
Constraint-Based Runtime Prediction of SLA Violations
in Service Orchestrations?

Dragan Ivanović,1 Manuel Carro,1,2 and Manuel Hermenegildo 1,2

1 School of Computer Science, T. University of Madrid (UPM), Spain
(idragan@clip.dia.fi.upm.es, {mcarro, herme}@fi.upm.es)

2 IMDEA Software Institute, Spain

Abstract. Service compositions put together loosely-coupled component ser-
vices to perform more complex, higher level, or cross-organizational tasks in
a platform-independent manner. Quality-of-Service (QoS) properties, such as
execution time, availability, or cost, are critical for their usability, and permissi-
ble boundaries for their values are defined in Service Level Agreements (SLAs).
We propose a method whereby constraints that model SLA conformance and
violation are derived at any given point of the execution of a service compo-
sition. These constraints are generated using the structure of the composition
and properties of the component services, which can be either known or em-
pirically measured. Violation of these constraints means that the correspond-
ing scenario is unfeasible, while satisfaction gives values for the constrained
variables (start / end times for activities, or number of loop iterations) which
make the scenario possible. These results can be used to perform optimized
service matching or trigger preventive adaptation or healing.

Keywords: Service Orchestrations, Quality of Service, Service Level Agreements,
Monitoring, Prediction, Constraints.

1 Introduction

Service-Oriented Computing is a paradigm that has been increasingly gaining ground
as the basis for development of highly flexible, dynamic, and distributed service-
based applications (SBAs). Key to the development of SBAs are service compositions,
that allow the application designer to put together several loosely-coupled special-
ized component services, often provided and controlled by third parties, to perform
more complex, higher-level, and/or cross-organizational tasks [7]. Trends in service-
oriented application design indicate increased reliance on third-party services avail-
able on Internet [19].

In that context, quality of service (QoS) properties of individual services and their
compositions are critical for overall usability. For externally offered services, service-
level agreements (SLAs) define boundaries of permissible values for QoS attributes,
such as execution time, availability, or cost. Potential and actual SLA violations can
be avoided or mitigated using some form of adaptation (e.g., rebinding or changing

? The research leading to these results has received funding from the European Community’s
Seventh Framework Programme under the Network of Excellence S-Cube (Grant Agree-
ment n◦ 215483). The authors were also partially supported by Spanish MEC project 2008-
05624/TIN DOVES and CM project P2009/TIC/1465 (PROMETIDOS).

�

a0

+
a1

Retrieve account
record

a2

Retrieve usage
patterns

a3
+

User ID

©
a4

Generate new
content profile

a6

Reuse current
content profile

a5
stable

¬stable
Fitting?

a7
©

yes

no
Write configuration

a8

Account record

Usage patterns

Content profile

Content profile

Fig. 1. An example orchestration to reconfigure content provided to a user.

the service selection preferences), or triggering structural changes both in the design
and the running instance [7, 10]. For structurally constrained compositions of non-
cyclic shape, flexible provisioning techniques have also been proposed [18].

Therefore, the task of analyzing and predicting QoS metrics for service composi-
tions, both at design time and at the level of an executing instance, is of great theo-
retical and practical importance. Among the recently proposed approaches we can
cite the application of statistical reasoning based on historical data (e.g., data min-
ing) to predict likely SLA violations and their probable causes [15, 23], or to apply
techniques related to model checking and online testing [10, 8].

In this paper, we take a different approach based on generating a constraint model
for QoS metrics of an executing composition based on its structure, the semantics of
its building blocks, and its current state of execution at a given moment. Previous
works [4, 3, 13] also used the composition structure as the basis to derive properties
thereof. In terms of results, instead of trying to find the most likely SLA conformance
or violation scenario, we identify the possible cases of SLA conformance and viola-
tion at a given point of execution and infer conditions under which these may occur.

We consider service orchestrations, which are compositions with a centralized
control flow. They may involve a wide range of workflow patterns [22] — includ-
ing parallel flows, different splits/joins, loops, branches, etc. — and are usually ex-
pressed using some dedicated notation, such as BPMN [16], BPEL [14], Yawl [20] or
DecSerFlow [21], or other adequate formalism. In this paper, we use abstract (but ex-
ecutable) notation for orchestrations from which we formulate a constraint satisfac-
tion problem (CSP) [6, 1] that models the situation of SLA conformance or violation.

The rest of the paper proceeds as follows: Section 2 presents a motivating exam-
ple. Section 3 then describes how the CSP can be automatically formulated on the
basis of an orchestration continuation, to take into account the known assumptions
about third-party components, as well as to include internal structural parameters
of branches and loops. In Section 4 we present an experimental evaluation, Section 5
gives some implementation notes, and finally Section 6 presents conclusions.

2 Motivation

Consider a scenario where a provider of multimedia content (text, audio and video)
needs to periodically update and reconfigure program streams offered to individual

2

clients (users), based on their historical usage patterns. That may require choosing
between different mixtures of available streams (such as news, sport, entertainment,
etc.) presented to a user, genres within them, and type of multimedia materials. The
choice may depend on the frequency of use (casual vs. frequent users), user inter-
ests, and bandwidth adequate to serve different types of content (e.g. low quality vs.
HD video). In such a scenario, the provider would run the reconfiguration process
from time to time when serving user requests, although typically not for each access.
Reconfiguration depends on other (usually back-end) administrative and analytic
services, and should not cause noticeable glitches in content delivery. The SLA for
the content delivery service does provide some window for running the reconfigu-
ration process on top of it, but it is normally very restricted. Therefore, the running
time of the reconfiguration process and its availability are of the utmost importance.

Fig. 1 depicts an example orchestration implementing the reconfiguration pro-
cess, using BPMN notation [16]. It starts with the reception of user ID (activity a0),
which spawns in parallel (a1) the retrieval of the users’ account record (a2) and the
user’s usage patterns (a3). If the usage pattern is stable (a4), the user’s current con-
tent profile is reused (a5). Otherwise, a new content profile is generated (a6) based
on the account record and the current usage patterns. For efficiency, first minor vari-
ations in content profile parameters are attempted; if these are not likely to fit the us-
age pattern (a7), more radical changes are attempted, and so on. Finally, the content
profile (either the current one or a new one) is written to the configuration database
(a8).

In this example, the configuration process may affect responsiveness of the main
multimedia content delivery service, and therefore we want to continuously monitor
and predict reconfiguration running time, having in mind the overall SLA. At any
point in the execution of the reconfiguration orchestration, including its start, and
within that particular context, there are a number of interesting objectives to aim at:

Predicting Certain SLA Violations: If we are able to predict that the orchestration
cannot possibly meet the SLA constraints, then we can either abort it (effectively
postponing the reconfiguration), or adapt it by switching to a simpler and/or more
robust version. Conversely, if we are reasonably sure that the execution will be SLA-
conformant, we can plan to use the potential slack in a productive way.

Predicting Possible SLA Violations: If we can predict that SLA violations may occur,
but not necessarily so, and we can identify potential points of failure, then we can
prepare, ahead of time, adequate adaptation and healing mechanisms, and/or try to
decrease the risk of violation by using fail-safe component services.

Inferring the Necessary Preconditions: If we not only predict, but understand why an
SLA violation may or must happen, we can use that information to identify bottle-
necks, to develop criteria for selection of components, and to drive either runtime or
design-time adaptation.

In this paper we present a unified constraint-based approach and analysis frame-
work that makes it possible to perform runtime prediction of SLA violation / confor-
mance for service orchestrations, based on monitoring information and a constraint
model of an abstract semantics of the orchestration structure. Predictions are based

3

on and expressed in a form that describes the circumstances under which SLA vio-
lations and conformant executions of an orchestration may take place, which can be
used to reason about the orchestration and its components.

3 Constraint-Based QoS Prediction

3.1 The General Prediction Framework

An SLA typically defines, among other things, which QoS attributes are relevant in
the context of the provider-client contract, and what values of these QoS attributes
are acceptable. For QoS attributes expressed as numbers on a measurement scale,
QoS constraints given by an SLA are often expressed as ranges of permissible values
for each attribute. More complex relationships between SLA attributes — such as
trade-offs between cost and speed — can be devised, but in our analysis we will as-
sume that the QoS constraints are given as lower and upper bounds on appropriate
QoS metrics.

Furthermore, we will focus on an important subset of QoS metrics that are mono-
tonic and cumulative in the sense that they express an amount of a physical or logical
resource consumed by each activity in an orchestration, so that the amounts from
subsequent activities add together into an aggregate metrics. Running time is an ob-
vious example of a cumulative metrics, because consumed time is never recovered.
In this paper we will assume, for simplicity, that metrics are accumulated by through
addition (which is a fairly common case). Note that some metrics whose natural ag-
gregation function is not addition can be easily mapped into additive metrics. For
instance, the aggregation function for the availability (the probability of successful
access) p of n subsequent operations can be calculated as

∏n
i=1 pi , where 0 < pi ≤ 1

is the availability of the i -th component. Using the transformation λ = − log p, we
can transform the original multiplicative metric of p into the additive λ=∑

i λi .
An important feature of a cumulative QoS metrics is that, at any point in execu-

tion of an orchestration, its value can be calculated as a cumulative function (such as
addition) of two components: the previously accumulated metrics and an estimate of
the pending metrics for the remainder of the execution of the orchestration, until it
finishes. For some metrics, their accumulated value needs to be be measured taking
into account the history of the actual execution up to the current execution point
(e.g. elapsed time from the start of execution), while for other metrics the current
value at any execution point does not depend on the previous history. For exam-
ple, in the case of availability the current metrics always represents “availability so
far”. Since it is being measured at some execution point which has obviously been
reached, the probability p of being available up to the point of measure is 1 (and
then λ= 0).

Let us present intuitively how accumulated metric values and a prediction for the
rest of execution can be applied to predict SLA violations. We will use Fig. 2, taken
from [12]. Points A -D on the x-axis stand for the start, finish and two intermedi-
ate points in time during the execution of an orchestration. Let us assume that at
the initial point A we have a prediction (solid line) for the QoS metrics for the rest
of the execution. According to this prediction, the QoS at the finish falls under the
limit Max given by some SLA. However, at point B we notice that some deviations

4

History

Quality

Max

A B C D

Initial prediction

Actual profile

Prediction after
observation B

Prediction after
observation C

Fig. 2. Actual and predicted QoS throughout history.

have occurred up to that moment (the dashed line). Therefore, we adjust our predic-
tion, which now seems to indicate borderline SLA compliance. At point C , further
measured deviations lead to another adjustment of the QoS prediction, this time in-
dicating a likely violation of the SLA.

An important aspect of such prediction scheme is the existence of a time horizon
between the detection of the possibility of an SLA violation and its actual occurrence.
In our example, it is the period between B and the point of failure which lies some-
where between C and D. This “window” makes it possible to warn about (potential)
future SLA violations ahead of time. A prediction technique also needs to identify
conditions that increase or decrease likelihood of an SLA violation, in order to fil-
ter false positives from true positives and thus increase the reliability of prediction.
These conditions can be related to internal parameters of the orchestrations, such as
the truth value of branching conditions or the number iterations in a loop. For our
constraint-based approach, this will be illustrated in Section 3.5.

3.2 QoS Prediction Architecture

The architecture of the constraint-based QoS prediction framework is shown in Fig. 3.
A process engine executes service orchestrations and interacts with external services
by exchanging messages. In the process, it publishes lifecycle events such as signal-
ing the start or end of a process, invocation of a component service, and reception
of a reply. Also, from time to time, the process engine publishes the current point of
execution of a running orchestration in the form of a continuation (explained in the
following subsection). That is typically not done at each step, but at specific mile-
stones such as service invocations, loop iterations and branches. Deciding how to
determine the optimal granularity for publishing points is a matter for future work.

The events published by the process engine are sent via an event bus. The const-
raint-based QoS predictor can be connected to that bus and listen to lifecycle events
(or a subset of events of interest). When a continuation is published, it is pushed by
the event bus to the predictor. The predictor performs the analysis, and publishes
QoS predictions back to the event bus, together with QoS metric bounds inferred by
the analysis. That information can be accessed by an adaptation mechanism, which

5

can use the published predictions and the QoS metrics to prepare adequate adap-
tation actions on the orchestration definition, an executing instance, or both. Such
adaptation actions may include, among other things, selection of components to
minimize the risk of failure, changes in the structure of the process, or intervention
on the orchestration data.

3.3 Representing Orchestrations and their Continuations

In order to estimate how much the remainder of the execution can contribute to a
given QoS metrics, we need to have some knowledge about where in the execution
we are placed — or, more precisely, what remains to be executed: it is the orches-
tration activities yet to be executed which need to be taken into account to predict
the remainder of the metric value. In our case we represent this still-not-executed
part of the orchestration explicitly, in the form of a continuation. A continuation [17]
is an abstract object (such as a set of data structures or a function) that represents
the control state of a computation — i.e., the precise execution point of a program
(including the associated data) and whatever remains to be executed.

In our case we are interested in continuations of running instances of orchestra-
tions. A continuation is always implicit in the state of a process engine, even when
the chosen programming language does not make it accessible as such: it is deter-
mined, for example, by the activity being executed, the representation of the orches-
tration and the data in the orchestraton. In our approach, we rely on keeping avail-
able at all moments an explicit representation of the continuation, inspect its struc-
ture (which in general becomes progressively simpler as execution proceeds) and use
it to generate constraints which model the conditions under which the execution can
meet / not meet the QoS stated in the SLA.

The (simplified) abstract syntax we will use is shown in Fig. 4. It is based on the
concrete syntax used by a prototype orchestration engine which we developed as ex-

Process
Engine

External
Services

send/receive

E
ve

n
tB

u
s

proc start/stop

invoke/reply

proc continuation

other events

QoS
Predictor

lifecycle events

process continuation

predictions

QoS metrics

Adaptation
Mechanism

predictions

QoS metrics

adaptation
actions

event publishing

Fig. 3. Architecture of the QoS Analysis Framework.

6

continuation ::= a .

a, a1, a2 ::= {elementary operation } (elementary operation)

| a1 , a2 (sequence)

| ({cond } → a1 ; a2) (if-then-else)

| a1 ∧a2 (and-join)

| a1 ∨a2 (or-join)

| while({cond }, a) (while loop)

| foreach(x, list, a) (list comprehension)

| invoke(partner, out, in) (invoke a service)

| reply(out) (send a reply)

| relax (do nothing)

| stop (finish)

Fig. 4. Abstract syntax for orchestrations.

perimentation base for this paper and that uses Prolog as the language to express
branch and loop conditions and elementary operations. A simple activity represents
a basic unit of work, such as a calculation or assignment. Similarly, cond encodes a
logical condition that is used for if-then-else branching or while loop iteration. List
comprehension is simplified using foreach. Communication with the environment
is done using invoke and reply. Besides sequences, both parallel OR and AND split-
s/joins are supported. Most BPMN constructs can be translated straightforwardly. A
translation of the example process from Fig. 1 (with some low-level details omitted)
is shown on the left of Fig. 5.

The continuation at every point of the execution of Fig. 5 is not explicit in the
orchestration representation, but is rather kept by the interpreter which executes it
(which we do not have space to describe in detail in this paper). This continuation
represents what is left to execute after every computation step, and is updated every
time a step is taken. For instance, after taking the else branch in the orchestration
from Fig. 5 (left), the continuation is a sequence of activities in lines 6-9, 11 and 12.

3.4 Deriving QoS Constraints from Continuations

A constraint is a relation that restricts values of variables that, in our case, represent
values of QoS metrics associated with the constructs in the orchestration and their

1 (invoke(account_svc, UserID, AccRec) 500 ≤ T1 ≤ 800 (assumption: account_svc)
2 ∧ invoke(usage_svc, UserID, UsagePatt) 200 ≤ T2 ≤ 500 (assumption: usage_svc)
3), T3 = max(T1 ,T2) (∧-join)
4 (stable(UsagePatt)} Cond ∈ {0, 1}, 0 ≤ T4 ≤ 10 (condition)
5 → invoke(reuse_svc, AccRec, Profile) 100 ≤ T5 ≤ 400 (assumption: reuse_svc)
6 ; invoke(gen_svc, (AccRec, UsagePatt), Profile), 200 ≤ T6 ≤ 600 (assumption: gen_svc)
7 while({unfit(Profile)}, k ∈ N, 0 ≤ T7 ≤ 10 (while condition)
8 invoke(gen_svc, (AccRec, UsagePatt), Profile)) 200 ≤ T8 ≤ 600 (assumption: gen_svc)
9) T9 = k × (T7 +T8)+T7 (while duration)
10), (Cond = 1∧T10 = T4 +T5)∨ (Cond = 0∧T10 = T4 +T6 +T9) (if)
11 invoke(conf_svc, (UserID, Profile), _), 100 ≤ T11 ≤ 300 (assumption: conf_svc)
12 stop. T = T3 +T10 +T11 (total running time)

Fig. 5. Orchestration for Fig. 1 (left) and its associated running time constraints (right).

7

basic components. The particular relations which are generated depend both on the
QoS metric that is to be captured and on the structure of the continuation. In our
approach, after deriving the constraints from the structure of the given continuation,
constraint solving techniques (see Section 3.6) are used to infer admissible ranges for
variables that lead to either SLA satisfaction or violation.

We require that these constraints lead to a conservative prediction of QoS ful-
fillment: under the assumption that our knowledge about the QoS characteristics
of the basic orchestration components (i.e., atomic activities or external services) is
correct,3 we want that any prediction we make about the conformance of an execu-
tion w.r.t. the stated SLA is also correct. In this direction, we make no assumptions
on the (in)dependence of behavior of individual components. I.e., if the behavior of
two external services seems to be strongly linked (because of e.g. past history), we do
not take this apparent correlation into account for the sake of prediction safety. Such
information, if available, could be added to try to make predictions more precise: for
example, given that some service took less time than expected to answer, we might
assume that the same is going to happen to some other service which is apparently
historically related. While this seems to help in making predictions more accurate, it
also makes them potentially unsafe.

We illustrate constraint derivation with two metrics: running time and availabil-
ity. For a continuation consisting of a (complex) activity a representing the remain-
der of the execution, the total running time of the orchestration is a sum of the
elapsed time since the start Ta and the pending time T (a). The total availability is
equal to the pending availability λ(a), as explained before. We derive T (a) and λ(a)
structurally, and then constrain them against the SLA limit: Tmax for the maximal al-
lowed execution time by and λmax for the negative logarithm of the minimal allowed
availability (see Section 3.1). The resulting constraints:

For SLA conformance: Ta +T (a) ≤ Tmax and λ(a) ≤λmax.
For SLA violation: Ta +T (a) > Tmax and λ(a) >λmax.

are solved to obtain the (approximate, but safe) ranges for T (a) and λ(a), and thus
for the total QoS, for the two cases of conformance and violation, respectively.

We generate the above constraints by formulating a constraint for each simple
activity contained inside a (usually relating the value of the QoS metric for the activ-
ity with its expected bounds) and combining these constraints (using disjunctions
and conjunctions according to the structure of a) into a larger constraint which pro-
vides bounds for T (a). The right hand side of Fig. 5 shows the set of constraints cor-
responding to the process on the left. We will now detail how constraints for simple
and complex activities are generated.

Simple activities. For a simple activity a — a simple operation, relax or stop —
and simple operations (in curly braces), the assumption is that they include only el-
ementary constructs and do not entail complex computations. A lower bound for

3 Note that in reality this knowledge is always inexact and subject to dynamic changes. How-
ever, we are putting ourselves in the situation that this knowledge is exact, and we want to
ensure that, at least in this optimistic situation, the constraints we generate meet safeness
requirements.

8

this is always T (a) ≥ 0, and an upper bound depends on the execution environment
(computer clock, CPU, etc.). It is usually on the order of microseconds, and should be
experimentally determined for each architecture. In the example we have put some
reasonable limits, which do not necessarily reflect a real situation. As for the avail-
ability, since no external components are involved, in this case we have λ(a) = 0.

Sequences. Since we are considering cumulative metrics,4 the metric values are ac-
cumulated for the case of sequences: for sequence a ≡ a1, a2 we have T (a) = T (a1)+
T (a2) and λ(a) =λ(a1)+λ(a2).
Service invocations. For an activity a that is an invoke to an external service, for both
the running time T (a) and the availability λ(a) the analyzer needs to rely on empiri-
cally or analytically derived estimates, which include the local message handling and
network delivery. In our approach, we deal with the ranges of possible values, rather
than with probable or expected values. That means that in absence of any informa-
tion, we simply have T (a) ≥ 0 and λ(a) ≥ 0, but the upper bounds on T (a) and λ(a),
if known, must be safe, or else the prediction will be too optimistic and fail to detect
some cases of possible SLA violations.
Parallel flows. In the case of a parallel flow a ≡ a1 ∧ a2, T (a) must lay somewhere
between max(T (a1),T (a2)), when a1 and a2 run fully in parallel, and T (a1)+T (a2),
which is the worst, sequential case of execution. Therefore, it is safe to take

max(T (a1),T (a2)) ≤ T (a) ≤ T (a1)+T (a2)

as a conservative approximation.
This approximation can however be too cautions and may lead to overly pes-

simistic estimates. If we have additional information about the semantics of the or-
chestration language and the implementation of the execution engine, we can re-
fine the estimate for T (a). For instance, if the execution of local activities is single
threaded, while external services invocations are ensured to run in parallel, we can
use the following scheme. Consider the case where a1 and a2 are sequences ending
with an invoke activity, i.e., a1 ≡ a11, a12, . . . , a1k , a∗

1 and we call a′
1 ≡ a11, a12, . . . , a1k

(respectively for a2). We will assume that a′
1 and a′

2 are sequences of activities to be
executed locally by a single thread, even if they appear in different branches of the
flow, while a∗

1 and a∗
2 can be executed remotely in parallel. In this case, the total es-

timated time for the flow is

max
(
T (a′

1)+T (a∗
1),T (a′

2)+T (a∗
2)

)≤ T (a) ≤ T (a′
1)+T (a′

2)+max
(
T (a∗

1),T (a∗
2)

)
If, say, a∗

1 is not an external invoke, but a∗
2 is, then T (a∗

1) is part of T (a′
1). If nei-

ther a∗
1 nor a∗

2 are external invokes, then simply T (a∗
1) = T (a∗

2) = 0. This structural
analysis can of course be easily extended to more than two parallel flows. The run-
ning time of an OR-parallel flow can be conservatively approximated using the case
of AND-parallelism.

From the point of view of availability, parallel flows do not affect the total risk
of failure, since the total availability depends on availability of all used components,
regardless of their order of execution. Therefore, for a ≡ a1 ∧ a2 or a ≡ a1 ∨ a2, we
have λ(a) =λ(a1)+λ(a2).

4 Or those that can be converted into a cumulative (e.g. additive) equivalents.

9

Conditionals. For a conditional a ≡ ({cond } → a1 ; a2), where a1 is the then part
and a2 is the else part, the metric depends on how the condition is evaluated. We
introduce a Boolean variable bcond to represent the result of the condition evalua-
tion, so that we can state the following disjunctive constraint: either (1) bcond = 1 and
T (a) = T ({cond })+T (a1), λ(a) =λ(a1), or (2) bcond = 0 and T (a) = T ({cond })+T (a2),
λ(a) = λ(a2). The value of bcond is generally unknown, but can be constrained to ei-
ther 0 or 1 as the result of constraint solving. This makes it explicit that either the
then or the else part can be taken, but not both.

Loops. In case of a loop a — while or foreach with body a1 — we introduce an
integer variable ka ≥ 0 that stands for the number of loop iterations. Then, we have
T (a) = ka × (T ({cond })+T (a1))+T ({cond }) and λ(a) = ka ×λ(a1). The actual value
of ka is generally unknown, but its inclusion into the constraints allows us to reason
about the maximal or minimal number of loop iterations that lead to SLA compliance
or violation.

3.5 Using Computational Cost Functions

To improve the precision of the predictions, the constraint-based predictor is able to
use computational cost functions for service orchestrations [13], which, in this case,
express lower and upper bounds of the number of loop iterations as a function of the
input data to the orchestration. These computation cost functions may be automat-
ically inferred at the start of an orchestration, statically determined at design time,
or manually asserted for known cases. The inference of the computation cost func-
tions depends on the semantics of the workflow constructs and the (sub-)language
of conditions and elementary operations in which the orchestration is expressed.

If computation cost functions are available, the default constraint for the number
of iterations of loop a (0 ≤ ka) can be strengthened to ` ≤ ka ≤ u ∧0 ≤ ka , where `
and u are, respectively, lower and upper bounds on the number of iterations, which
depend on the actual values of the input data. In the absence of one (or both) of the
bounds, the corresponding constraint is simply not generated (as in Fig. 5, right).

3.6 Solving the Constraints

The constraints derived from the orchestration continuation relate the QoS metrics
for the entire continuation with those of individual activities, component services,
Boolean results of evaluating the conditions, the number of loop iterations, and the
limits from the SLA. As such, they represent a constraint satisfaction problem [6] that
can be solved for values of the constrained variables, which, in our case, include QoS
metrics, Boolean conditions and loop iteration counters. Depending on the type of
problem and the particular constraint solver used, solving the CSP may involve sev-
eral iterations of constraint propagation and problem splitting [6, 1], which are used
to reduce the equations in the original CSP to a series of simpler ones, before at-
tempting to assign to the constrained variables values that satisfy the constraints.

In our case, we use the interval constraints (ic) solver from the ECLiPS e Con-
straint Logic Programming (CLP) system [2, 5]. The underlying Prolog subsystem of

10

ECLiPS e is used for constructing the constraints from a continuation, handling infor-
mation on QoS metrics of component services, and reporting the results. The solver
handles constrained variables over bound and unbound integer (discrete) and real
number (dense) domains. The values of the constrained variables are represented
as (possibly unbound) real or integer intervals. Integer variables with bounded do-
mains are handled in a manner similar to finite domain solvers [6]. The solver di-
rectly supports disjunctive constraints (which we use for conditionals) and reified
(Boolean valued) constraints.

The solver produces results given as bounds on values of the constrained vari-
ables, obtained from propagation of arithmetic constraints, or fails if the constraints
cannot be satisfied. In our case, as mentioned before, we always solve two CSPs, one
modeling SLA conformance and another one modeling SLA violation.

The constraint solver is complete, i.e., it does not discard feasible solutions.
Therefore, upon constraint satisfaction, the answer intervals for the variables in-
clude all admissible values, and values outside these intervals cannot possibly sat-
isfy the constraints. On the other hand, it may be that some combinations of values
inside the answer intervals do not satisfy the constraints. Let us see an example: the
constraint 0 ≤ T (a1)+T (a2) ≤ 100 has as answer T (a1) ∈ [0..100]∧T (a2) ∈ [0..100].
This contains all feasible solutions (for example, T (a1) = 0∧T (a2) = 100) but also
combinations of values which do not satisfy the constraints (for example, T (a1) =
50∧T (a2) = 51). Of course, if the latter values are fed into the constraint solver to-
gether with the initial constraint, the constraint solver will determine that the system
is unsolvable.

4 Experimental Evaluations

Table 1 shows the results of running our QoS prediction framework applied to the
orchestration in Fig. 5 (corresponding to the workflow in Fig. 1) and using execution
time as QoS metric. The assumptions on ranges for the invocations of external ser-
vices are shown at the bottom. These ranges would be updated by the QoS predictor
based on the observation of invoke/reply events published by the process engine.
Note that we are only concerned with the range of possible running times for each
component, not the probability distributions within these ranges, and therefore we
only need only to adjust the boundaries of the corresponding ranges.

The top part of Table 1 shows the results for the case of an unbound number of
while loop iterations, which is the default if no additional information is provided.
A series of successive assumed running time limits (500, 750, 1 500 and 3 000 ms) was
considered, and both the SLA compliance (success) and violation results are shown.
The meaning of the rest of the rows are as follows:

duration shows the predicted running time ranges for the orchestration in ms.
cond(if) is a Boolean value showing the possible evaluations of the condition in the

conditional (1 for the “then” branch and 0 for the “else” branch).
iter(while) shows the range of possible iteration counts in the while loop (corre-

sponding to the repetition after testing the condition in the “else” branch).
E.C.D.T. earliest certain detection times: the earliest time at which a certain viola-

tion or success can be detected.

11

Case 1: Unconstrained iterations
Successive running time SLA ranges

0 ms .. 500 ms 500 ms .. 750 ms 750 ms .. 1 500 ms 1 500 ms .. 3 000 ms
Variable Metrics success violation success violation success violation success violation
duration ms — 600 .. +∞ 600 .. 750 750 .. +∞ 750 .. 1 500 1 500 .. +∞ 1 500 .. 3 000 3 000 .. +∞
cond(if) bool — 0 .. 1 1 0 .. 1 0 .. 1 0 0 0
iter(while) nat — 0 .. +∞ — 0 .. +∞ 0 .. +∞ 0 .. +∞ 0 .. 11 3 .. +∞
E.C.D.T. ms — 0 500 450 500 1 200 700 2 700
% E.C.D.T. — 0% 66% 60% 33% 80% 23% 90%
Lead ms — 500 250 300 1 000 300 2 300 300

Case 2: Between 1 and 10 iterations
Successive running time SLA ranges

0 ms .. 500 ms 500 ms .. 750 ms 750 ms .. 1 500 ms 1 500 ms .. 3 000 ms
Variable Metrics success violation success violation success violation success violation
duration ms — 600 .. 7 820 600 .. 750 750 .. 7 820 750 .. 1 500 1 500 .. 7 820 1 500 .. 3 000 3 000 .. 7 820
cond(if) bool — 0 .. 1 1 0 .. 1 0 .. 1 0 0 0
iter(while) nat — 1 .. 10 — 1 .. 10 1 .. 10 1 .. 10 1 .. 10 3 .. 10

E.C.D.T. ms — 0 500 250 500 1 000 900 2 500
% E.C.D.T. — 0% 66% 33% 33% 66% 30% 83%
Lead ms — 500 250 500 1 000 500 2 100 500

Component running time assumptions
local op. account_svc usage_svc reuse_svc gen_svc conf_svc

Running time (ms) 0 ms .. 10 ms 500 ms .. 800 ms 200 ms .. 500 ms 100 ms .. 400 ms 200 ms .. 600 ms 100 ms .. 300 ms

Table 1. Sample QoS prediction results.

% E.C.D.T. percentage of the total (maximum) execution time which elapsed up
to the E.C.D.T.

lead time between E.C.D.T. and the closest moment in which the orchestration can
finish (i.e., the shortest time span to react in the worst case).

The results show that the lowest limit of 500 ms could not be met under the initial
assumptions regarding execution times for atomic activities and external services.
The 750 ms limit can be met, if the conditional evaluates to 1, meaning that the while
loop is avoided. The 1 500 ms limit can be met in both cases of the conditional, but
can be violated only for the case of taking the “else” branch. Finally, for the range of
running times between 1 500 ms and 3 000 ms, the prediction shows that, under the
given assumptions, the only possible situation for both compliance and violation is
taking the “else” branch, with the number of iterations in the range 0 .. 11 and 3 ..+∞,
respectively. Note that for the latter limit, between 0 and 2 iterations guarantees com-
pliance, and more than 11 iterations guarantees violation of the limit. An adaptation
mechanism can, use these predictions to prepare and trigger adaptation actions that
may prevent, minimize, or compensate for possible SLA violations ahead of time.

The earliest time at which a success or violation can be predicted depend on the
particular execution. Let us look at an example: in Table 1, Case 1, columns “750 ms
.. 1500 ms”, successes have been detected at 500 ms and SLA violations at 1200 ms.
The reason that successes have been detected before violations is that these corre-
spond to different executions: in the case of violation, the “else” branch (with the
loop) has been taken, it is detected that there will be a violation after some itera-
tions. On the other hand, if the “then” branch is taken, certainty of success is imme-
diately detected, as there are no loops to be taken. With this interpretation in mind,

12

the constraint-based predictor is able to detect SLA violation with certainty up to be-
tween 300 and 500 ms in advance, while SLA conformance can be detected as early
as after 500 or 700 ms of running time. In relative terms, SLA conformance has been
detected in the experiments when only between a 23% and a 66% of the maximum
execution time has elapsed, and SLA violations have been detected in some cases
when only a 60% of the execution has elapsed.

The middle part of Table 1 shows a hypothetical case where, based on input data
and computational cost functions, the predictor is able to infer that the actual num-
ber of loop iterations, in case the “else” branch is taken, must fall between 1 and 10.
The results follow the same pattern as in the first case, but this time the predictor
is able to infer that the duration of the orchestration under the assumptions must
fall between 600 and 7 820 ms. This inferred running time range for the orchestration
can be used by other parts of the runtime system (including predictors themselves)
to update their QoS metrics assumptions on the deployed components. Note that
the guarantee of at least one loop iteration increases the lead for the earliest certain
detection of violations to 500 ms.

The average net time for performing one running time limit compliance/ viola-
tion prediction depicted in Table 1 (not counting the time for sending and receiving
data over the network), based on the average from 10 000 executions, was 0.574 ms
on a small end-user non-dedicated machine.5

5 Implementation Notes

We have tested the approach using a prototype implementation of the architecture
from Fig. 3, which includes the process engine, the QoS predictors, and the event bus,
organized as a distributed and scalable system of components that communicate
using reliable messaging. The tests included deployments on Linux and Mac OS X 32
and 64 bit platforms.

In our running prototype, the QoS predictors are implemented in ECLiPS e Con-
straint Logic Programming system, while the process engine (that executes orches-
trations) is implemented in Ciao Prolog [9]. Both Prolog dialects support a variety
of constraint logic programming techniques, but have, at the moment, slightly dif-
ferent orientation and strong points. ECLiPS e provides very robust, industrial-scale
constraint solvers which can easily handle very complex problems involving thou-
sands of constraints and variables, while Ciao is a flexible multi-paradigm program-
ming environment with sophisticated support for concurrency. Fortunately the fact
that they are both Prolog-based systems greatly facilitates interfacing and putting
together the required architecture.

In our prototype, the language in Fig. 4 is used to define service orchestrations
and to maintain instance control state throughout execution, so that there is no addi-
tional overhead in communicating continuations to QoS predictors, other than mes-
sage transfer times. Also, any adaptation that changes the orchestration structure for

5 The tests were run on a 32-bit 2GHz Intel Core Duo notebook with 2GB of RAM, running
Mac OS X 10.6.7 and ECLiPS e version 6.0_167.

13

a running instance can be simply implemented by replacing one continuation with
another.

The messaging subsystem is implemented using ZeroMQ [11], which provides
fast and reliable multi-part binary message exchange primitives on top of TCP
networking and IPC subsystems, including request-reply, push-pull and publish-
subscribe patterns. We have developed Prolog (Ciao and ECLiPS e) bindings to Ze-
roMQ with data (term) serialization that provide transparent higher-level data ex-
change primitives.

6 Conclusions

We have devised and implemented a method which makes it possible to predict pos-
sible situations of SLA conformance and violation, and to obtain information on the
internal parameters of the orchestration (branch conditions, loop iterations) that
may occur in these situations. The method is based on modeling QoS metrics of a
service orchestration using constraints, based on assumptions on the behavior of
the orchestration components. That analysis can, in principle, be applied at each
step in an orchestration based on the current continuation. This allows periodic or
continuous updating of the predicted bounds for QoS metrics for the orchestration
and therefore a continuous assessing of conformance to SLA, which can be useful
for proactive adaptation and self-healing. This approach can be combined with au-
tomatically inferred computational cost functions for service orchestrations, which
can express the bounds of internal parameters (such as loop iterations) as functions
of input data given to the orchestration instance, to provide a higher level of predic-
tion precision. We have implemented the method in a prototype and reported some
efficiency results.

Our future work will concentrate on making the implementation of all elements
of the QoS prediction architecture laid out in this paper more complete and ro-
bust, including the process engine, beyond the prototype stage. We also plan to add
support for different execution engines, targeting specifically those that have well-
defined interfaces for event-listening plugins or can be adapted accordingly (e.g. be-
cause the implementation is open-source).

References

1. K. R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
2. Krzysztof R. Apt and Mark G. Wallace. Constraint Logic Programming Using ECLIPSE.

Cambridge University Press, 2007.
3. J. Cardoso. About the Data-Flow Complexity of Web Processes. In 6th International Work-

shop on Business Process Modeling, Development, and Support: Business Processes and
Support Systems: Design for Flexibility, pages 67–74, 2005.

4. Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and Krys Kochut. Quality of
service for workflows and web service processes. Web Semantics: Science, Services and
Agents on the World Wide Web, 1(3):281 – 308, 2004.

5. Cisco Systems. ECLIPSE User Manual, 2006.
6. Rina Dechter. Constraint Processing. Morgan Kauffman Publishers, 2003.

14

7. Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and Klaus Pohl. A
journey to highly dynamic, self-adaptive service-based applications. Automated Software
Engineering, 15:313–341, 2008. 10.1007/s10515-008-0032-x.

8. Dimitris Dranidis, Andreas Metzger, and Dimitrios Kourtesis. Enabling proactive adap-
tation through just-in-time testing of conversational services. In Elisabetta Di Nitto and
Ramin Yahyapour, editors, ServiceWave, volume 6481 of Lecture Notes in Computer Sci-
ence, pages 63–75. Springer, 2010.

9. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales, and G. Puebla. An
Overview of Ciao and its Design Philosophy. Theory and Practice of Logic Programming,
2012. http://arxiv.org/abs/1102.5497.

10. Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. A framework
for proactive self-adaptation of service-based applications based on online testing. In
Petri Mähönen, Klaus Pohl, and Thierry Priol, editors, Towards a Service-Based Internet,
volume 5377 of Lecture Notes in Computer Science, pages 122–133. Springer Berlin / Hei-
delberg, 2008.

11. iMatix Corporation. 0MQ - The Reference Manual, version 2.1, June 2011.
12. D. Ivanović, M. Carro, and M. Hermenegildo. An Initial Proposal for Data-Aware Re-

source Analysis of Orchestrations with Applications to Predictive Monitoring. In Asit Dan,
Frédéric Gittler, and Farouk Toumani, editors, International Workshops, ICSOC/Service-
Wave 2009, Revised Selected Papers, number 6275 in LNCS. Springer, September 2010.

13. D. Ivanović, M. Carro, and M. Hermenegildo. Towards Data-Aware QoS-Driven Adaptation
for Service Orchestrations. In Proceedings of the 2010 IEEE International Conference on
Web Services (ICWS 2010), Miami, FL, USA, 5-10 July 2010. IEEE, 2010.

14. D. Jordan and et. al. Web Services Business Process Execution Language Version 2.0. Tech-
nical report, IBM, Microsoft, et. al, 2007.

15. Philipp Leitner, Branimir Wetzstein, Florian Rosenberg, Anton Michlmayr, Schahram
Dustdar, and Frank Leymann. Runtime prediction of service level agreement violations
for composite services. In Asit Dan, Frederic Gittler, and Farouk Toumani, editors, IC-
SOC/ServiceWave Workshops, volume 6275 of Lecture Notes in Computer Science, pages
176–186, 2009.

16. Object Management Group. Business Process Modeling Notation (BPMN), Version 1.2, Jan-
uary 2009.

17. John C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation
Journal, 6:233–247, 1993.

18. Sebastian Stein, Terry R. Payne, and Nicholas R. Jennings. Robust execution of service
workflows using redundancy and advance reservations. IEEE T. Services Computing,
4(2):125–139, 2011.

19. G. Tselentis, J. Dominigue, A. Galis, A. Gavras, and D. Hausheer. Towards the Future Inter-
net: A European Research Perspective. IOS Press, Amsterdam, The Netherlands, 2009.

20. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, June 2005.

21. Wil van der Aalst and Maja Pesic. DecSerFlow: Towards a Truly Declarative Service Flow
Language. In The Role of Business Processes in Service Oriented Architectures, number
06291 in Dagstuhl Seminar Proceedings, 2006.

22. Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P.
Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

23. Branimir Wetzstein, Philipp Leitner, Florian Rosenberg, Ivona Brandic, Schahram Dust-
dar, and Frank Leymann. Monitoring and analyzing influential factors of business process
performance. In EDOC, pages 141–150. IEEE Computer Society, 2009.

15

