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Abstract. Energy consumption analysis of embedded programs requires
the analysis of low-level program representations. This is challenging be-
cause the gap between the high-level program structure and the low-level
energy models needs to be bridged. Here, we describe techniques for
recreating the structure of low-level programs and transforming these
into Horn clauses in order to make use of a generic resource analysis
framework (CiaoPP). Our analysis, which makes use of an energy model
we produce for the underlying hardware, characterises the energy con-
sumption of the program, and returns energy formulae parametrised by
the size of the input data. We have performed an initial experimental
assessment and obtained encouraging results when comparing the stati-
cally inferred formulae to direct energy measurements from the hardware
running a set of benchmarks. Static energy estimation has applications
in program optimisation and enables more energy-awareness in software
development.

Keywords: energy consumption analysis, energy models, resource usage
analysis, static analysis.

1 Introduction

Energy consumption and the environmental impact of computing technologies
are a major focus. Despite advances in power-efficient hardware, more energy
savings can be achieved by improving the way current software technologies
make use of such hardware. Many optimization techniques that can be used for
producing energy-efficient software need estimations of the energy consumption
of software segments prior to their execution, in order to make decisions about
the optimal way of executing them. These a priori estimations are also very
useful to software engineers to better understand the effect of their designs on the
energy consumption early on during the software development process, and make



more informed design decisions (e.g., using the appropriate data structures), even
when there are parts not developed yet.

In this paper we combine static analysis and low level energy modelling tech-
niques to implement a tool capable of estimating the energy consumption of
an embedded program (and its constituent parts, such as procedures and func-
tions) as a function on several parameters of the input data (e.g., sizes), and the
hardware platform where they are executed (e.g., clock frequency and voltage).
We show the feasibility of our proposal with a concrete case study: analysis of
ISA (Instruction Set Architecture) code compiled from XC [24]. XC is a high-
level C-based programming language that includes extensions for concurrency,
communication, input/output operations, and real-time behaviour. XC libraries
share a common API with standard C libraries and therefore C code can com-
mingle with XC code in a single application.

Since energy consumption analysis depends on the underlying hardware, the
analyser requires information expressing the effect of the execution of a software
segment (e.g., an assembly instruction) on the hardware. Such information is
represented using models. In our approach these models express information
using assertions. These are propagated during the static analysis process in order
to infer information for higher-level entities such as functions. For instance, using
assertions we abstract the operations in the language in terms of their effect on
the size of the runtime data and the energy exerted. Energy models at lower
levels (e.g., at the ISA level) are more precise than at higher levels (e.g., XC
source code), since the closer to the hardware, the easier it is to determine the
effect of the execution of the program on the hardware. For this reason, we
have produced models for the ISA level, which we use when analysing ISA code
generated by the XCC compiler.

Our approach leverages the CiaoPP tool [6], the preprocessor of the Ciao
programming environment [7]. CiaoPP includes a generic, parametric analysis
framework for resource usage that can be instantiated to infer bounds on re-
sources of interest (energy consumption in our case), for different languages [14].
In CiaoPP, a resource is a user-defined counter representing a (numerical) non-
functional global property, such as execution time, execution steps, number of
bits sent or received by an application over a socket, etc. The CiaoPP resource
analysis can infer upper and lower bounds on the usage made of such resources by
programs by working on an intermediate block-based representation, the Horn
clause (HC) IR. In this representation, each block is written as a Horn clause,
i.e., a head followed by a sequence of primitive operations or calls to other blocks.
Assertions describe the resources to be analyzed. We propose a transformation
of the ISA program into this HC IR (containing Horn clauses and assertions),
which allows us to analyse the transformed program with CiaoPP. The control
and data flow encoded through the procedural interpretation of these Horn-
clause programs, coupled with the resource-related information contained in the
assertions (such as the energy consumption models at the ISA level), allow the
resource analysis to infer static bounds on the energy consumption of the blocks
that are directly applicable to the original ISA programs.
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Fig. 1. Overview of the analysis framework for XC programs.

int fact(int N) {

if (N <= 0) return 1;

return N * fact(N - 1);

}

Fig. 2. An XC source (factorial) function.

Figure 1 shows the main steps of our approach for energy consumption anal-
ysis, which starts with an XC program (e.g., the fact function in Figure 2). The
ISA program corresponding to it is generated using the XC compiler tool XCC
(left hand side of Figure 3). The resulting ISA program is passed to a translator
which generates the associated Horn clauses (right hand side of Figure 3). Such
program, together with the information contained in the energy models at the
ISA level (represented using the mentioned assertion language), is passed to the
resource analysis which outputs the energy consumption for all procedures in
the HC IR program. In our example, the resource analysis infers an estimation
of the energy consumed by a call to fact as (26.0 N + 19.4) nano-Joules. This
is parametric with N , the input argument to fact.

In this work we have successfully bridged the gap between researchers closer
to the hardware area, needed to produce the low level energy models, and others
from software, with expertise in static analysis techniques and tools. In this
multidisciplinary research, we have faced some challenges and produced some
original contributions that we describe in this paper and summarise as follows:

1. Development of an energy model for a multi-threaded architecture (XMOS
XS1-L), that can be applied at instruction set simulation level or higher,
with specialisation for high-level, single-threaded benchmarks.

2. Design and implementation of a translation from ISA programs into a Horn-
clause representation (HC IR).

3. Instantiation of the CiaoPP general resource analysis framework to infer
energy consumption using the low-level energy consumption model.

4. Overall design and implementation of a fully automatic system that statically
estimates the energy consumption of functions and procedures written in a
high-level, C-based programming language, giving the results as functions
on input data sizes.

5. Experimental assessment of the developed energy usage static analyser.



1 <fact >:

2 001: entsp 0x2

3 002: stw r0, sp[0x1]

4 003: ldw r1, sp[0x1]

5 004: ldc r0, 0x0

6 005: lss r0, r0, r1

7 006: bf r0, <008>

11 007: bu <010>

12 010: ldw r0, sp[0x1]

13 011: sub r0, r0, 0x1

14 012: bl <fact >

16 013: ldw r1, sp[0x1]

17 014: mul r0, r1, r0

18 015: retsp 0x2

21 008: mkmsk r0, 0x1

22 009: retsp 0x2

1 fact(R0 ,R0_3):-

2 entsp (0x2),

3 stw(R0 ,Sp0x1),

4 ldw(R1 ,Sp0x1),

5 ldc(R0_1 ,b0x0),

6 lss(R0_2 ,bR0_1 ,R1),

7a bf(R0_2 ,0x8),

7b fact_aux(R0_2 ,Sp0x1 ,R0_3 ,

R1_1).

10 fact_aux(1,Sp0x1 ,R0_4 ,R1):-

11 bu(0x0A),

12 ldw(R0_1 ,Sp0x1),

13 sub(R0_2 ,R0_1 ,0x1),

14a bl(fact),

14b fact(R0_2 ,R0_3),

16 ldw(R1 ,Sp0x1),

17 mul(R0_4 ,R1 ,R0_3),

18 retsp (0x2).

20 fact_aux(0,Sp0x1 ,R0,R1):-

21 mkmsk(R0 ,0x1),

22 retsp (0x2).

Fig. 3. An ISA (factorial) program (left) and its Horn-clause representation (right).

Point 4 above may look simple at first sight, given that we have taken advan-
tage of a number of existing tools, mainly the CiaoPP general resource analyser.
However, in practice the implementation has required the development of a sig-
nificant number of new modules and functionalities, as well as interfaces between
these existing tools, all of which posed substantial design and implementation
challenges and problems that we have successfully solved.

In the rest of the paper, energy characterisation and modelling for our case
study architecture (XMOS XS1-L) is explained in Section 2. Then, Section 3
describes the translation from ISA programs into Horn clauses and Section 4
the instantiation of the CiaoPP general resource usage analysis framework. In
Section 5, we have performed an experimental assessment of our approach, show-
ing that the estimation of energy consumption is reasonably accurate. Section 6
comments on related work. Finally, Section 7 summarises our conclusions and
comments on ongoing and future work.

2 Energy Characterization and Modelling

The assertion-based model uses power consumption data collected during hard-
ware measurement. We have developed an ISA-level model that provides software
energy consumption estimates based on Instruction Set Simulation (ISS) statis-
tics. The hardware, the measurement process, as well as the construction of the



ISS-driven model, are detailed in [10], with the key components relevant to this
paper explained in the rest of this section.

The practicality and accuracy of our approach to energy consumption analy-
sis relies on a good characterisation of energy consumption and generating good
energy consumption models. A trade-off needs to be found between the simplic-
ity of the models, which improves the efficiency of the analysis, and the accuracy
of the models, which improves the accuracy of the global analysis. Although we
analyse single-threaded code, the energy profiling must consider the hardware
multi-threading of the architecture, which has an energy impact even when only
a single thread is executed.

Further, the nature of the architecture requires specific approaches in order to
gather energy profiling data, but these same characteristics preclude certain en-
ergy effects from static analysis. For example, the effects of interleaving instruc-
tions or re-use of operands from the previous instruction become less relevant
in a hardware multi-threaded pipeline, and impossible to determine statically.
Although manifested in a specific way in this particular processor architecture,
such traits also exist in other processors, such as super-scalar designs. In this
paper we describe an initial proposal that offers a good compromise between the
above issues, and also eliminates factors that are determined to be insignificant.

2.1 Energy Profiling Framework and Strategy

An energy profiling framework, xmprofile, is used to generate sequences of in-
structions under various constraints in order to profile the energy characteristics
of the hardware. This data is essential for the accurate application of models at
any analysis level. The hardware used is shown in Figure 4. A master processor
issues test programs to and measures the power used by a slave processor, the
Device Under Test (DUT).

Currently, a subset of the ISA, including arithmetic operations, logic opera-
tions, and condition tests, has been characterised. Other instructions are at the
moment approximated using a single average value, based on typical observed
behaviour.

Fig. 4. Overview of test harness hardware and software structure, with a slave processor
executing test kernels and a master processor collecting power samples.



2.2 ISA-level Model

An ISA-level model, xmmodel, gives an energy estimate for a program based on
ISS output. Data from the measurement framework feeds this model.

Our model is based on that devised by Tiwari [22]. Tiwari’s approach is shown
in Equation (1). The energy of an ISA program, Ep, is characterised as the sum
of base energy cost, Bi, for all ISA instructions, i, multiplied by the number of
executions of each instruction, Ni. An inter-instruction overhead energy, Oi,j ,
is then accounted for by enumerating for all instruction combinations i, j and
their frequency, Ni,j . Finally, additional contributions to program energy can be
accounted for by k external effects, Ek, which may include externally modelled
behaviours such as cache memory.

Ep =
∑

i∈ISA (Bi ×Ni) +
∑

i,j∈ISA (Oi,j ×Ni,j) +
∑

k∈extEk (1)

The XS1 architecture is hardware multi-threaded. This necessitates a fun-
damental revision of the model equation. In addition, for performance reasons,
the ISS collects instruction statistics rather than a full trace. This reduces the
execution time by an order of magnitude, such that it is approximately 100 times
slower than the hardware when simulation is run on a modern computer.

Equation (2) describes the energy of a program, Ep, using a similar method
to Equation (1), but with several key differences. Time is an explicit component,
multiplied by power terms in order to calculate energy. This separation enables
future exploration of idle periods, external event timing, and variable operat-
ing frequencies. Inter-instruction overhead is represented as a single component,
rather than considering it for all possible pairs of instructions, on account of a
statistics-based approach rather than cycle-by-cycle instruction tracing. Finally,
the level of concurrency must be accounted for, something that was not neces-
sary for the architecture targeted by Equation (1). The concurrency level is the
number of threads that are active at a given time. In the case of the XS1-L,
the concurrency level represents how full the pipeline is and therefore how much
activity is generated within it as each stage switches between instructions from
the active threads.

Ep = PbaseNidleTclk +
∑Nt

t=1

∑
i∈ISA ((MtPiO + Pbase)Ni,tTclk) (2)

The base power, Pbase, is present in both active and idle periods. The number
of idle periods, Nidle, is counted and multiplied by the clock period, Tclk, to
account for the energy consumed when no threads are active. For each number
of concurrent threads, t, (based on the proportion of time each thread is active),
and for each instruction, i, in the ISA, the instruction power, Pi, is multiplied
by a constant inter-instruction power overhead, O, and a concurrency cost for
the level of concurrency at which the processor is operating, Mt. These are all
multiplied by the number of times this instruction occurs at this concurrency
level, Ni,t, and the clock period. Combined with the idle energy, this gives a
total energy estimate for the program run.



In the case where a single thread is running, with no idle periods, then the
above can be simplified to Equation (3). The result is very similar to the single-
threaded Tiwari equation, but with only a single, generic inter-instruction power
overhead component, O, and with no external “k” components as the memory
of the XS1-L is single-cycle with no cache, with no other effects that need to
be considered at this point. There is only ever one active thread, so we use the
concurrency cost for one thread, M1. Again, in Equation (3), time is an explicit
component. The overhead, O, is a constant because the inter-instruction effect
cannot be known statically in the XS1 architecture, and during profiling the
variation in inter-instruction effect was shown to be an order of magnitude less
than the instruction cost and would average out over program runs.

Ep =
∑

i∈ISA ((M1PiO + Pbase)× (NiTclk)) (3)

Our ISS-based model, using the same energy data as the static analysis,
will be used as an additional comparison point between actual hardware energy
measurements and the static analysis results.

3 Transforming ISA Programs into Horn Clauses

In this section we describe the transformation from ISA programs into Horn
clauses (HC IR) mentioned in Section 1, which is used for analysis. Such repre-
sentation consists of a sequence of blocks (as in the right hand side of Figure 3).
Each block is represented as a Horn clause:

< block id > (< params >) :− S1, . . . , Sn.

which has an entry point, that we call the head of the block (to the left of the
:− symbol), including a number of parameters < params >, and a sequence

of steps (the body, to the right of the :− symbol), each of which is either, (the
representation of) an ISA instruction, or a call to another (or the same) block.
The analyser deals with the HC IR always in the same way, independently of
its origin. The transformation ensures that the program information relevant to
resource usage is preserved, so that the energy consumption functions of the HC
IR programs inferred by the resource analysis are applicable to the original ISA
programs.

ISA programs are expressed using the XS1 instruction set [13]. The transfor-
mation framework currently works on a subset of this instruction set. The ISA
program is parsed and a control flow analysis is carried out, yielding an inter-
procedural control flow graph (CFG). This process starts by identifying control
transfer instructions such as branch or call instructions. Basic blocks are then
constructed, which are annotated with input/output arguments and transformed
into Static Single Assignment (SSA) form. Finally, the target HC IR (i.e., Horn
clauses) is emitted.

A basic block over a CFG is a maximal sequence of distinct instructions, S1

through Sn, such that all instructions Sk, 1 < k < n have exactly one in-edge
and one out-edge (excluding call/return edges), S1 has one out-edge, and Sn has



one in-edge. A basic block therefore has exactly one entry point at S1 and one
exit point at Sn. All call instructions are assumed to eventually return. Using the
basic block definition a block control flow graph is constructed by the analyser,
where each node represents a block. Edges between the blocks are derived from
calls/jumps between blocks. This process involves iterating through the CFG
of the ISA program and marking block boundaries, which are instructions that
either begin or end a basic block.

Inferring Block Input/Output Parameters. In order to treat each block as
a Horn clause, the block’s input and output arguments need to be inferred. For
the entry block, the input and output arguments are derived from the original
function’s signature. We define the functions paramsin and paramsout, which
infer input and output parameters of a block respectively. These perform a
backwards analysis of the program, and are recomputed until a least fixpoint
is reached on these functions.

paramsout(b) = kill(b) ∪
⋃

b′∈next(b) paramsout(b
′)

paramsin(b) = gen(b) ∪
⋃

b′∈next(b) paramsin(b′)

where next(b) denotes the set of immediate target blocks that can be reached
from b with a call or jump, while gen(k) and kill(k) are the read and written
variables in a block respectively, which we define as:

kill(b) =
n⋃

k=1

def (k), gen(b) =
n⋃

k=1

{v | v ∈ ref (k) ∧ ∀(j < k).v /∈ def (j)}

and def (k) and ref (k) denote the variables written or referred to at a node in
the block respectively.

Our approach here is closely related to that of the live variable analysis
(LVA) [18] used in compilers, and in dead code elimination in particular. A
variable is live at a program point if it may get referenced later in the program
(which is decided by considering the whole CFG of the program). In LVA, for
each program point, a set of live variables is computed using functions similar to
our kill and gen functions with data flow equations. In our approach however,
instead of computing liveness information for each program point, we compute a
least fixpoint of our paramsout and paramsin functions over the program’s block
control flow graph. This is an efficient solution that safely over-approximates
the set of input/output arguments to each block, so that the extra arguments
inferred for block heads due to such over-approximation do not affect the energy
consumption estimations, since they are not used in the analysis of procedures
corresponding to the original XC code.

Resolving Branching to Multiple Blocks. In the XS1 instruction set, con-
ditional branch instructions (e.g., bt, bf) jump to one of the two target blocks
based on the value of the branching variable. For example, in Figure 3, at line 7
the bf instruction (branch if fail) will jump to address 008 if r0 = 0, otherwise



to address 007. In the HC IR this branch needs to be a call to one of the two
blocks.

We use a similar approach to the one described in [14] to resolve branches to
multiple blocks. The multiple target blocks of a jump instruction are assigned
the same head, which essentially are clauses of the same HC IR predicate. This
is achieved by merging the heads of the target clauses so that each clause has
the same head. The algorithm is trivial, since we have already inferred the in-
put/output parameters to each block’s head. The input/output parameters to
the new head of the clauses are the union of the input/output parameters of all
the clauses along with the branching variable. This enables preservation of the
branching semantics of the original ISA program in the HC IR form.

For example in Figure 3, the bf instruction at line 7 of the ISA program is
changed to a dummy literal at line 7a in the HC IR, plus a predicate call to
fact aux on line 7b. The predicate fact aux has two clauses, each representing
one of the target blocks of the bf instruction. The dummy literal for the bf

instruction is created so that the resource usage analysis can take it into account
when inferring energy usage functions.

Static Single Assignment form (SSA). The last step is to convert the block
representation into static single assignment (SSA) form, where each variable is
assigned exactly once and multiple assignments to the same variable create new
versions of that variable.

In compilers, the SSA form is generated at the function level (e.g., at LLVM [11]
level) where a function might consist of multiple basic blocks. However, we fol-
low the approach of generating the SSA form at the block level, and therefore
we do not need to generate φ nodes. A φ node is an instruction used to select a
version of the variable depending on the predecessor of the current block. Since
each block is already annotated with input/output arguments, any predecessor
block will pass the appropriate values as input parameters when making a call
to the target block.

In Figure 3, the HC IR (right hand side) is already in SSA form, where each
variable is defined exactly once and stack references are transformed to local
variables. Each instruction is transformed into a HC IR literal with input/output
variables.

Analysis on low level (ISA) representations, in general, suffers from the prob-
lem of extracting a precise control flow graph in the presence of indirect jumps
and calls. The current implementation of our transformation is restricted to
direct jumps and calls. We plan to integrate other techniques into the transfor-
mation tool to resolve such problems including recognizing code patterns used
by compilers and performing static program analysis (see [26] and its references).

4 General Analysis Framework

In this section we introduce the CiaoPP general resource usage analysis frame-
work and discuss how to instantiate it for the analysis of the HC IR programs
resulting from the translation of ISA programs.



CiaoPP includes a global static analyser which is parametric with respect to
resources and type of approximation (lower and upper bounds) [17]. The user
can define the parameters of the analysis for a particular resource by means of
assertions that associate basic cost functions with elementary operations of the
base language and procedures in libraries, thus expressing how they affect the
usage of a particular resource. The global static analysis can then infer bounds
on the resource usage of all the procedures in the program, as functions of input
data sizes.

In the rest of the section we use a running example to illustrate the main
concepts and steps of the analysis framework. In particular, and for simplicity,
assume that we are interested in estimating upper bounds on the energy con-
sumed by the HC IR program in Figure 3 (right hand side) generated from its
XC code in Figure 2.

4.1 Instantiating the General Framework

Defining Resources. We start by defining the identifier (“counter”) associated
to the energy consumption resource, through a declaration:

:- resource energy.

Expressing the Energy Model. In CiaoPP, the resource usage of primitive
operations can be provided using “trust” assertions (see [7] and its references for
a description of the assertion language). For example, we can write assertions for
each predicate that represents an ISA instruction; these constitute the energy
models. The following assertions (for the add and sub instructions) are part
of the simple energy model that we used in the static analysis, which assigns
a constant energy consumption to these ISA instructions (values 1215439 and
1210759 respectively):

:- trust pred add(X,Y,Z) + resource(avg , energy , 1215439).

:- trust pred sub(X,Y,Z) + resource(avg , energy , 1210759).

Note that the first argument (avg) of the resource property (in the global
computational properties field “+” of the assertions) expresses that the given
energy consumption for the ISA instructions is an average value. This model
is obtained using the measurement process described in Section 2, based on
Equation (3), so that the energy cost for an ISA instruction i is ci = (M1 Pi O+
Pbase) Tclk, expressed in the third argument of the resource property in femto-
Joules (fJ, 10−15 Joules).

Assertions are also used to express other information that is instrumental in
the resource usage analysis. For example, the assertion:

:- trust pred sub(X,Y,Z) : (var(X), int(Y), int(Z))

=> (int(X), int(Y), int(Z), size(ub ,X,int(Y)-int(Z)),

size(ub ,Y,int(Y)), size(ub,Z,int(Z)))

+ (metric(X,int), metric(Y,int), metric(Z,int)).



indicates that if the sub(X, Y, Z) predicate (representing the “subtraction”
ISA instruction) is called with X and Y bound to integer numbers and Z an
unbound variable (precondition field “:”), after the successful completion of the
call (postcondition field “=>”), X is an integer number whose size is the size of
Y minus the size of Z. It also expresses that the size metric used for the three
arguments is “int”, the actual value of the integer numbers.

4.2 Performing the Analysis

Once the parameters of the general resource analysis framework have been de-
fined, and assertions for primitives (representing the energy models) and library
calls have been provided, the CiaoPP global static analysis can infer the resource
usage of all the procedures/blocks in the program (as functions of input data
sizes). A full description of how this is done can be found in [17].

Calling Mode Information. The resource analysis needs information referred
to each argument in each predicate in the block representation (HC IR) that ex-
presses whether it acts as an input or an output argument (its “mode”). In our
approach no mode analysis is performed in order to obtain such information.
The modes of the main blocks are extracted from the XC source code that the
HC IR is originated from. This is possible because mode information is statically
known at the XC language level and is propagated to the HC IR using (trust)
assertions. There are also new intermediate predicates generated by the trans-
formation from ISA programs into HC IR (described in Section 3), originated
from conditional branching, which cannot be directly related to the XC source
code. However, for such predicates information from the transformation phase,
where the input/output arguments are determined for each predicate, is used,
so that no mode analysis needs to be performed by CiaoPP.

Size Measure Analysis. CiaoPP uses type information to decide which metric
to use to infer and express data sizes, from a set of predefined metrics (see [17]
for details). As already said, our resource analysis is performed on a block-based
representation (HC IR) of the ISA code generated by the XC compiler. Although
XC is a typed language, most of the type information is lost in the ISA code
generated by the compiler. There are a number of static and dynamic techniques
developed by the reverse engineering community to reconstruct types/shape in-
formation from binaries (see [12] and its references). In our approach, we can
recover and transfer types from the ISA code into some blocks (predicates) in
the HC IR that are directly related to the ISA code, so that no type analysis is
performed in those cases. However, we still need to perform some propagation of
such types to any new intermediate blocks created by the transformation from
ISA programs into Horn clauses. For example, our approach can determine that
in the HC IR program in Figure 3 (right hand side) fact will be called with R0
bound to an integer and R0 3 a free variable, and will succeed with R0 3 bound
to an integer. Also, fact aux will be called with the first two arguments bound



to integers, and the rest free, and, upon success, all of them will be bound to
integers. Given that information, the chosen metric for all the arguments will be
int, i.e., the integer value of the argument.

Size Analysis. It determines the relative sizes of variable bindings at different
program points. For each clause, size relations are propagated to express each
output data size as a function of input data sizes. For recursive functions this
is done symbolically, creating a set of recurrence relations that will be solved to
get a closed form function.

For our running example, the recurrence relations set up for the size of the
output argument R0 3 of fact as a function of the size of the input argument
R0 (denoted factR0 3(R0)) as well as the corresponding one for fact aux are:

factR0 3(R0) = fact auxR0 4(0 ≤ R0, R0)

fact auxR0 4(B,R0) =

{
R0 ∗ factR0 3(R0− 1) if B is true (i.e., 0 ≤ R0)
1 if B is false (i.e., 0 > R0)

These inferred recurrence relations/equations are then fed into a computer
algebra system (e.g., CiaoPP’s internal solver or an external solver such as Math-
ematica, used for the results presented in this paper) that gives the following
closed form function for it: factR0 3(R0) = R0!

Resource Usage Analysis. It uses the size information inferred by the size
analysis to set up recurrence equations representing the resource usage of pred-
icates (blocks), and computes bounds to their solutions. Remember that ci rep-
resents the energy cost of each instruction, taken from the energy model. Let
be denote the energy consumption function for a predicate (block) b. Then, the
inferred equations for fact are:

facte(R0) = fact aux e(0 ≤ R0, R0) + centsp + cstw + cldw + cldc + clss + cbf

fact aux e(B,R0) =

 facte(R0− 1) + cbu + 2 cldw + csub +
+ cbl + cmul + cretsp if B is true

cmkmsk + cretsp if B is false

If we assume (for simplicity of exposition) that each instruction has unitary
cost, i.e., ci = 1 for all i, we obtain (using the mentioned computer algebra
system) the energy consumed by fact as a function of its input data size (R0):
facte(R0) = 13 R0 + 8.

Note that our approach based on setting up recurrence equations and sol-
ving them using a computer algebra system allows inferring different types of
(resource usage) functions, such as polynomial, factorial, exponential, logarith-
mic, and summatory.

Note also that using average values in the model implies that the energy
function for the whole program inferred by the upper-bound resource analysis
is an approximation of the actual upper bound that can possibly be below it.
To ensure that the analysis infers a strict upper bound, we would need to use



Table 1. Description of benchmark functions used in experiments and their corre-
sponding energy functions.

Function name Description Energy function

fact(N) Calculates N ! 26.0 N + 19.4

fibonacci(N) Nth Fibonacci no. 30.1 + 35.6 φN + 11.0 (1− φ)N

sqr(N) Computes N2 103.0 N2 + 205.8 N + 188.32

poweroftwo(N) Calculates 2N 62.4 · 2N − 312.3

power(base,exp) Calculates baseexp 6.3 (log2 exp+ 1) + 6.5

strict upper bounds as well in the energy models. However, with the current
models such bounds would be very conservative, causing a loss in accuracy that
would make the analysis not useful in practice. Thus, the current approach is a
practical compromise.

5 Benchmarks, Results and Evaluation

The aim of the experimental evaluation is to perform a first comparison of actual
hardware energy measurements, in terms of accuracy, with the values obtained
from both the low-level Instruction Set Simulation (ISS) model and the Static
Resource Analysis (SRA) implemented within the CiaoPP framework, to obtain
an early estimation of the feasibility of the approach. To this end, we describe
a selection of currently analysable benchmarks, the method by which data was
collected, and an evaluation of the analysis framework accuracy vs. the low-level
ISS model and hardware measurements.

Benchmarks. For this type of evaluation we use as benchmarks mainly small
mathematical functions. The structure of these programs is either iterative or
recursive, with their cost depending on the function argument. For such programs
state of the art solvers can easily provide the cost functions, by solving the
system of recurrence relations provided by the SRA framework. Table 1 shows
the benchmarks used in this comparison, their execution behaviour in relation
to each function’s parameters, and the cost function inferred.

Experimental method. Hardware energy readings were obtained by repeat-
edly executing a benchmark function over a 0.5 second period, T , collecting a
set of power samples, P , whilst counting the number of executions, Nfn. From

this, the energy of a single function call, Efn = mean(P )×T
Nfn

is calculated. This
was performed using a similar method to the collection of energy model data de-
scribed in Section 2, but was performed on separate hardware so as to de-couple
modelling from testing.

ISS modelling involved simulating the same function a smaller number of
times than on the hardware in order to keep simulation time adequately low.



Table 2. Actual and estimated energy consumption for the fact(N) function over a
range of N .

SRA cost
N

HW measured Model energy (nJ) Error vs. HW
function(nJ) energy (nJ) ISS SRA ISS SRA

1 53.1 62.8 45.3 1.18 0.85
2 78.0 83.8 71.3 1.07 0.91
4 127.7 125.7 123.1 0.98 0.96

26.0 N + 19.4 8 227.1 209.6 226.8 0.92 1.00
16 426.0 377.4 434.2 0.89 1.02
32 823.8 713.4 849.0 0.87 1.03
64 1690.5 1387.0 1678.4 0.82 0.99

The instruction statistics were then processed in order to produce an energy
figure, and then that figure divided by Nfn was used during ISS in order to
extract the energy of a single call. The ISS modelling framework currently has
a less efficient test loop than the hardware, potentially reducing accuracy for
very short function calls. Similarly, if too few function calls are made during the
simulation due to a long-executing function, overrun in the test time may skew
low-level energy figures.

Static resource usage analysis was performed by evaluating the produced cost
function for a given benchmark with respect to the input arguments, immediately
providing the energy cost of a single function call.

Results. Table 2 provides an example of test data for the fact (factorial) func-
tion. The hardware (HW), low-level Instruction Set Simulation model (ISS),
and Static Resource Analysis (SRA) model energy figures are compared. The
relative errors of ISS and SRA are compared with respect to the HW energy
and normalised as such. The cost function provided for this particular example
demonstrates the relationship between the input parameter, N , and the SRA
estimate of such a call. This, together with data for a number of further bench-
marks are presented in graph form in Figure 5.

In Figure 5, hardware measured energy is compared directly to ISS and SRA
energy predictions for the set of four benchmarks. The relative errors are also
plotted. In all cases, the ISS model is seen to improve in accuracy as the input
parameter N increases, in line with the expected inaccuracies arising from inef-
ficiencies in the modelling loop used in simulation, as described in the previous
subsection. In the case of the poweroftwo function, time limitations prevent the
ISS model from approximating the function above N = 13, approaching which
the error begins to increase markedly. The power function behaves in a similar
way and demonstrates the relationship between multiple input arguments.

The CiaoPP SRA model does not suffer the same deficiencies, although it
does incur a greater underestimation of energy for small values of N . The HW
measurements unavoidably contain some loop code beyond the target function
being examined and small N values will increase the effects of this in the mea-
surement. ISS in fact models this inefficiency directly, whereas SRA does not,
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Fig. 5. Hardware energy, estimations and relative errors for (starting top-left, moving
clock-wise) fact, fibonacci, poweroftwo and power.

hence the roughly symmetrical relative errors for the two models, particularly
in the fact and fibonacci cases.

Both approaches are reliant on the same underlying instruction energy fig-
ures. Given that some instructions are not directly profiled and, instead, given
an average value, accuracy is reduced when the distribution of instructions in a
given program is such that the number of profiled instructions is low.

Overall, these results demonstrate both models’ capabilities to estimate en-
ergy, with encouraging accuracy that can be improved upon. Further, the SRA
approach is less restrictive, particularly in situations where simulation time
might be prohibitively long.

6 Related Work

Static cost analysis techniques based on setting up and solving recurrence equa-
tions date back to Wegbreit’s seminal paper [25], and have been developed sig-
nificantly in subsequent work [19, 2, 3, 23, 17, 1, 16, 21]. This approach was first
applied to energy consumption in [15], which inferred statically upper-bounds



on the energy consumption of Java programs as functions of input data sizes. As
herein, this work used the generic framework of [17, 6], specializing it for Java
bytecode [14, 16] by translating the Jimple (a typed three-address code) repre-
sentation of Java bytecode into the Horn clause-based IR of the analyzer [14].
However, we employ transformations at lower level (XS1-ISA), irrespective of
source language in general, where much of the program structure and typing
information is trimmed away. Our transformation employs analysis techniques
to reverse engineer ISA programs and reconstruct the control flow graph so that
the equivalent HC IR safely approximates the semantics of the original ISA pro-
gram. In addition, [15] did not compare the results with actual, measured energy
consumptions and used a comparatively simple energy model.

Other approaches to cost analysis, such as, e.g., those based on the potential
method [8], are limited to polynomial bounds, and do not allow inferring non-
polynomial energy functions, as in the recurrence equation method. A number
of static analyses are aimed at inferring worst case execution time (WCET, see,
e.g., [4] and its references) and related techniques have been applied in [9] to
derive a worst-case energy analysis. However, WCET methods typically do not
infer cost functions on input data sizes but rather absolute maximum values,
and they generally require manual annotation of loops with an upper bound on
the number of iterations.

Other transformation-based approaches have been proposed in order to anal-
yse low level microprocessor code [5] and Java source and bytecode [1] (outside
the context of energy analysis).

Instruction Set Simulation can be used to estimate the energy of a program
running on a suitably profiled hardware platform. Simple models for single-
threaded architectures have been demonstrated [22]. These have then been ex-
panded upon, leading to models capable of modelling more complex hardware
such as that used in this paper, which comprises a multi-threaded architec-
ture [10].

7 Conclusions and Future Work

In this paper we introduce an approach for estimating the energy consumption of
programs compiled for the XS1 architecture, based on a Horn clause transforma-
tion and the use of ISA level models that we have produced. We have shown the
feasibility of the approach with a prototype implementation within the CiaoPP
system, which has been successful in statically finding a good approximation of
the energy consumed by a set of selected programs in our experiments.

The XS1 architecture is inherently multi-threaded, and the simulation-based
model is able to provide energy estimates for this. Statically analysing multi-
ple concurrent threads adds a significant new dimension of complexity to the
modelling exercise. This is a goal of further work in order to provide meaningful
analysis for contemporary multi-threaded programs running on this architecture.

We also plan to produce and deal with energy models that take into account
the switching cost among pairs of ISA instructions (i.e., the energy consumed



by bit flipping), since our analysis framework allows it. The improvement in ac-
curacy from this approach can vary between architectures, for example research
such as [20], shows that a simple model can be sufficient in some cases, due to bit
flipping effects averaging out over time. Thus, the impact in the context of any
target architectures must therefore be considered in this future work, in order
to establish whether the increased complexity of analysis delivers a worthwhile
gain in accuracy.

We also intend to improve upon the energy measurements of commonly used
instructions, which involves more complex techniques such as linear regression.
This technique can also be used to construct energy models of intermediate
compiler representations such as LLVM IR [11], which would enable us to ap-
ply our analysis techniques to more structured program representations. An-
other method for analysing LLVM IR would involve mapping low-level program
instruction segments to LLVM IR segments and reusing the ISA-level energy
models.
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