied at every step in the graph traversal so that several objects can be marked
as live.

4.5 Name Registration

The scheme for method invocation in Section 4.1 cannot be applied when the clients are not designed to
cooperate by, e.g., passing around object identifiers. This can be worked around by having the server to im-
plement a name service that relates service names (which presumably do not change often) with the objects

3 Other protocols would fail in the case of transient failures and in the case of definitive failures.
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implementing the service. Once the object identifier is received, everything proceeds as before: the naming
scheme just eases the (initial) access to an object. A client can start a remote object offering a service as:

:- use_class(share_market).

main:-

X new share_market @ Site, %% No outside visibility at the moment

X provides gold_market. %% A global name is assigned at Site

Clients which know a service name and want to access the provider object use the accesses operation to
ask for an object reference. Servers keep a table of services with entries for objects and traces (thus allowing
service forwarding). The entry is deleted when the object (resp. trace) is removed.

play_poker(PlayerSite, CardSite, Winner):-

Deck new deck(poker) @ CardSite,

Table new table(poker) @ CardSite,

Deck provides deck(poker),

Table provides rules(poker),

P1 new player(Desk, Table) @ PlayerSite,

P2 new player(Desk, Table) @ PlayerSite,

P1:play(FinalScore1) &> P1H,

P2:play(FinalScore2) &> P2H,

watch(Table) &&,

P1H <&, P2H <&,

( FinalScore1 > FinalScore2 -> Winner = P1 ; Winner = P2 ).

Fig. 11. Two players in a distributed game

4.6 An Example of Service Access

Figure 11 shows a piece of code that starts a deck and a table at some host CardsSite. Some players are
also started as background threads, and the Deck object identifier is passed on so that they can draw cards.
Interaction is made through the Table, which they can inspect and which gives turns to them. Both the
Deck and the Table know which game to play from the initialization. The table is monitored by a local
computation while the game is in progress.

5 Initial Performance Measurements

Let us remind that the basic remote call mechanism can also be used to implement state migration, and
therefore it is important to assess its effectiveness and to fine tune it. Although communication delays make



remote call more expensive than local argument passing, it is interesting to know precisely which overhead
is to be expected (for, e.g., granularity control), and which points should be improved. We have measured
the actual cost of performing remote calls with and without marshaling and attribute encoding (Section 3.1)
in some benchmarks. Measuring the cost of attribute encoding is interesting, as attributes provide a means
to create systems of distributed constrained objects, where constraints and constraint stores are represented
with first-order terms. All the measurements were performed on a Pentium II at 333 Mhz with 64 Mb of
RAM, running RedHat Linux 6.2 and using Ciao Prolog 1.7. The times were obtained by averaging ten runs.

The benchmarks send goals whose argument is a list (of different sizes), containing only integers (i.e.,
ground terms) or free variables (Table 3), and constrained variables (Table 4). In the third case, two different
sets of constraints have been used: the first one constrains all the variables in the list to be greater than zero,
and the second one constructs a list of variables that form a Fibonacci series with free initial values. The
server does nothing with the received arguments: the served predicate is just a fact of the form received( ).
We measured the time needed to perform the full call: attribute encoding (when needed), marshaling (when
done), sending the term, receiving the answer, and installing the bindings in the client. Both the server and
the client were run in the same machine in order to minimize the impact of network latency. Running the
same benchmarks in two comparable machines connected with a LAN gave practically identical results —
in fact, slightly better.

Marshaling results in performance gain in all benchmarks but one (and the speed down is relatively small).
This particular marshaling is more effective when many variables appear in the term. Its impact is therefore
more important when no attributes are sent, since its encoding increases the ratio of ground (sub)terms.
This is clear when constrained goals are sent, as their projection includes many constants (Table 4).

Plain Marshaled

List No Attributes Attributes No Attributes Attributes

100 integers 10 18 12 14

500 integers 59 58 40 41

1000 integers 88 93 82 83

100 variables 34 52 12 23

500 variables 483 967 46 344

1000 variables 1508 3495 138 1234

Table 3. Performance for unconstrained terms (time in ms.)

List Attr., Plain Attr., Marsh.

10 vars. > 0 94 51

50 vars. > 0 672 548

100 vars. > 0 1996 1213

Fib (10) 261 219

Fib (50) 9153 8765

Fib (100) 43370 42112

Table 4. Performance for constrained terms
(time in ms.)

List Proj. Size Setup Time Publish Time

Fib (10) 3565 15 149

Fib (50) 24397 833 7531

Fib (100) 59176 2630 36597

Table 5. Projection size and time spent for different stages
of the remote constraint service

The high cost of sending unneeded attributes in the case of terms with a large number of variables
(Table 3) points to the necessity of using some form of control to decide whether to use attribute encoding
or not. The overhead of sending constrained terms is remarkable, and we will examine more closely the cause
of this relevant difference.



List No Attributes Attributes

100 integers 0 0

500 integers 0 3

1000 integers 1 8

100 variables 0 11

500 variables 0 508

1000 variables 1 2051
Table 6. Asssert-based transmission, no constraints

List Attributes

10 vars. > 0 13

50 vars. > 0 307

100 vars. > 0 1164

Fib (10) 229

Fib (50) 12241

Fib (100 64198
Table 7. Assert-based transmission, with constraints

The size of the projections sent to and from the server could be blamed for the large delay. However, a
measure of this size (Table 5) shows that there is no direct relation between it and the execution time. In
fact, most of the time is spent in the local Publish phase (Figure 5), which in our case boils down to adding
locally a set of equations that are already entailed by the store. The entailment tests take most of the time.

Additional experiments support the relative small cost of data transmission in comparison with constraint
processing. We simulated remote calls with a definition of @/2which asserts and retracts terms (with attribute
packing/unpacking) in the local database, instead of sending them through sockets: each send/receive pair
is modeled as an assert/retract pair (Tables 6 and 7). We would expect this to be faster than network
transmission, but in fact it is slower when attributes (which generate large terms) are taken into account
(however, network transmission has a larger footprint when no attributes are sent). This places transmission
cost in a fast network at a level roughly similar to that of database assertion (although in this case the
database mechanism is probably doing more work than strictly necessary).

A solution to improve the cost of importing constraints through attributes, and which would also diminish
speculative work in case of failure, is sending the constraints incrementally on both directions. Although
techniques to instrument this transparently have already been studied [HCC95], the protocol becomes more
involved (the interaction client/server would not finish when the goal returns, but it would continue by
incrementally sending constraints until the goal finitely fails). Also, in the presence of backtracking some
form of caching would be needed to avoid excessive communication overhead. An intermediate solution is to
send the constraints as a whole to their destination, and publish locally the bindings on demand. This would
avoid traffic of small messages, add constraints incrementally, and simplify parts of a completely incremental
implementation.

6 Conclusions and Future Work

We have shown a simple approach to explicit distributed computation in Prolog based on providing predicate
servers (for stateless entities) and distributed objects, featuring mobility, garbage collection, and tolerance
to some classes of network and system faults. Our proposal tries not to depart too much from sequential
semantics, and lets the programmer have explicit control about the concurrency and placement of computa-
tions. We feel that it is, however, of a high enough level so that most of the burden of concurrent/distributed
programming does not fall on the programmer shoulders.

A preliminary evaluation of the performance of the communication facilities has been made, but a more
complete and thorough study is to be carried out. Among the points to improve, a better, on-demand
installation of variables and constraints is needed. Automatic code distribution, present in other systems,
is to be also incorporated. While the fundamental pieces are already in the Ciao Prolog system (modules,
analysis of interfaces, lazy loading, network access...), and can be used straight away, some issues of practical
importance, such as authentication and code certification, have to be incorporated.

We wish to thank Francisco Bueno for fruitful (and never-ending) discussions regarding distribution and
access to remote predicates, and the referees for their very accurate and detailed comments.
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