Efficient Leftmost Unfolding with
Ancestor Stacks

Germén Puebla! and Elvira Albert?

! School of Computer Science, Technical University of Madrid, german@fi.upm.es
2 School of Computer Science, Complutense University of Madrid,
elvira@sip.ucm.es

Abstract. The most successful unfolding rules used nowadays in partial
evaluation of logic programs are based on well founded orders (wfo) or
well quasi orders (wqo) applied over (covering) ancestors, i.e., a subse-
quence of the atoms selected during a derivation. The use of ancestor
(sub)sequences improves the specialization power of unfolding while still
guaranteeing termination and also reduces the number of atoms for which
the wfo or wqo has to be checked. Unfortunately, maintaining the struc-
ture of the ancestor relation introduces a high operational cost during
unfolding.

In an attempt to facilitate the uptake of partial evaluation techniques, we
herein present a very efficient unfolding based on the notion of covering
ancestors which can be used in combination with any wfo or wqo as long
as leftmost unfolding is performed, i.e., the leftmost atom of the goal is
always selected for further unfolding. Our implementation technique is
able to handle large unfolding trees more efficiently than existing state-of-
the-art partial evaluation systems. We believe that our approach makes
well-known orderings, like homeomorphic embedding, more practically
applicable.

1 Background and Motivation

The main purpose of partial evaluation is to specialize a given program w.r.t.
part of its input data—hence it is also known as program specialization. Essen-
tially, partial evaluators are non-standard interpreters which evaluate expres-
sions while enough information is available and residualize them otherwise. The
partial evaluation of logic programs is usually known as partial deduction (PD)
[11]. Informally, the PD algorithm proceeds as follows. Given an input program
and a set of atoms, the first step consists in applying an unfolding rule to com-
pute finite (possibly incomplete) SLD trees for these atoms; it returns the set
of resultants (or residual rules), i.e., a program, associated to the root-to-leaf
derivations of these trees. Then, an abstraction operator is applied to properly
add the terms in the right-hand sides of resultants to the set of terms to be par-
tially evaluated; the abstraction phase yields a new set of terms some of which
may need further evaluation and, thus, the process is iteratively repeated while
new terms are introduced. Following the terminology of [5], the so-called local

control defines an unfolding rule which determines when and how to terminate
the construction of the SLD trees. The global control defines an abstraction op-
erator which guarantees that the number of trees is kept finite. This extended
abstract is centered around the local control only (we refer to [9] for a survey on
both control issues).

In order to ensure the local termination of the PD algorithm while producing
useful specializations, the unfolding rule must incorporate some mechanism to
stop the construction of SLD trees. Nowadays, well-founded orderings (wfo) [4,
12] and well-quasi orderings (wqo) [14, 8] are broadly used in the context of on-
line partial evaluation techniques (see, e.g., [5,10,14]). Intuitively, derivations
are expanded as long as there is some evidence that interesting computations
are performed but also guaranteed to terminate (according to the selected order-
ing). For instance, consider the following program which implements the well-
known “gsort” algorithm using difference lists. Given an initial query of the
form «gsort(List, Result,Cont), where List is a list of numbers, the algorithm
returns in Result a sorted difference list which is a permutation of List and such
that its continuation is Cont. For example, for the query « gsort([1,1,1], L, []),
the program should compute L=[1,1,1].

gsort([1,R,R).

gsort ([XIL],R,R2) :- partition(L,X,L1,L2),
gsort(L2,R1,R2),
gsort(L1,R, [X|R1]).

partition([],_,[1,[1).

partition([E|R],C, [E|Left1] ,Right) :- E <= C,
partition(R,C,Leftl,Right).

partition([E|R],C,Left, [E|Right1]) :- E > C,
partition(R,C,Left,Rightl).

Fig. 1 illustrates an incomplete SLD-derivation for the above program and
query, where predicates gsort and partition are abbreviated as gs and p,
respectively. Each atom is labeled with a number (an identifier) and a superscript
for future references®. Further resolution steps are allowed as long as new selected
atoms are strictly smaller—according to the homeomorphic embedding order
[8]—than any previously selected atom in the same derivation. Therefore, the
derivation stops prematurely when the atom 9, i.e., p([1],1,L',L2), is found for
the second time, since it is not strictly smaller than the atom 6 selected in the
third step (indeed they are equal modulo renaming).

State-of-the-art unfolding rules allow performing ordering comparisons over
subsequences of the full sequence of the selected atoms of a derivation, achieving
further specialization in many cases. To do so, they maintain dependencies over
the selected atoms which are chosen in such a way that only a subsequence of

3 By abuse of notation, we keep the same number for each atom throughout the
derivation although it may be further instantiated (and thus modified) in subsequent
steps. This will become useful for continuing the example later.

Las((t,1,1).R, DV

v
2.p([1,1],1,L1,1.2)1} 3.gs(L2,R1,)1, 4.9s(L1, R, [1]R1]) 11}
VAL [}
5.1 <= 112 6.p([1],1,L,12) 1"} 3.9s(L2,R1,)1V, 4.9s([1]L], R, [1|R1]) 1}
(1,2} !
6. ,3.9s(L2,R1, [])*}, 4.qs([1|L], R, [1|R1]) 1)
(y L]}

7.1 <= 1128 8p([], 1,1/, 12){2%} 3 gs(L2,R1,)1, 4.9s([1, 1]L'], R, [1|R1]) (¥}

v

[
[

[

| 8 ’ {1,2,6} {1} ’ {1}

p([,1,L',L2) ,3.9s(L2,R1, [])1, 4.9s([1, 1|L'], R, [1|R1])

: VL —[t2— [}
[
[
[
[

3.as([,R1, [N, 4.9s([1, 1], R, [t[R1]) 1
ViRt [}
4.gs([t,1],R, 1))
y

1,4
‘ }, 10.gs(L2’,R1/, [1]){"*} 11.qs(L1', R, [1|R1]) {14}

K9.p([1],1,L1>,L2’)

Fig. 1. Derivation with Ancestor Annotations

such selected atoms needs to be considered while still guaranteeing termination.
The essence of the most advanced techniques is based on the notion of covering
ancestors [4]. The important observation is that a derivation can contain selected
subgoals which are indeed part of different subcomputations in the proof tree.
Given an atom A and a derivation D, we denote by Ancestors(A, D) the sequence
of ancestors of A in D. It captures the dependency relation implicit within a
proof tree [3]. Usually, the test is only applied on comparable ancestor atoms,
i.e., ancestor atoms with the same predicate symbol. This corresponds to the
original notion of covering ancestors [4].

In the above example, the proof tree associated to the derivation depicted in
Figure 1 is shown in Figure 2, where we use the numbers assigned to the nodes
in the tree rather than writing the precise atoms.

Therefore, in order to decide whether to evaluate or not atom 9, one has
to check only that it is strictly smaller than atoms 4 and 1, i.e., its ancestors
according in the proof tree. By considering the full sequence, the atom was
compared with atom 6 which results in considering it a dangerous derivation (as
shown in Fig. 1). Note that the SLD tree for the example query is finite and
the query can be safely fully unfolded. If the order is a wqo, given a derivation
G1,Ga, --+,Gn41 in order to decide whether to evaluate G, 41 or not, we check
that the selected atom in G, 11 is strictly smaller than any previous (comparable)
selected atom in its ancestor sequence. In wfo, it is sufficient to verify that the
selected atom is strictly smaller than the previous comparable one (if one exists)

z /130\ 11

W< qN<— D <—UTl<— I

Fig. 2. Proof tree for the example.

in its ancestor sequence. The most successful techniques to-date are based on
these two basic ingredients:

— The use of a structural order (wfo or wqo) which guarantees termination
while still capturing structural aspects of programs and goals.

— Organizing the atoms already visited in each derivation in a (proof) tree
rather than a linear collection, such as a sequence or a set.

Among the structural orders, well-quasi orderings (and homeomorphic embed-
ding [7] in particular) have proved to be very powerful in practice. Regarding
the structure to use for visited atoms, the notion of ancestors seems to be the
best one since it guarantees termination while allowing transformations which
are strictly more powerful than those achievable if unstructured collections are
used, as our example illustrates. Unfortunately, the practical applicability of
such unfolding rules is threatened by the overhead introduced by the implemen-
tation of the notion of covering ancestor. For the simple derivation of Fig. 1,
we indicate (inside a superscript) the list of ancestors which each atom has to
maintain during its evaluation. Our experiments show that the cost of maintain-
ing such ancestor information grows very quickly with the size of derivations in
the unfolding tree. In an attempt to facilitate the uptake of partial evaluation
techniques, we propose a novel implementation technique for the practical inte-
gration of unfolding rules based on the notion of ancestor into state-of-the-art
partial evaluators. Although further experimentation is still required, we believe
our preliminary results are promising.

2 An Efficient Implementation for Leftmost Unfolding

By leftmost unfolding we refer to a computation rule which always selects the
leftmost atom of a goal in order to perform resolution. lL.e., given the goal
— o(Ay,...,A,), the atom o(A4;) will always be selected for resolution. This
corresponds to the computation rule used in most logic programming languages

such as Prolog. SLD resolution restricted to the case of leftmost unfolding is re-
ferred to as LD resolution. The use of computation rules which are not leftmost
during partial deduction is problematic in several ways: (1) it is well-known that
if the resulting program is to be executed under the Prolog left-to-right compu-
tation rule, the specialized program may perform more computation steps than
the original one due to the introduction of choice-points; (2) if the program con-
tains meta-logical predicates such as var/1 or ground/1, the resulting code can
simply be incorrect unless back-propagation of bindings is avoided; (3) if the
program contains calls to builtin predicates, there will often be a left-to-right
information flow. Thus, unless this computation order is preserved at specializa-
tion time, chances are that calls to builtins will not be sufficiently instantiated
for being reduced. As a result of all the above, leftmost unfolding during partial
deduction is arguably a very sensible thing to do.

2.1 LD Resolution with Ancestor Stacks

Unfolding rules based on wfo or wqo usually monitor the construction of deriva-
tions during specialization and stop unfolding as soon as a sequence which is
not admissible is found. Intuitively, a sequence of elements si,ss,... in S is
called admissible with respect to an order <g [4] iff there are no i < j such
that s; <g s;. It has been proved [4] that any infinite derivation must have at
least one infinite covering ancestor sequence. Therefore, it is sufficient to check
the above ordering relation <g over the covering ancestor subsequences in order
to detect inadmissible derivations. There are a number of well-known orders in
the literature which allow the definition of admissible sequences that are always
finite for which our technique directly applies.

A central observation which motivated this work is that the proof tree which
is used in order to capture the ancestor relation can be interpreted as an activa-
tion tree [1]. Since such proof tree is traversed depth-first, left-to-right during LD
resolution, the notion of ancestors for SLD resolution corresponds to the notion
of control word [13]. The control word for each execution state can be seen as
the set of procedures whose execution has started and is not yet completed. In
order to compute control words it is essential to know exactly when each item of
the stack should be popped. Such information is readily available in proof trees:
an atom A; in the stack should be removed as soon as the depth-first traversal
moves up in the proof tree from such atom A; to another atom A; such that A;
is the father of A;.

The difficulty relies in that success states (end of the execution of a call) are
not observable in SLD (nor LD) resolution other than for the top-level query.
We herein propose an easy-to-implement modification of LD resolution in which
success states for all internal calls are observable. This involves adding marks to
the goals used during resolution which indicate that the last procedure which
has been started is now finished. The atom corresponding to the last started
procedure will be on the top of the stack and thus can be popped. Essentially,
in the augmented operational semantics we propose, goals are enhanced with an
ancestor stack, which at each stage of the computation contains the atoms whose

computation has started but has not yet finished, i.e., the ancestors of the next
atom which will be selected for resolution.

Although developed in a different context and for completely different pur-
poses, the OLDT semantics [15] used in logic programming with tabulation also
augments LD semantics in order to explicitly represent procedure call and return
states which are needed for the table where previously computed answers are
stored.

Let us state some notation. In our operational semantics, states are of the
form (G 1 AS) where G is a goal and AS is an ancestor stack (or stack for short).
The stack will allow disabling resolution as soon as termination of the resolution
process can no longer be guaranteed by the structural order being used. Let < be
a wio. By Admissibley,fo(A, (A1,...,As), <), with n > 0, we denote the truth
value of the expression A < A7 if n > 1 and true if n = 0. Let <g be a wqo.
By Admissibleyqo(A, (A1,...,Ap), <s), with n > 0, we denote the truth value
of the expression VA; : A <g A;. We will denote by structural order a wfo or a
wqo (written as < to represent any of them).

To handle stacks, we will use the usual stack operations: empty, which returns
an empty stack, push(S, Item), which pushes Item onto the stack S, and pop(S),
which pops an element from S. In addition, we will use the operation contents(S),
which returns the sequence of atoms contained in S in the order in which they
would be popped from the stack S and leaves S unmodified.

Definition 1 (reduction step in LD with ancestor stack). Let 0;(Aq, ..., Ay)
be a goal and AS; be a stack. Let < be a structural order. A reduction step in
LD with ancestor stack from {(o;(A1,...,An) | AS;) is obtained by applying one
of the reduction rules:

resolve If the two following conditions are satisfied:

1. There is a renamed apart rule H «— By, ..., By, in P with
0 = mgu(o;(A1),H), and
2. Admissibleq(o;(Ay), contents(AS), <) holds

then (o;(A1,..., Ay) 1 AS;) is reduced to:
(0301 (B1, .-+, Bm, $pop, A, ..., Ap) | AS;11), where 011 = 00 and AS;11 =
push(AS;, ren(c;(A1))).

builtin If the three following conditions are satisfied:

1. If 0;(Ay1) is an atom corresponding to a builtin predicate, and
2. eval(o;(A1)) holds, and
3. call(o;(A1)) succeeds with substitution 6,

then {(0;(Ay,...,A,) 1 AS;) is reduced to (o;411(As, ..., An) 1 AS;11), where
Oi41 = 0'1‘9 and ASH_1 = ASl

pop If 0;(A1) = $pop then it is reduced to {o;11(Az,..., An) | AS;y1), where
Oi4+1 = 03 and ASiJrl = pop(ASZ)

The resolve rule is non-deterministic if several clauses in P unify with the atom
o(A1). Note that, for each state, at most one of the three resolution rules can be
applied. Thus, no further non-determinism is introduced by LD resolution with
ancestor stack which is not already present in LD resolution.

Intuitively, the resolve rule corresponds to performing one resolution step
for the leftmost atom o(A;) in the current goal. In addition, the mark $pop is
added to the goal, where $pop is a pseudo-atom which is guaranteed not to
clash with any existing predicate name. Finally, a renamed apart copy of o(A1),
denoted ren(o(Ay1)), is pushed onto the ancestor stack. Note that in contrast to
traditional LD resolution, this rule can only be applied if the current leftmost
atom together with its ancestors do constitute an admissible sequence.

The builtin rule is useful for evaluating calls to builtin predicates, or in
general predicates which can be executed but whose code is not available. In
many cases, builtin predicates impose certain degree of instantiation for being
executed. This is indicated by the boolean function eval which returns true only
if (1) the atom o(A;) is sufficiently instantiated and (2) the execution of o(A;)
does not produce side-effects. In the latter case, the builtin cannot be executed
until run-time regardless of its instantiation state at specialization time. Unlike
ordinary predicates, it is assumed that the execution of builtins (1) is guaranteed
to terminate finitely if eval(o(A1)) takes the value true, and (2) does not perform
calls to the predicates defined in P. Thus, there is no need to push the atom o (A1)
into AS since there can be no calls from builtin predicates to other predicates
defined in P.

Finally the pop rule, unlike the two previous rules, does not provide any new
bindings. This rule is used when the leftmost atom in the resolvent is a mark
$pop. Tts effect is to eliminate from the ancestor stack the topmost atom, which
is guaranteed not to belong to the ancestors of any selected atom in any possible
continuation of this derivation.

Computation for a query < G starts from the state Sy = (id(G) | empty).
We use S ~»p S’ to indicate that in program P a reduction can be applied to
state S to obtain state S’. Also, S ~»7, S’ indicates the transitive closure of this
relation. A derivation for a query < G in program P is a sequence of states
So ~p S1 ~p ...~p S, where Sy = (id(G) | empty) and there is a reduction
from each S; to S;11. Given a non-empty derivation D, we denote by curr_goal(D)
and curr_ancestors(D) the goal and the stack in the last state of the derivation,
respectively. E.g., if D is the derivation Sy ~% S, with S, = (o(G) 1 AS)
then curr_goal(D) = o(G) and curr_ancestors(D) = AS. Since the resultants
obtained by LD derivation with ancestor stack may contain atoms of the form
$pop, resultants are cleaned up before being transferred to the global control
level or during the code generation phase by simply eliminating all atoms of the
form $pop.

FEzxzample 1. The derivation with explicit ancestor annotations depicted in Fig. 1
corresponds to the LD derivation with ancestor stack which appears in Fig. 3.

{1

\Lresolve
({2, 3,4, $pop} | [aqsort([L,1,1],,[])] = AS1)
\Lresolve
({5, 6, $pop, 3,4, $pop} | [part([1,1],1,_,)|AS1] = AS>)
\Lbuiltin
({6, $pop, 3,4, $pop} | AS)
\Lresolve
({7, 8, $pop, Spop, 3,4, $pop} | [part([1], 1, .,)|AS>] = ASs)
\Lbuiltin
({8, $pop, $pop, 3,4, $pop} | AS3)
\lﬂ‘esolve

({$pop, $pop, 3,4, $pop} | ASs)
\LP(’P
{{$pop, 3,4, $pop} | AS>)
\LPOP
({3,4, $pop} | AS1)
resolve
({4, $poi} 1 AS:)
| resolve

({9, 10,11, $pop, $pop} | [gsort([1,1], -, [1]), gsort([1,1,1], , [D])

Fig. 3. LD Derivation with Ancestor Stack

Each step is appropriately labeled with the applied reduction rule (the c.a.s.
are omitted here). At each state, we write the list of numbers assigned to the
corresponding atoms rather than the terms itself by using the labeling of Fig. 1.
By abuse of notation, we always use the same number assigned to an atom
although further instantiation is performed. However, the stack contains the list
of atoms exactly in the instantiation state they have when they are pushed in
the stack. Note that resolve steps w.r.t. a clause which is a fact are optimized in
the figure (and in the implementation) by not pushing o(A;) onto the stack and
not including a $pop mark into the goal which would immediately pop o(A;)
from the stack.

It should be noted that, in the last step, the stack contains exactly the
ancestors of partition([1],1,L1,L2), since the previous calls to partition
have already finished and thus their corresponding atoms have been popped off
the stack. Consequently, unfolding can proceed further without termination risk.
Indeed, the derivation can be totally unfolded which results in the following
(optimal) partial evaluation in which all input data have been satisfactorily
consumed: gsort([1,1,1]1,[1,1,1],[1).

It is easy to see that for each LD derivation with ancestor stack Dg there
is a corresponding LD derivation D which computes the same computed answer
substitution and the same resultant modulo the $pop atoms. Such derivation
is the one obtained in LD resolution by performing the resolve (with exactly
the same clauses) and builtin steps and by ignoring the pop steps. We will use
simplify(Dg) = D to denote that D is the LD derivation which corresponds to
Dg.

Proposition 1 (ancestor stack). Let Dg be a LD derivation with ances-
tors stack for initial query «— G in program P such that simplify(Dg) =
D. Let curr_goal(Dg) = Ai,...,A,. Let curr_ancestors(Dg) = AS. Then
Ancestors(Ay, D) = contents(AS).

Correctness of this proposition is central to proving correctness of the two the-
orems below.

Theorem 1 (termination). Let «— G be a query, P be a program, B a set of
builtins, and let < be a structural order. Then the derivation tree obtained by
applying reduction steps in LD with ancestor stack as defined in Def. 1 is finite.

Theorem 1 guarantees termination at the local level during partial deduction.
It follows from Proposition 1 and the fact that the use of ancestor subsequence
guarantees local termination [4].

Theorem 2 (accuracy). Let D = Gy,..., G, be a LD derivation for query
— Go in a program P with set of builtins B and whose selected atoms are
Ag,...,A,_1. Let A, be the selected atom in G,. Let < be a structural order.
If Admissible(A,,, Ancestors(A,, D),<) holds then there exists a LD derivation
with ancestor stack Dg such that

simplify(Dg) = D.

Theorem 2 guarantees that we do not lose any specialization opportunities by
using our stack-based implementation for ancestors instead of the more com-
plex tree-based implementation, i.e., our proposed semantics will not stop “too
early”. Note that since our semantics disables further resolution as soon as in-
admissible sequences are detected, not all LD derivations have a corresponding
LD derivation with ancestor stack. However, if the LD derivation is admissible,
then its corresponding Dg derivation can be found.

3 Discussion and Future Work

The use of ancestors for refining sequences of visited atoms was early proposed [4]
and important effort has been devoted to improve the implementation of ances-
tors [12]. However, current state-of-the art partial deduction systems (e.g., the
Ecce PD system or the Curry partial evaluator [2]) are not be very efficient when
local control based on the combination of structural orderings and ancestors is
used. Mainly, due to the fact that one has to maintain dependency information

for the individual atoms in each derivation. In principle, the use of ancestors
should not only allow more powerful transformation but also speedup unfold-
ing since it reduces the length of sequences for which admissibility has to be
checked. Unfortunately, maintaining such information about ancestors during
the generation of SLD trees introduces a costly overhead which seems to neglect
the theoretical efficiency gains.

In this work we propose an extension over the LD semantics which can be
used as a basis for the generation of (incomplete) SLD trees during partial de-
duction in combination with structural orders and ancestor sequences. The main
features of the operational semantics we propose are: (1) it is parametric w.r.t.
the structural order of interest; (2) it can handle logic programs with builtins;
(3) it is guaranteed to always provide finite LD trees; (4) it is very easy to
implement since the ancestor information is simply stored using a stack; (5) it
provides a very efficient implementation of ancestor information. Note that, as it
is the case with unfolding rules based on traditional SLD resolution, our seman-
tics can be used in combination with a determinacy check which may decide to
stop unfolding even if termination is guaranteed whenever too many alternative,
non-deterministic, branches are generated in the SLD tree.

The unfolding rule proposed in this work has been implemented in CiaoPP [6],
the Ciao system preprocessor. Preliminary experimental results are very promis-
ing: the query to gsort with a list of identical numbers can be fully unfolded,
which can only be done if ancestors rather than the full sequence is considered,
and the time required to do so for the particular case of leftmost unfolding is
significantly lower than the time required by other state-of-the-art partial eval-
uation systems. Though it can be argued that specialization time is not very
relevant, the takeup of partial deduction techniques also depends on the power
of existing systems and tools which we hope our proposal can contribute to its
improvement.

In an extended version of this abstract, we plan to handle several lines of
ongoing and future work. Though our technique has been originally developed
for leftmost unfolding, it can be applied for other less restrictive unfolding rules
which may select any of the “most recent” atoms in the goal, i.e., the computa-
tion rule may select any of the siblings of the leftmost atom as far as the first
$pop pseudo-atom appears. Moreover, we plan to perform a thorough experimen-
tal evaluation of the proposed techniques both in terms of resources required to
perform the specialization, i.e., time and memory consumption, and quality of
the resulting program (together with a comparison w.r.t. state-of-the-art sys-
tems). Also, we are working on the extension of our unfolding technique for full
Prolog, including the precise formulation of eval and call functions.

Acknowledgments

The authors would like to thank the anonymous referees for their useful com-
ments. This work has been supported in part by the Information Society Tech-
nologies programme of the European Commission, Future and Emerging Tech-

10

nologies under the IST-2001-38059 “ASAP” project, by MCYT project TIC
2002-0055 “CUBICO” and FEDER infrastructure UNPM-EQ12.

References

1.

2.

10.

11.

12.

13.

14.

15.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers — Principles, Techniques and
Tools. Addison-Wesley, 1986.

E. Albert, M. Hanus, and G. Vidal. A practical partial evaluation scheme for multi-
paradigm declarative languages. Journal of Functional and Logic Programming,
2002(1), 2002.

M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91-124, 1991.

M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding
Infinite Unfolding during Partial Deduction. New Generation Computing, 1(11):47—
79, 1992.

J.P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88-98. ACM Press, 1993.

M. Hermenegildo, G. Puebla, F. Bueno, and P. Lépez-Garcia. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In 10th
International Static Analysis Symposium (SAS’08), number 2694 in LNCS, pages
127-152. Springer-Verlag, June 2003.

J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society, 95:210-225, 1960.

Michael Leuschel. On the power of homeomorphic embedding for online termina-
tion. In Giorgio Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503,
pages 230245, Pisa, Italy, September 1998. Springer-Verlag.

Michael Leuschel and Maurice Bruynooghe. Logic program specialisation through
partial deduction: Control issues. Theory and Practice of Logic Programming,
Special issue on program development, 2(4 & 5):461-515, July 2002.

Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalisation
and polyvariance in partial deduction of normal logic programs. ACM Transactions
on Programming Languages and Systems, 20(1):208-258, January 1998.

J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11:217-242, 1991.

B. Martens and D. De Schreye. Automatic finite unfolding using well-founded
measures. The Journal of Logic Programming, 28(2):89-146, August 1996.

G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages: Word
Language Grammar, volume 1. Springer-Verlag, 1997.

M.H. Sgrensen and R. Gliick. An Algorithm of Generalization in Positive Super-
compilation. In Proc. of ILPS’95, pages 465-479. The MIT Press, 1995.

H. Tamaki and M. Sato. OLD resolution with tabulation. In Third International
Conference on Logic Programming, pages 84-98, London, 1986. Lecture Notes in
Computer Science, Springer-Verlag.

11

