
Incremental Analysis of Logic Programs with
Assertions and Open Predicates?

Isabel Garcia-Contreras1,2, Jose F. Morales1, and Manuel V. Hermenegildo1,2

1 IMDEA Software Institute
2 Universidad Politécnica de Madrid (UPM)

Abstract. Generic components represent a further abstraction over the
concept of modules, which introduces dependencies on other (not necessar-
ily available) components implementing specified interfaces. It has become a
key concept in large and complex software applications. Despite its undeni-
able advantages, generic code is known to be anti-modular. Precise analysis
(e.g., for detecting bugs or optimizing code) requires such code to be instan-
tiated with concrete implementations, potentially leading to a prohibitively
expensive combinatorial explosion. In this paper we claim that incremen-
tal (whole program) analysis can be very beneficial in this context, and
alleviate the anti-modularity nature of generic code. We propose a simple
Horn-clause encoding of generic programs, using open predicates and asser-
tions, and we introduce a new incremental analysis algorithm that reacts
incrementally not only to changes in program clauses, but also to changes
in the assertions, upon which large parts of the analysis graph may depend.
We also discuss the application of the proposed techniques in a number of
practical use cases. In addition, as a realistic case study, we apply the pro-
posed techniques in the analysis of the LPdoc documentation system. We
argue that the proposed traits are a convenient and elegant abstraction for
modular generic programming, and that our preliminary results support
the conclusion that the new incrementality-related features added to the
analysis bring promising analysis performance advantages.

Keywords: Incremental Static Analysis · Assertions · Logic Programming ·
Generic Code · Specifications · Abstract Interpretation

1 Introduction

When developing large, real-life programs it is important to ensure application reli-
ability and coding convenience. An important component in order to achieve these
goals is the availability in the language (and use in the development process) of
some mechanism for expressing specifications, combined with a way of determining
if the program meets the specifications or locate errors. This determination is usu-
ally achieved through some combination of compile-time analysis and verification
with testing and run-time assertion checking.

Another relevant aspect when developing large programs is modularity. In mod-
ern coding it is rarely necessary to write everything from scratch. Modules and
interfaces allow dividing the program in manageable and interchangeable parts.

? Research partially funded by MINECO TIN2015-67522-C3-1-R TRACES project, FPU
grant 16/04811, and the Madrid P2018/TCS-4339 BLOQUES-CM program.

Interfaces, including specifications and dependencies, are needed in order to con-
nect with external code (including specifications of such code), to connect self-
developed code that is common with other applications (also with specs), and
as a placeholder for different implementations of a given functionality, in general
referred to as generic code.

Despite its undeniable advantages, generic code is known to be in fact anti-
modular, and the analysis of generic code poses challenges: code is not fully available
and interface specifications may not be descriptive enough to verify the specifica-
tions for the whole application (e.g., proving termination if the interface specifi-
cation does not enforce termination properties). Several approaches are possible
in order to balance separate compilation with precise analysis and optimization.
First, it is possible to analyze generic code by trusting its interface specifications,
i.e., analyzing the client code and the interface implementations independently,
flattening (widening) the analysis information inferred at the boundaries to that
of the interface descriptions. This technique can reduce global analysis cost signif-
icantly at the expense of some loss of precision. Some of it may be regained by,
e.g., enriching specifications manually for the application at hand. At the same
time, when considering a closed set of interface implementations, it may also be
desirable to analyze the whole application together with these implementations,
allowing the transfer of information with “native analysis precision” (e.g., multi-
variance) and specializations across the interfaces. This allows getting the most
precise information, specializations, compiler optimizations, etc., but at a higher
cost.

In this paper we claim that incremental (whole program) analysis can be very
beneficial in this context. After providing the necessary notation and background
(Section 2), we start by proposing a simple Horn-clause encoding of generic code,
using open predicates and assertions, and introduce a novel extension for logic
programming (traits) that is translated using open predicates (Section 3). This ab-
straction addresses typical use cases of generic code in a more elegant and analysis-
friendly way than the traditional alternative in LP of using multifile predicates.
We also introduce a new incremental analysis algorithm (Sections 4 and 5) that,
in addition to supporting and taking advantage of assertions during analysis, i.e.,
as part of the fixpoint calculation, offers two interesting properties: it reacts in-
crementally not only to changes in program clauses, but also to changes in the
assertions, upon which large parts of the analysis graph may depend, and it also
supports natively open predicates.

Generic code offers many opportunities for this new analysis technique. For ex-
ample: standalone analysis of trait-based code without particular implementations
by using the (trust) assertions in the interfaces; refinement of standalone analysis
for particular implementations; or reuse of analysis results when more implemen-
tations are made available. Note that fine-grained incremental analysis seems even
more interesting when using generic code, where the scope of a program change
may implicitly be scattered across many modules. We study a number of use cases
(Section 5.2), including editing a client (of an interface), while keeping the inter-
face unchanged (e.g., analyzing a program reusing the analysis of a –family of–
libraries) and keeping the client code unchanged, but editing the interface imple-
mentation(s) (e.g., modifying one implementation of an interface). In addition, in
Section 6 we provide preliminary results from the application of a prototype im-

2

plementation of the proposed techniques in a realistic case study: the analysis of
the LPdoc documentation system and its multiple backends for generating docu-
mentation in the different formats. Finally, Section 7 discusses some related work
and Section 8 presents our conclusions.

2 Background

Logic Programs. A definite Logic Program, or program, is a finite sequence of
clauses. A clause is of the form H:-B1, . . . , Bn where H, the head, is an atom, and
B1, . . . , Bn is the body, a possibly empty finite conjunction of atoms. Atoms are also
called literals. An atom is of the form p(V1, . . . , Vn). It is normalized if the V1, . . . , Vn
are all distinct variables. Normalized atoms are also called predicate descriptors.
Each maximal set of clauses in the program with the same descriptor as head
(modulo variable renaming) defines a predicate (or procedure). We will use P and
Q to denote predicates. Body literals can be predicate descriptors, which represent
calls to the corresponding predicates, or built-ins. A built-in is a predefined relation
for some background theory. Note that built-ins are not necessarily normalized. In
the examples we may use non-normalized programs. We denote with vars(A) the
set of variables that appear in the atom A.

For presentation purposes, the heads of the clauses of each predicate in the
program will be referred to with a unique subscript attached to their predicate
name (the clause number), and the literals of their bodies with dual subscript
(clause number, body position), e.g., Pk:-Pk,1, . . . Pk,nk . The clause may also be
referred to as clause k of predicate P . For example, for the append predicate:�

1 app(X,Y,Z):- X=[], Y=Z.
2 app(X,Y,Z):- X=[U|V], Z=[U|W], app(V,Y,W).� �
app1 will denote the head of the first clause of app/3, app2,1 will denote the first
literal of the second clause of app, i.e., the unification X=[U|V].

Assertions. Assertions allow stating conditions on the state (current substitu-
tion) that hold or must hold at certain points of program execution. We use for
concreteness a subset of the syntax of the pred assertions of [2, 12, 19], which allow
describing sets of preconditions and conditional postconditions on the state for a
given predicate. These assertions are instrumental for many purposes, e.g., express-
ing the results of analysis, providing specifications, and documenting [9, 12, 20]. A
pred assertion is of the form:

:- pred Head [: Pre] [=> Post].
where Head is a predicate descriptor (i.e., a normalized atom) that denotes the
predicate that the assertion applies to, and Pre and Post are conjunctions of prop-
erty literals, i.e., literals corresponding to predicates meeting certain conditions
which make them amenable to checking, such as being decidable for any input [19].
Pre expresses properties that hold when Head is called, namely, at least one Pre
must hold for each call to Head . Post states properties that hold if Head is called
in a state compatible with Pre and the call succeeds. Both Pre and Post can be
empty conjunctions (meaning true), and in that case they can be omitted.

Example 1. The following assertions describe different behaviors of an implemen-
tation of a hashing function dgst: (1) states that, when called with argument Word
a string and N a variable, then, if it succeeds, N will be a number, (2) states that

3

calls for which Word is a string and N is an integer are allowed, in other words, it
can be used to check if N is the hash of Word.�

1 :- pred dgst(Word,N) : (string(Word), var(N)) => num(N). % (1)
2 :- pred dgst(Word,N) : (string(Word), int(N)). % (2)
3 dgst(Word,N) :-
4 % implementation of the hashing function� �

Definition 1 (Meaning of a Set of Assertions for a Predicate). Given a
predicate represented by a normalized atom Head, and a corresponding set of as-
sertions {a1 . . . an}, with ai = “:- pred Head : Prei => Post i.” the set of as-
sertion conditions for Head is {C0, C1, . . . , Cn}, with:

Ci =

{
calls(Head ,

∨n
j=1 Prej) i = 0

success(Head ,Prei,Post i) i = 1..n
where calls(Head ,Pre)3 states conditions on all concrete calls to the predicate
described by Head , and success(Head ,Prej ,Postj) describes conditions on the
success substitutions produced by calls to Head if Prej is satisfied.

3 An approach to modular generic programming: traits

In this section we present a simple approach to modular generic programming for
logic programs without static typing. To that end we introduce the concept of
open predicates. Then we show how they can be used to deal with generic code,
by proposing a simple syntactic extension for logic programs for writing and using
generic code (traits) and its translation to plain clauses.

Open vs. closed predicates. We consider a simple module system for logic program-
ming where predicates are distributed in modules (each predicate symbol belongs
to a particular module) and where module dependencies are explicit in the pro-
gram [3]. An interesting property, specially for program analysis, is that we can
distinguish between open and closed predicates. 4 Closed predicates within a mod-
ule are those whose complete definition is available in the module. In contrast,
open predicates (traditionally declared as multifile in many Prolog systems) are
only partially defined within a given module, and different clauses can be scattered
across different modules, and thus the complete definition is not known until all
the application modules are linked (which is basically “anti-modular”).

Open as “multifile.” The following example shows an implementation of a generic
password-checking algorithm in Prolog:�

1 :- multifile dgst/3.
2

3 check_passwd(User) :-
4 get_line(Plain), % Read plain text password
5 passwd(User,Hasher,Digest,Salt), % Consult password database
6 append(Plain,Salt,Salted), % Append salt
7 dgst(Hasher,Salted,Digest). % Compute and check digest� �

3 We denote the calling conditions with calls (plural) for historic reasons, and to avoid
confusion with the higher order predicate in Prolog call/2.

4 We only consider static predicates and modules. Dynamic predicates whose definition
may change during execution, or modules that are dynamically changed (loaded/un-
loaded) at execution time can also be dealt with, using various techniques, and in
particular the incremental analysis proposed, but for space reasons we limit the dis-
cussion to static predicates.

4

The code above is generic w.r.t. the selected hashing algorithm (Hasher). Note that
there is no explicit dependency between check passwd/1 and the different hashing
algorithms. The special multifile predicate dgst/3 acts as an interface between
implementations of hashing algorithms and check passwd/1. While this type of
encoding is widely used in practice, the use of multifile predicates is semantically
obscure and error-prone. We propose a syntactic extension for defining interfaces,
or traits, in logic programs, which captures the essential mechanisms necessary for
writing generic code, but does not require the introduction of a static type system
(beyond the typing that modules and their interfaces already represents).

Traits. A trait is defined as a collection of predicate specifications (as predicate
assertions). For example:�

1 :- trait hasher {
2 :- pred dgst(Str, Digest) : string(Str) => int(Digest).
3 }.� �

defines a trait hasher, which specifies a predicate dgst/2, which must be called
with an instantiated string, and obtains an integer in Digest.

As a minimalistic syntactic extension, we introduce a new head and literal
notation (X as T).p(A1, . . . , An), which represents the predicate p for X imple-
menting trait T . Basically, this is equivalent to p(X,A1, . . . , An), where X is used
to select the trait implementation. The check passwd/1 predicate using the trait
above is:�

1 check_passwd(User) :-
2 get_line(Plain),
3 passwd(User,Hasher,Digest,Salt),
4 append(Plain,Salt,Salted),
5 (Hasher as hasher).dgst(Salted,Digest).� �

The following translation rules convert code using traits to plain predicates.
Note that we rely on the underlying module system to add module qualification to
function and trait (predicate) symbols. Calls to trait predicates are done through
the interface (open) predicate, which also carries the predicate assertions declared
in the trait definition:�

1 % open predicates and assertions for each p/n in trait
2 :- multifile ’T.p’/(n+ 1).
3 :- pred ’T.p’(X,A1, . . . , An) : . . . =>
4 % call to p/n for X implementing T
5 . . . :- . . ., ’T.p’(X,A1, . . . , An), . . . % (X as T).p(A1, . . . , An)� �

A trait implementation is a collection of predicates that implements a given
trait, indexed by a specified functor associated with that implementation. E.g.:�

1 :- impl(hasher, xor8/0).
2 (xor8 as hasher).dgst(Str, Digest) :- xor8_dgst(Xs, 0, Digest).
3

4 xor8_dgst([], D, D).
5 xor8_dgst([X|Xs], D0, D) :- D1 is D0 # X, xor8_dgst(Xs, D1, D).� �

declares that xor8 (an atom in this case, although trait syntax allows arbitrary
functors) implements a hasher, and provides an implementation for the dgst/2
predicate (head (xor8 as hasher).dgst(Str, Digest)).

The translation rules to plain predicates are as follows:

5

�
1 % implementation closed predicate (head renamed)
2 ’<f/k as T>.p’(f(. . .), A1, . . . , An) :- . . . % (f(. . .) as T).p(A1, . . . , An)
3

4 % bridge from interface open predicate to implementation
5 ’T.p’(X,A1, . . . , An) :- X=f(. . .), ’<f/k as T>.p’(X,A1, . . . , An).� �

Adding new implementations is simple:�
1 :- impl(hasher, sha256/0).
2 (sha256 as hasher).dgst(Str, Digest) :- . . .� �

This approach still preserves some interesting modular features: trait names can
be local to a module (and exported as other predicate/function symbols), and
trait implementations (e.g., sha256/0) are just function symbols, which can also
be made local to modules in the underlying module system.

4 Goal-dependent abstract interpretation

After introducing our generic code abstraction, we now describe our proposed in-
cremental analysis to support generic code evolution (i.e., code with traits). We
start by recalling in this section the base goal-dependent abstract interpretation
algorithm, and in Section 5 we describe the proposed incremental version.

4.1 Preliminaries

Program Analysis with Abstract Interpretation. Our approach is based on
abstract interpretation [5], a technique in which execution of the program is sim-
ulated (over-approximated) on an abstract domain (Dα) which is simpler than
the actual, concrete domain (D). Although not strictly required, we assume that
Dα has a lattice structure with meet (u), join (t), and less than (v) operators.
Abstract values and sets of concrete values are related via a pair of monotonic
mappings 〈α, γ〉: abstraction α : D → Dα, and concretization γ : Dα → D, which
form a Galois connection. A description (or abstract value) d ∈ Dα approximates
a concrete value c ∈ D if α(c) v d where v is the partial ordering on Dα. Con-
crete operations on D values are (over-)approximated by corresponding abstract
operations on Dα values.

Concrete Semantics. We use top-down, left-to-right SLD-resolution, which,
given a query (initial state), returns the answers (exit states) computed for it by
the program. A query is a pair 〈G, θ〉 with G an atom and θ a substitution over
the variables of G. Executing (answering) a query with respect to a logic program
consists on determining whether the query is a logical consequence of the program
and for which substitutions (answers). However, since we are interested in abstract-
ing the calls and answers (states) that occur at different points in the program,
we base our semantics on the well-known notion of generalized and trees [1]. The
concrete semantics of a program P for a given set of queries Q, JP KQ, is then the
set of generalized and trees that results from the execution of the queries in Q for
P . Each node 〈G, θc, θs〉 in the generalized and tree represents a call to a predicate
G (an atom), with the substitution (state) for that call, θc, and the corresponding
success substitution θs (answer). A renaming substitution, i.e., a substitution that
replaces each variable in the term it is applied to with distinct, fresh variables. We
use σ(X) to denote the application of σ to X.

6

Graphs and paths. We denote by G = (V,E) a finite directed graph (hencefor-
ward called simply a graph) where V is a set of nodes and E ⊆ V × V is an edge
relation, denoted with u → v. A path P is a sequence of edges (e1, . . . , en) and
each ei = (xi, yi) is such that x1 = u, yn = v, and for all 1 ≤ i ≤ n − 1 we have
yi = xi+1, we also denote paths with u v ∈ G. We use the notation x ∈ P to
denote that a node n appears in P , and e ∈ P to denote that an edge e appears in
P .

4.2 Goal-dependent abstract interpretation.

We perform goal-dependent abstract interpretation, whose result is an abstraction
of the generalized and tree semantics. This technique derives an analysis result
from a program P , an abstract domain Dα and a set of initial abstract queries
Q = {〈Ai, λci〉}, where Ai is a normalized atom, and λci ∈ Dα. An analysis result
encodes an abstraction of the nodes of the generalized and trees derived from all
the queries 〈G, θ〉 s.t. 〈G,λ〉 ∈ Q ∧ θ ∈ γ(λ).

Analysis graphs. We will use graphs to overapproximate all possible executions
of a program given an initial query. Each node in our graph is identified by a
pair (P, λ) with P a predicate descriptor and λ ∈ Dα, an element of the abstract
domain, which represents that (a possibly infinite set of) calls to a predicate may
occur. The analysis result defines a mapping function ans : Pred × Dα → Dα,
denoted with 〈P, λc〉 7→ λs which over-approximates the answer to that abstract
predicate call. It is interpreted as calls to predicate P with calling pattern λc have
the answer pattern λs with λc, λs ∈ Dα. For a given predicate P , the analysis
graph can contain a number of nodes capturing different call situations. As usual,
⊥ denotes the abstract description such that γ(⊥) = ∅. A call mapped to ⊥ (〈A,
λc〉 7→ ⊥) indicates that calls to predicate A with description θ ∈ γ(λc) either fail
or loop, i.e., they never succeed.

Each edge 〈P, λ1〉c,l λp−−→
λr
〈Q,λ2〉 in the graph represents a call dependency

among two predicates. It represents that calling predicate P with calling pattern λ1
causes predicate Q (literal l of clause c) to be called with calling pattern λ2. It is
annotated with the abstract element representing the context of the call (λp) and
the return (λr) in the body of clause c and literal l of predicate P . Note that these
values are introduced to ease the presentation of the algorithm, however they can
be reconstructed with the identifiers of the nodes (i.e., predicate descriptor and
abstract value) and the source code of the program. For simplicity, we may write •
to omit the values that are not relevant for the operations that we are considering.
Note also that if we have the edges that represent the calls to a literal l and the
following one l+1, 〈P, λ1〉c,l •−−→

λ
〈Q,λ2〉 the result at the return of the literal is the

call substitution of the next literal: 〈P, λ1〉c,l+1
λ−−→
•
〈Q′, λ′2〉. Fig. 1 shows a possible

analysis graph for a program that checks/computes the parity of a message.

The following operations defined over an analysis result g allow us to inspect
and manipulate analysis results to partially reuse or invalidate.

7

�
1 main(Msg, P) :-
2 par(Msg, 0, P).
3

4 par([], P, P).
5 par([C|Cs], P, P) :-
6 xor(C, P, P),
7 par(Cs, P, P).
8

9 xor(0,0,0).
10 xor(0,1,1).
11 xor(1,0,1).
12 xor(1,1,0).� �

Abstract domain Dα:

>

b (bit)

z (0) o (1)

⊥

〈main(M,P),
>〉 7→ P/b

(1)
〈par(M,X,P),
X/z〉 7→

(X/z, P/b)

〈par(M,X,P),
X/b〉 7→

(X/b, P/b)

〈xor(C,P0, P1),
P0/z〉 7→

(C/b, P0/z, P1/b)

〈xor(C,P0, P1),
P0/b〉 7→

(C/b, P0/b, P1/b)

1
,1

2,1

2
,2

2,1

2,2

Fig. 1. A program that implements a parity function and a possible analysis result for
domain Dα.

Graph consultation operations
〈P, λc〉 ∈ g : there is a node in the call graph of g with key 〈P, λc〉.

〈P, λc〉 7→ λs ∈ g : there is a node in g with key 〈P, λc〉 and the answer
mapped to that call is λs.

〈P, λc〉c,l λp−−→
λr
〈Q,λc′〉 ∈ g : there are two nodes (k = 〈P, λc〉 and k′ = 〈Q,λc′〉) in g

and there is an annotated edge from k to k′.
Graph update operations

add(g, {kc,l λr−−→
λp

k′}) : adds an edge from node k to k′ (creating node k′ if
necessary) annotated with λp and λr for clause c and
literal l.

del(g, {kc,l •−−→
•
k′}) : removes the edge from node k to k′ annotated for clause

c and literal l.

The influence of assertions on the analysis result. As described earlier,
assertions guarantee that incorrect or undesired behaviors of a program do not
occur in the actual execution. We can take advantage of this to prune from the
analysis result the states that will never be reached.

We first mention some properties of the analysis graph when no assertions are

present in the program: (1) in any edge of the graph A, 〈P, λ1〉i,j λp−−→ 〈Q,λ2〉, the

abstract substitution immediately before calling the literal (λp) is the same as the
call to the predicate (λ2), when projected to the variables of the literal (modulo
renaming): λ2 = σ(abs project(λp, vars(Pi,j))) ∧ Q = σ(P), and (2) the answer
pattern λs to a call to a predicate P with λc (〈P, λc〉 7→ λs ∈ A) is the abstract
union of the answer of each of its clauses, i.e., the (abstract) state after the call
(λr) to the last literal in the body (Pn,last):
λs =

⊔
{abs project(λr, vars(Pn)) s.t. 〈P, λc〉n,last −−→

λr
N ∈ A }, with the vari-

ables restricted (projected) to the variables in the head of the clause Pn.
However, these properties do not hold when assertions are introduced in a pro-

gram. (1) does not hold in general because if predicate Q has assertions that cause
the analyzer to prune some over-approximated states then, it is not guaranteed
to be exactly the same but λ2 v σ(abs project(λp, vars(Pi,j))) ∧ Q = σ(P). (2)

8

does not hold for the same reason (analysis result may be pruned), and the answer
pattern λs could be smaller than the abstract join of its clauses.

5 Incremental analysis of programs with assertions

In this section we propose an analysis algorithm that responds incrementally to
changes both in the clauses and the assertions of the program. We do so by taking
advantage of previous analysis algorithms.

Baseline incremental analysis algorithm. The concepts of analyzing a pro-
gram incrementally and analyzing a program using assertions are not new. We want
to take advantage of the existing algorithms to design an analyzer that is sensible
to changes in assertions also. We will use as a black box the straightforward com-
bination of the algorithms to analyze incrementally a CHC program [13], and the
analyzer that is guided by assertions [8]. This combined algorithm is detailed in
Appendix A, and not included in the paper for space constraints. We will refer to it
with the function A ′ = IncAnalyze(P,∆Cls ,Q,A), meaning that the algorithm
takes as input:

– A program P = (Cls,As) as a pair of a set of clauses (Cls) and a set of
assertions (As).

– A set of changes ∆Cls in the form of added or deleted clauses
– A set Q of initial queries that will be the starting point of the analyzer.
– A previous result of the algorithm A which is a well formed analysis graph.

The algorithm produces a new A ′ that correctly abstract the behavior of the
program reacting incrementally to changes in the clauses.

The algorithm is parametric on the abstract domain Dα, given by implementing
(1) the domain-dependent operations v,u,t, abs project(λ,Vs), which restricts
the abstract substitution to the set of variables Vs, and abs extend(Pk,n, λ

p, λs),
which propagates the information of the success abstract substitution over the
variables of Pk,n, λs, to the substitution of the variables of the clause λp; and (2)
transfer functions for program built-ins, that abstract the meaning of the basic
operations of the language. These operations are assumed to be monotonic and to
correctly over-approximate their correspondent concrete version.

In addition, we assume to have two functions apply call(P, λc) and
apply succ(P, λc, λs) that are the transfer functions of the semantics of the as-
sertion conditions (resp. calls and success conditions), i.e., they correctly abstract
and apply the assertions to a given predicate and call description. Further details
of these functions are described in Appendix A and in [8].

5.1 The incremental analyzer of programs with assertions

We extend IncAnalyze with an initial phase that will manipulate the analysis
graph in a way such that we are able to call IncAnalyze to obtain results that are
correct and precise, reacting incrementally to changes in assertions. This procedure
is shown in Fig. 2. The phase prior to analyzing consists in inspecting all the
program points affected by the changes in the assertions, collecting which call
patterns need to be reanalyzed by the incremental analysis, i.e., it may be different

9

function IncAnalyze-w/AssrtChanges((Cls,As),∆Cls ,∆As ,Q,A)
R := ∅
for each P ∈ Cls do

if ∆As [P] 6= ∅ then
R := R ∪ update calls pred(P)
R := R ∪ update success pred(P)

A ′ := IncAnalyze((Cls,As),∆Cls ,Q ∪R,A)
del (A ′, {E | E ∈ A ′ ∧Q 6 E ∧Q ∈ Q}) . Remove unreachable calls
return A ′

Fig. 2. High-level view of the proposed algorithm

from the set of initial queries Q originally requested by the user. In addition, after
the analysis phase, the unreachable abstract calls that were safe to reuse may not
be reachable anymore, so they need to be removed from the analysis result.

Detecting affected parts in the analysis results. The pseudocode to find
potential changes in the analysis results when assertions are changed is detailed
in Fig. 3 with procedures update calls pred and update successes pred. The
goal is to identify which edges and nodes of the analysis graph are not precise or
correct. Since, as mentioned in section 4.2, assertions may affect the inferred call
or the inferred success of predicates we have split the procedure in two functions.
However the overall idea is to obtain the current substitution (i.e., which encodes
the semantics of the assertions in the previous version of the program), and the
abstract substitution that would have been inferred if no assertions were present.
Then we get the semantics of the new assertions (using the functions apply call
and apply success), finally we call a general procedure to treat the potential
changes, treat change (see Fig. 4). Specifically, in the case of call conditions,
for a given predicate we want to review all the program points from which it is
called (by checking the incoming edges of the nodes of that predicate). So, for each
node we project the substitution of the clause (λp) to the variables of the literal
to obtain the call patterns if no assertions would be specified (line 4). We then
detect if the call pattern produced by the new semantics of the assertions already
existed in the analysis graph to reuse its result, and last, we call the procedure to
treat the change. In the case of success conditions we obtain the substitution if no
assertions were present by joining the return substitution at the last literal of each
of the clauses of the predicate, previously projected to the variables of the head
(line 16).

Amending the analysis results. Qualifying the changes in the abstract substi-
tutions (i.e., they remain the same, they become more general, they become more
concrete, or they become incompatible) becomes handy to take advantage of two
key known facts about the concrete semantics of logic programs:

– Further constraining a substitution cannot cause more answers to appear.
– Generalizing a substitution cannot cause solutions to disappear.

Based on this knowledge, we define the procedure treat change in Fig. 4. The
goal is, given an edge that points to a literal whose success potentially changed,

10

1: function update calls pred(P)
2: Q := ∅
3: for each 〈P ′, λ〉c,l λp−−→ 〈P , λcold〉 ∈ A do

4: λc := σ(abs project(λp, vars(P ′c,l)) s.t. σ(P ′c,l) = P . Original call
5: λcnew := apply call(P, λc)
6: if ∃〈P ′, λcnew〉 7→ λs ∈ A then . A node for that call already exist
7: λs′ := λs

8: else λs′ := ⊥
9: Q := Q ∪ treat change(〈P ′, λ〉c,l λp−−→

λr
〈P, λcnew〉, λs′)

10: return Q

11: function update successes pred(P)
12: Q := ∅
13: for each 〈P , λc〉 7→ λs ∈ A do
14: λ := ⊥
15: for each 〈P , λc〉c,last −−→

λr
〈Q,λ〉 ∈ A do . Original success

16: λ := λ t apply success(P , λc, abs project(λr, vars(Pc)))

17: for each E = N•,•
•−−→
•
〈P , λc〉 ∈ A do . Affected literals

18: Q := Q ∪ treat change (E, λ)

19: return Q

Fig. 3. Changes in assertions (split by assertion conditions)

update the analysis result, and decide which predicates and call patterns need to
be recomputed. After an initial step to update the annotation of the edge (line 3),
we study how the abstract substitution changed. If the new substitution (λr ′) is
more general than the previous one (λr), this means that the previous assertions
where pruning more concrete states than the new one, and, thus, this call pattern
needs to be reanalyzed. Else, if λr 6v λr ′, i.e., the new abstract substitution is more
concrete or incompatible, some parts of the analysis graph may not be accurate.
Therefore, we have to eliminate from the graph the literals that were affected by
the change (i.e., the literals following the program point with a change) and all the
dependent code from this call pattern. Also, the analysis have to be restarted from
the original entry points that were affected by the deletion of these potentially
imprecise nodes. The case that remains (line 13) is the case in which the old and
the new substitutions are the same, and, thus, nothing needs to be reanalyzed (the
∅ is returned).

5.2 Use cases

We now show some examples in which recomputing is avoided by reasoning with
the changes between versions of a program. We assume that we analyze with a
shape domain in which the properties that appear in the assertions can be exactly
represented.

Example 2 (Reusing a preanalyzed generic program). Consider a slightly modified
version the program that checks a password as shown earlier, that only allows the
user to write passwords with lowercase letters. Until we have a concrete imple-
mentation for the hasher we will not be able to analyze precisely this program.

11

1: function treat change(〈P , λ〉c,l λp−−→
λr
〈Q,λc〉, λs)

2: λr ′ := abs extend(λp, λs) . Obtain new info at literal return
3: del(A , 〈P , λ〉c,l •−−→

•
•)

4: add(A , 〈P , λ〉c,l λp−−→
λr ′
〈Q,λc〉)

5: if λr @ λr ′ then
6: return {〈P , λ〉} . Restart the analysis for this predicate and call pattern
7: else if λr 6v λr ′ then . Analysis is potentially imprecise
8: Lits := {E | E = 〈P , λ〉c,i −−→ N ∈ A ∧ i > l} . Following literals

9: IN := {E | E L ∈ A ∧ L ∈ Lits} . Potentially imprecise nodes
10: Q = IN ∩Q . Entry point of potentially imprecise nodes
11: del(A , IN)
12: return Q
13: else return ∅

Fig. 4. Functions to determine how the analysis result needs to be recomputed.

However, we can preanalyze it by using the information of the assertion of the
trait to obtain the following simplified analysis graph:�
1 :- trait hasher { :- pred dgst(Str, Digest)
2 : lowercase(Str) => int(Digest). }.
3

4 check_passwd(User) :-
5 get_line(Plain),
6 passwd(User,Hasher,Digest,Salt),
7 append(Plain,Salt,Salted),
8 (Hasher as hasher).dgst(Salted,Digest).
9

10 passwd(don,xor8,0x6d,"eNfwuBhtN9CUHxg==").� �

check passwd/1 get line/2

passwd/4

append/3

dgst/2

1,1

1,2

1,3

1
,4

Concretely the node for dgst/2 will represent the call
〈dgst(S, D), (S/lowercase, D/num)〉 7→ (S/lowercase, D/int), in this case, D was
inferred to be a number because of the success of passwd/4.

If we add a very naive implementation that consists on counting the number
of some letters in the password, reanalyzing will cause adding to the graph some
new nodes, shown with a dashed line:�
1 :- impl(hasher, naive/0).
2 (naive as hasher).dgst(Str, Digest) :-
3 naive_count(Xs, 0, Digest).
4

5 naive_count(L, D0, D) :-
6 count(L,’a’,Na), D1 is D0 + Na*1,
7 count(L,’b’,Nb), D2 is D1 + Nb*2,
8 count(L,’c’,Nc), D3 is D2 + Nc*3,
9 %% implementation continues� �

check passwd/1 get line/2

passwd/4

append/3

dgst/2

naive count/2

count/2

1,1

1,2

1,3

1
,4

1
,1

1
,2

1
,1

1
,3

We are able to detect that none of the previous nodes need to be recomputed
due to tracking dependencies for each literal. The analysis was performed by going
directly to the program point of dgst/2 and inspecting the new clause (that was
generated automatically by the translation) that calls naive count/2. By analyz-
ing naive count/2 we obtain nodes
〈naive count(S, D), (S/lowercase, D/num)〉 7→ (S/lowercase, D/int), and

12

〈count(L, C, N), (S/lowercase, C/char)〉 7→ (S/lowercase, C/char, N/int). As
no information needs to be propagated because the head does not contain any
of the variables of the call to digest, we are done, and we avoid reanalyzing any
caller to check passwd/2, if existed.

Example 3 (Weakening assertion properties). Consider the program and analysis
result of Example 2. We realize that allowing the user to write a password only
with lowercase letters is not very secure. We can change the assertion of the trait
to allow any string as a valid password.�

1 :- trait hasher {
2 :- pred dgst(Str, Digest) : string(Str) => int(Digest). }.� �

When reanalyzing, node 〈dgst(S, D), (S/lowercase, D/num)〉 will disappear to
become 〈dgst(S, D), (S/string, D/num)〉, and the same for naive count/3. A
new call pattern will appear for count/3 〈count(L, C, N), (S/string, C/char)〉 7→
(S/string, C/char, N/int), leading to the same result for dgst/2. I.e., we only
had to partially analyze the library, instead of the whole program.

6 Experiments

We have implemented the proposed analysis algorithm within the CiaoPP system [9]
and performed some preliminary experiments to test the use case described in
Example 2. Our test case is the LPdoc documentation generator tool [10, 11],
which takes a set of Prolog files with assertions and machine-readable comments
and generates a reference manual from them. LPdoc consists of around 150 files,
of mostly (Ciao) Prolog code,with assertions (most of which, when written, were
only meant for documentation generation), as well as some auxiliary scripts in Lisp,
JavaScript, bash, etc. The Prolog code analyzed is about 22K lines. This is a tool
in everyday use that generates for example all the manuals and web sites for the
Ciao system (http://ciao-lang.org, http://ciao-lang.org/documentation.
html) and as well as for all the different bundles developed internal or externally,
processing around 20K files and around 1M lines of Prolog and interfaces to another
1M lines of C and other miscellaneous code). The LPdoc code has also been adapted
as the documentation generator for the XSB system [21].
LPdoc is specially relevant in our context because it includes a number of back-

ends in order to generate the documentation in different formats such as texinfo,
Unix man format, html, ascii, etc. The front end of the tool generates a docu-
mentation tree with all the content and formatting information and this is passed
to one out of a number of these backends, which then does the actual, specialized
generation in the corresponding typesetting language. We analyzed all the LPdoc
code with a simple groundness domain (gr), and a domain tracking dependencies
via propositional clauses [7] (def). The experiment consisted on preanalyzing the
tool with no backends and then adding incrementally the backends one by one. In
Table 6 we show how much time it took to analyze in each setting, i.e., for the dif-
ferent domains and with the incremental algorithm or analyzing from scratch. The
experiments were run on a MacBook Pro with an Intel Core i5 2.7 GHz processor,
8GB of RAM, and an SSD disk. These preliminary results support our hypoth-
esis that the proposed incremental analysis brings performance advantages when
dealing with these use cases of generic code.

13

http://ciao-lang.org
http://ciao-lang.org/documentation.html
http://ciao-lang.org/documentation.html

domain no backend texinfo man html
gr 3.3 4.4 5.3 6.0

gr inc 3.5 1.8 1.3 2.7
def 12.2 15.2 15.7 20.8

def inc 12.3 2.1 1.3 2.9

Table 1. Analysis time for LPdoc adding one backend at a time (time in seconds).

7 Related work

Languages like C++ require specializing all parametric polymorphic code (e.g.,
templates [22]) to monomorphic variants. While this is more restrictive than run-
time polymorphism (variants must be statically known at compile time), it solves
the analysis precision problem, but not without additional costs. First, it is known
to be slow, as templates must be instantiated, reanalized, and recompiled for each
compilation unit. Second, it produces many duplicates which must be removed
later by the linker. Rust [15] takes a similar approach for unboxed types.

Runtime polymorphism or dynamic dispatch can be used in C++ (virtual meth-
ods), Rust (boxed traits), Go [6] (interfaces), or Haskell’s[14] type classes. However,
in this case compilers and analyzers do not usually consider the particular instances,
except when a single one can be deduced (e.g., in C++ devirtualization [17]).

Mora et al. [16] perform modular symbolic execution to prove that some (ver-
sions of) libraries are equivalent with respect to the same client. Chatterjee et
al. [4] analyze libraries in the presence of callbacks incrementally for data depen-
dence analysis. I.e., they preanalyze the libraries and when a client uses it reuses
the analysis and adds incrementally possible calls made by the client. We argue
that when using our Horn clause encoding, both high analysis precision and com-
piler optimizations can be achieved more generally by combining the incremental
static global analysis that we have proposed with abstract specialization [18].

8 Conclusions

While logic programming can intrinsically handle generic programming, we have
illustrated a number of problems that appear when handling generic code with
the standard solutions provided by current (C)LP module systems, namely, us-
ing multifile predicates. We argue that the proposed traits are a convenient and
elegant abstraction for modular generic programming, and that our preliminary
results support the conclusion that the novel incremental analysis proposed brings
promising analysis performance advantages for this type of code. Our encoding is
very close to the underlying mechanisms used in other languages for implementing
dynamic dispatch or run-time polymorphism (like Go’s interfaces, Rust’s traits, or
a limited form of Haskell’s type clases), so we believe that our techniques and re-
sults can be generalized to other languages. Traits are also related to higher-order
code (e.g., a “callable” trait with a single “call” method). We also claim that our
work contributes to the specification and analysis of higher-order (LP) code.

References

1. Bruynooghe, M.: A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming 10, 91–124 (1991)

14

2. Bueno, F., Cabeza, D., Hermenegildo, M.V., Puebla, G.: Global Analysis of Standard
Prolog Programs. In: ESOP (1996)

3. Cabeza, D., Hermenegildo, M.V.: A New Module System for Prolog. In: Int’l. Conf.
on Computational Logic. LNAI, vol. 1861, pp. 131–148. Springer (July 2000)

4. Chatterjee, K., Choudhary, B., Pavlogiannis, A.: Optimal Dyck reachability for data-
dependence and alias analysis. PACMPL 2(POPL), 30:1–30:30 (2018)

5. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of
POPL’77. pp. 238–252. ACM Press (1977)

6. Donovan, A.A.A., Kernighan, B.W.: The Go Programming Language. Professional
Computing, Addison-Wesley (October 2015)

7. Dumortier, V., Janssens, G., Simoens, W., Garćıa de la Banda, M.: Combining a
Definiteness and a Freeness Abstraction for CLP Languages. In: Workshop on LP
Synthesis and Transformation (1993)

8. Garcia-Contreras, I., Morales, J., Hermenegildo, M.V.: Multivariant Assertion-based
Guidance in Abstract Interpretation. In: 28th Int’l. Symp. on Logic-based Program
Synthesis and Transformation (LOPSTR’18) (January 2019)

9. Hermenegildo, M., Puebla, G., Bueno, F., Garćıa, P.L.: Integrated Program Debug-
ging, Verification, and Optimization Using Abstract Interpretation (and The Ciao
System Preprocessor). Science of Comp. Progr. 58(1–2) (2005)

10. Hermenegildo, M.V.: A Documentation Generator for (C)LP Systems. In: Int’l. Conf.
CL 2000. LNAI, vol. 1861, pp. 1345–1361. Springer-Verlag (July 2000)

11. Hermenegildo, M.V., Morales, J.: The LPdoc Documentation Generator. Ref. Manual
(v3.0). Tech. rep. (July 2011), available at http://ciao-lang.org

12. Hermenegildo, M.V., Puebla, G., Bueno, F.: Using Global Analysis, Partial Specifica-
tions, and an Extensible Assertion Language for Program Validation and Debugging.
In: The Logic Programming Paradigm, pp. 161–192. Springer (1999)

13. Hermenegildo, M.V., Puebla, G., Marriott, K., Stuckey, P.: Incremental Analysis of
Constraint Logic Programs. ACM TOPLAS 22(2), 187–223 (March 2000)

14. Hudak, P., Peyton-Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzman,
M.M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W.,
Peterson, J.: Report on the Programming Language Haskell. Haskell Special Issue,
ACM Sigplan Notices 27(5), 1–164 (1992)

15. Klabnik, S., Nichols, C.: The Rust Programming Language. No Starch Press, San
Francisco, CA, USA (2018)

16. Mora, F., Li, Y., Rubin, J., Chechik, M.: Client-specific equivalence checking. In: 33rd
ACM/IEEE Int’l. Conf. on Automated Softw. Eng., ASE. pp. 441–451 (2018)

17. Namolaru, M.: Devirtualization in GCC. In: Proceedings of the GCC Developers’
Summit. pp. 125–133 (2006)

18. Puebla, G., Albert, E., Hermenegildo, M.V.: Abstract Interpretation with Specialized
Definitions. In: SAS’06. pp. 107–126. No. 4134 in LNCS, Springer (2006)

19. Puebla, G., Bueno, F., Hermenegildo, M.V.: An Assertion Language for Constraint
Logic Programs. In: Analysis and Visualization Tools for Constraint Programming,
pp. 23–61. No. 1870 in LNCS, Springer-Verlag (2000)

20. Puebla, G., Bueno, F., Hermenegildo, M.V.: Combined Static and Dynamic Assertion-
Based Debugging of Constraint Logic Programs. In: Proc. of LOPSTR’99. pp. 273–
292. LNCS 1817, Springer-Verlag (March 2000)

21. Swift, T., Warren, D.: XSB: Extending Prolog with Tabled Logic Programming.
TPLP (1-2), 157–187 (2012)

22. Vandevoorde, D., Josuttis, N.M.: C++ Templates. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (2002)

15

A Full description of the base algorithm

In this section we describe the combination of the incremental analysis algorithm
[13] with the algorithm that uses assertions of programs [8].

Additional graph operations. In addition to the operations introduced in
the paper we will need some more operations to modify the analysis graph:
upd(g, 〈A, λc〉 ←[λs): overwrites the value of 〈A, λc〉 in the mapping function

and, if necessary, adding a node to g with key 〈A, λc〉.
upd(g, kc,l

λp−−→
λr

k′): adds an edge node k to node k′ with the corresponding
annotation if it did not exist.

upd(g, {ei}): performs the upd operation for each of the elements of
the set.

ancestors(g, k) : obtains nodes from which there is a path to k
{k′|k′ k ∈ g}

Algorithm usage. As mentioned in the paper, we refer to the analyzer with the
function A ′ = IncAnalyze(P,∆Cls ,Q,A), which is shown in Fig. 5. It takes as
input:

– A program P = (Cls,As) as a pair of a set of clauses (Cls) and a set of
assertions (As).

– A set of changes ∆Cls in the form of added or deleted clauses
– A set Q of initial queries that will be the starting point of the analyzer.
– A previous result of the algorithm A which is a well formed analysis graph.

And produces a new A ′ that correctly abstract the behavior of the program re-
acting incrementally to changes in the clauses.

Additional domain operation. As mentioned earlier, the algorithm is para-
metric on the abstract domain (Dα), apart from the operations introduced in the
paper we define an additional operation: abs call(λ, P, Pk) performs the abstract
unification of predicate descriptor P with the head of the clause Pk, including in
the new substitution abstract values for the variables in the body of clause Pk.
This operation includes the necessary variable renamings.

Events. The algorithm is centered around processing tasks triggered by events.
There are two kinds of events:

– newcall(〈A, λc〉) indicates that a new description for atom A has been encoun-
tered.

– arc(D) means that recomputation needs to be performed starting at program
point (literal) indicated by dependency D.

To add events to the queue we use the function add event(E).

16

Operation of the algorithm. The algorithm starts by adding to the queue
newcall events for each of the call patterns that need to be recomputed. The
process(newcall(〈P, λc〉)) procedure initiates the processing of the clauses in the
definition of predicate P . For each of them an arc event is added for the first
literal. The initial guess function returns a guess of the λs to 〈P, λc〉 . If possible,
it reuses the results in A , otherwise returns ⊥. Procedure reanalyze updated
propagates the information of new computed answers across the analysis graph by
creating arc events with the program points from which the analysis has to be

restarted. The process(arc(〈Pk, λc〉l,c λp−−→ 〈P, λc〉)) procedure performs the core

of the module analysis. It performs a single step of the left-to-right traversal of a
clause body. First of all the semantics of the assertions of predicate P are computed
by apply call. Then, if the literal Pk,i is a built-in, it is added to the abstract
description; otherwise, if it is an atom, an edge is added to A and the λs is looked
up (a process that includes creating a newcall event for 〈P, λc〉 if the answer is not in
the analysis graph). The obtained answer is combined with the description λp from
the program point immediately before Pk,i to obtain the description (return) for
the program point after Pk,i. This is either used to generate an arc event to process
the next literal (if there is one), or otherwise to update the answer of the rule in
insert answer info. This function combines the new answer with the semantics
of any applicable assertions (in apply succ), and with the previous answers, and
propagates the new answer if needed.

Procedure add clauses add to the queue the tasks to analyze the new clause
for each predicates. This information is used to update A and propagated to the
rest of the graph. The computation and propagation of the added rules is done
simply by adding arc events before starting the processing of the queue.

The delete clauses function selects which information can be kept in order
to obtain the most precise semantics of the module, by removing all information in
the L which is potentially inaccurate, i.e., the information related to the calls that
depend on the deleted rules (remove invalid info), which gathers all the callers
to the set of obsolete Calls, and the 〈P, λc〉 generated from literals that follow in
a clause body any Calls, because they were affected by the λs.

17

B Assertions

Assertions may not be exactly represented in the abstract domain used by the
analyzer. We recall some definitions (adapted from [20]) which are instrumental to
correctly approximate the properties of the assertions during the analysis.

Definition 2 (Set of Calls for which a Property Formula Trivially Suc-
ceeds (Trivial Success Set)). Given a conjunction L of property literals and the
definitions for each of these properties in P , we define the trivial success set of L
in P as:

TS(L,P) = {θ|V ar(L) s.t. ∃θ′ ∈ answers(P, {〈L, θ〉}), θ |= θ′}

where θ|V ar(L) above denotes the projection of θ onto the variables of L, and
|= denotes that θ′ is a more general constraint than θ (entailment). Intuitively,
TS(L,P) is the set of constraints θ for which the literal L succeeds without adding
new constraints to θ (i.e., without constraining it further). For example, given the
following program P :�

1 list([]).
2 list([_|T]) :- list(T).� �

and L = list(X), both θ1 = {X = [1, 2]} and θ2 = {X = [1, A]} are in the trivial
success set of L in P , since calling (X = [1, 2], list(X)) returns X = [1, 2] and
calling (X = [1, A], list(X)) returns X = [1, A]. However, θ3 = {X = [1|]} is not,
since a call to (X = [1|Y], list(X)) will further constrain the term [1|Y], returning
X = [1|Y], Y = []. We define abstract counterparts for Def. 2:

Definition 3 (Abstract Trivial Success Subset of a Property Formula).
Under the same conditions of Def. 2, given an abstract domain Dα, λ−TS(L,P) ∈ Dα

is an abstract trivial success subset of L in P iff γ(λ−TS(L,P)) ⊆ TS(L,P).

Definition 4 (Abstract Trivial Success Superset of a Property Formula).
Under the same conditions of Def. 3, an abstract constraint λ+TS(L,P) is an abstract

trivial success superset of L in P iff γ(λ+TS(L,P)) ⊇ TS(L,P).

I.e., λ−TS(L,P) and λ+TS(L,P) are, respectively, safe under- and over-approximations

of TS(L,P). These abstractions come useful when the properties expressed in the
assertions cannot be represented exactly in the abstract domain.

18

Algorithm IncAnalyze

input (global): (Cls,As),∆Cls ,Q
global: A

1: for all 〈P, λc〉 ∈ Q do
2: add event(newcall(〈P, λc〉))
3: if ∆Cls = (Dels,Adds) 6= (∅, ∅) then
4: delete clauses(Dels)
5: add clauses(Adds)

6: analysis loop()

7: procedure analysis loop()
8: while E :=next event() do
9: process(E)

10: procedure add clauses(Cls)
11: for all Pk :- Pk,1, . . . , Pk,nk ∈ Cls do
12: for all 〈P, λc〉 7→ λs ∈ A do
13: λp :=abs call(λc, P, Pk)
14: λc1 :=abs project(λp, vars(Pk,1))

15: add event(arc(〈P, λc〉k,1 λp−−→ 〈pred(Pk,1), λc1〉))

16: procedure delete clauses(Cls)
17: Calls := {〈P, λc〉|〈P, λc〉 ∈ A , (Pk :- Body) ∈ Cls}
18: Ns := ancestors(A , Calls)
19: del(A ,Ns)

20: function lookup answer(〈P, λc〉)
21: if 〈P, λc〉 7→ λs ∈ A then
22: return λs

23: else
24: add event(newcall(〈P, λa〉))
25: return ⊥

26: procedure process(newcall(〈P, λc〉))
27: for all Pk :- Pk,1, . . . , Pk,nk ∈ Cls do
28: λp :=abs call(λc, P, Pk)
29: λc1 :=abs project(λp, vars(Pk,1))

30: add event(arc(〈P, λc〉k,1 λp−−→ 〈pred(Pk,1), λc1〉))

31: λs :=initial guess(〈P, λc〉)
32: if λs 6= ⊥ then
33: reanalyze updated(〈P, λc〉)
34: upd(A , 〈P, λc〉 ← [λs)

35: procedure process(arc(〈P, λc0〉k,i λp−−→ 〈Q,λc1〉))
36: λa = apply call(Q,λc1)
37: if Pk,i is a built-in then
38: λs0 := fα(Pk,i, λ

a) . Apply transfer function
39: else λs0 :=lookup answer(〈Q,λa〉)
40: λr :=abs extend(λp, λs0)

41: upd(A , 〈P, λc0〉k,i λp−−→
λr
〈Q,λa〉)

42: if λr 6= ⊥ and i 6= nk then
43: λc2 :=abs project(λr, vars(Pk,i+1))

44: add event(arc(〈H,λc0〉k,i+1
λr−−→ 〈B, λc2〉))

45: else if λr 6= ⊥ and i = nk then
46: λs :=abs project(λr, vars(Pk))
47: insert answer info(〈P, λc0〉, λs)

48: procedure insert answer info(〈P, λc〉, λs)
49: λa := apply succ(P, λc, λs)
50: if 〈P, λc〉 7→ λs0 ∈ A then
51: λs1 :=abs generalize(λa, λs0)
52: else λs1 = ⊥
53: if λs0 6= λs1 then
54: upd(A , 〈P, λc〉 ← [λs1)
55: reanalyze updated(〈P, λc〉)
56: procedure reanalyze updated(〈P, λc〉)
57: for all E := 〈Q,λc0〉k,i λp−−→ 〈P, λc〉 ∈ A do

58: add event(arc(E))

Fig. 5. The generic context-sensitive, incremental fixpoint algorithm using (not changing)
assertion conditions.

19

global flag: speed-up

1: function apply call(P, λc)
2: if ∃σ, λt = λ+

TS(σ(Pre),P) s.t. calls(H,Pre) ∈ C, σ(H) = P then

3: if speed-up return λt else return λc u λt
4: else return λc

5: function apply succ(P, λc, λs0)
6: app = {λ | ∃ σ, success(H,Pre,Post) ∈ C, σ(H) = P,
7: λ = λ+

TS(σ(Post),P), λ
−
TS(σ(Pre),P) w λ

c}
8: if app 6= ∅ then
9: λt :=

d
app

10: if speed-up return λt else return λt u λs0
11: else return λs0

Fig. 6. Applying assertions.

20

	Incremental Analysis of Logic Programs with Assertions and Open Predicates

