
Universidad Politécnica
de Madrid

Escuela Técnica Superior de
Ingenieros Informáticos

Máster Universitario en Inteligencia Artificial

Trabajo Fin de Máster

An Integrated Approach to
Assertion-Based Random Testing in Logic

Languages

Autor(a): Ignacio Casso San Román
Tutor(a): Manuel Hermenegildo Salinas

Madrid, Julio 2021

Este Trabajo Fin de Máster se ha depositado en la ETSI Informáticos de la
Universidad Politécnica de Madrid para su defensa.

Trabajo Fin de Máster
Máster Universitario en Inteligencia Artificial

Título: An Integrated Approach to Assertion-Based Random Testing in Logic Lan-
guages

Julio 2021

Autor(a): Ignacio Casso San Román
Tutor(a): Manuel Hermenegildo Salinas

Departamento de Inteligencia Artificial
ETSI Informáticos
Universidad Politécnica de Madrid

Resumen

En este trabajo presentamos un método para testear programas en Prolog, integrado
en un modelo de desarrollo basado en aserciones. Nuestro punto de partida es el
lenguaje Ciao y su modelo de aserciones, que unifica la verificación y comprobación de
errores dinámica y estática, usando un lenguaje de aserciones común. En este mod-
elo, cuando alguna propiedad no se puede verificar estáticamente, se instrumenta el
código fuente para que la propiedad se compruebe dinámicamente en tiempo de eje-
cución, y en particular en la fase de tests unitarios, si se han especificado tests con
valores de entrada concretos. En este contexto, la idea de generar automáticamente
entradas aleatorias para los tests unitarios a partir de las precondiciones de las aser-
ciones surge de manera natural, dado que estas precondiciones son conjunciones de
literales, y sus predicados correspondientes se pueden usar en principio como gen-
eradores. En este trabajo desarrollamos LPtest, una herramienta que implementa
la idea anterior, generando automáticamente entradas relevantes para testear una
amplia variedad de propiedades de los predicados de un programa. El algoritmo
de generación está basado en ejecutar los predicados usando reglas de búsqueda
aleatorias. Se proponen también métodos para soportar propiedades específicas de
programación lógica, incluyendo combinaciones de tipos y compartición e instan-
ciación de variables, así como ideas para reducir los casos de prueba y para mejorar
la generación aprovechando la información inferida por el análisis estático.

Como caso de estudio de la herramienta, se aplica LPtest al testeo del analizador
estático basado en interpretación abstracta de Ciao. Se proponen dos métodos difer-
entes para abordar el problema usando testeo aleatorio basado en aserciones. En
el primero, se especifican mediante aserciones de Ciao algunas propiedades teóri-
cas básicas que deben cumplir los dominios abstractos y sus operaciones para ser
correctos. Después se aplica la herramienta sobre esas aserciones para validar el
código de algunos dominios abstractos en Ciao. El segundo método consiste en com-
probar, para un conjunto de programas de prueba, que las aserciones que infiere
estáticamente el analizador se satisfacen dinámicamente, usando para ello LPtest.
Esta idea se puede implementar y automatizar fácilmente aprovechando el sistema
de aserciones integrado de Ciao y sus componentes: el analizador estático, que ex-
presa sus resultados mediante un nuevo programa idéntico al original pero con aser-
ciones intercaladas; y LPtest, que genera y ejecuta casos de prueba que satisfacen
las propiedades que aparecen en las precondiciones de dichas aserciones. Los dos
métodos se implementan y se aplican para testear CiaoPP y sus dominios abstractos,
encontrando en el proceso errores no triviales y desconocidos anteriormente.

i

Abstract

We present an approach for assertion-based random testing of Prolog programs that
is tightly integrated within an overall assertion-based program development scheme.
Our starting point is the Ciao model, a framework that unifies unit testing and run-
time verification, as well as static verification and static debugging, using a common
assertion language. Properties which cannot be verified statically are checked dy-
namically. In this context, the idea of generating random test values from assertion
preconditions emerges naturally since these preconditions are conjunctions of liter-
als, and the corresponding predicates can in principle be used as generators. We
develop LPtest, a tool that generates valid inputs from the properties that appear in
the assertions shared with other parts of the model, and uses the run time-check in-
strumentation of the Ciao framework to perform a wide variety of checks. The gener-
ation process is based on running standard predicates under non-standard (random)
search rules. We propose methods for supporting (C)LP-specific properties, including
combinations of shape-based (regular) types and variable sharing and instantiation,
and we also provide some ideas for shrinking for these properties and for enhancing
generation by exploiting information inferred by the analyzer.

As a case study, we apply LPtest for testing Ciao’s abstract interpretation-based static
analyzer. We approach this problem, using assertion-based random testing, in two
different ways. In the first one, we encode into Ciao assertions some basic theoret-
ical properties that abstract domains must satisfy in order to be sound. Then we
apply the tool to those assertions to check and validate the code of some the abstract
domains in the Ciao system. The second method consists in checking, over a suite
of benchmarks, that the assertions inferred statically by the analyzer are satisfied
dynamically, testing them with LPtest. This can be implemented and automatized
with little effort by framing it within the Ciao integrated assertion framework and
combining its components: the static analyzer, which outputs its results as the orig-
inal program source with assertions interspersed; and the newly developed random
testing framework, which generates and executes random test cases satisfying the
properties present in assertion preconditions, relying on the run-time checking in-
strumentation and the unit-test framework. We apply both approaches to test some
of CiaoPP’s analysis domains, successfully finding non-trivial, previously undetected
bugs.

iii

Contents

1 Introduction 1
1.1 Motivation and Objectives . 1

1.1.1 Towards Automatic Generation: Assertion-Based Random Testing 1
1.1.2 Testing the Static Analyzer . 2

1.2 Contributions . 2
1.3 Outline . 4

2 Background 5
2.1 Ciao and The Ciao Model . 5
2.2 The Assertion Language. 5
2.3 Static Analysis. 6
2.4 Ciao’s Debugging Framework . 7

3 Assertion-Based Random Testing 9
3.1 Overview . 9

3.1.1 Examples . 11
3.1.1.1 (Conditional) Postconditions. 11
3.1.1.2 Computational Properties. 11
3.1.1.3 Rich Generation. 12

3.2 Test Case Generation . 12
3.2.1 Pure Prolog. 12
3.2.2 Mode, Sharing, and Arithmetic Constraints. 13
3.2.3 Generation for Other Properties. 14

3.3 Integration with Static Analysis . 14
3.3.1 A Finer-Grain Integration. 15

3.4 Shrinking . 16

4 Testing Static Analyzers 19
4.1 Testing Abstract Domain Properties . 20

4.1.1 Generation. 20
4.1.2 Analysis. 21
4.1.3 Bugs Found. 21

4.2 Testing Properties Inferred by the Analyzer 21
4.2.1 Overview of the Approach . 22
4.2.2 The Algorithm . 24

4.2.2.1 Basic Reasoning Behind the Approach 24
4.2.2.2 The Algorithm . 25
4.2.2.3 Other Details and Observations 26

v

CONTENTS

4.2.2.3.1 Analysis Crashes. 26
4.2.2.3.2 Benchmark Selection. 26
4.2.2.3.3 Entry Points. 26
4.2.2.3.4 Test Case Generation. 26
4.2.2.3.5 Error Diagnosis and Debugging. 26
4.2.2.3.6 Multivariance and Path-Sensitivity. 27

4.2.3 Applications and Examples . 27
4.2.3.1 Debugging Abstract Domains. 27
4.2.3.2 Debugging Trust Assertions and Custom Transfer Func-

tions. 28
4.2.3.3 Testing the Abstract Interpretation Engine. 28
4.2.3.4 Testing the Overall Consistency of the Framework. 29
4.2.3.5 Integration Testing of the Analyzer and Third Parties. . . 29

4.2.4 A More Detailed Case Study . 30
4.2.4.1 Setup. 30
4.2.4.2 Results. 31

5 Related Work 33

6 Conclusions 35

vi

Chapter 1

Introduction

1.1 Motivation and Objectives

Code validation is a vital task in any software development cycle. Traditionally, two
of the main approaches used to this end are verification and testing. The former uses
formal methods to prove automatically or interactively some specification of the code,
while the latter mainly consists in executing the code for concrete inputs or test cases
and checking that the program input-output relations (and behaviour, in general) are
the expected ones.

The Ciao logic programming language [26] introduced a novel development work-
flow [5, 28, 30, 50] that integrates the two approaches above. In this model, program
assertions are fully integrated in the language, and serve both as specifications for
static analysis and as run-time check generators, unifying run-time verification and
unit testing with static verification and static debugging.

Ciao assertions are linguistic constructs, which allow expressing properties of pro-
grams. They describe predicates in an abstract way, and can state declarative prop-
erties of calling and success states, such as variable types or variable sharing, and
global properties of the execution, such as determinacy, non-failure, or resource us-
age. These properties are themselves predicates, typically written in the source lan-
guage (user-defined or in libraries), and thus runnable.

The Ciao debugging framework uses these assertions as the specifications of the ex-
pected semantics and behaviour of the predicates in a program. To validate them,
first Ciao’s abstract interpretation-based preprocessor, CiaoPP, tries to verify (parts
of) them statically. When this is not possible, runtime-checks instrumentation can
be added to the program in order to ensure that execution paths that violate the as-
sertions are captured during execution. Since run-time checks can become expensive
if used indiscriminately, they are most often used before deployment as part of the
unit-testing framework. Test inputs can be provided by the user, and the test driver
executes them and reports the errors captured at run-time.

1.1.1 Towards Automatic Generation: Assertion-Based Random Testing

The unit-testing framework in principle requires the user to manually write individual
test cases for each assertion to be tested. Hand-written test cases such as those are

1

1.2. Contributions

quite useful in practice, but they are also tedious to write and even when they are
present they may not cover some interesting cases.

An aspect that is specific to (Constraint-)Logic Programming (CLP) and is quite rele-
vant in this context is that predicates in general (and assertion properties in partic-
ular) can be used as both checkers and generators. This leads naturally to the idea
of generating systematically and automatically test cases by running in generation
mode the properties in the preconditions of assertions. While this idea of using prop-
erties as test case generators has always been present in the descriptions of the Ciao
model [28, 50], it has not really been exploited or researched significantly to date.
Our purpose in this work is to fill this gap.

We report on the development of LPtest an implementation of random testing [23] with
a more natural connection with Prolog semantics, as well as with the Ciao framework.
The goal of LPtest is to automatically generate and run relevant test cases which
exercise the run-time checks of the assertions in a program, thus testing if those as-
sertions are correct. We refer to the combination of such test generation mechanism
with the run-time checking of the intervening assertions as assertion-based (random)
testing.

1.1.2 Testing the Static Analyzer

Static analysis is nowadays an essential component of many software development
toolsets. Despite some notorious successes in the validation of compilers, compara-
tively little work exists on the systematic validation of static analyzers, whose correct-
ness and reliability is critical if they are to be inserted in production environments.
Contributing factors may be the intrinsic difficulty of formally verifying code that is
quite complex and of finding suitable oracles for testing it.

Another goal of this work is to apply LPtest or assertion-based random testing to
tackle this problem, in the context of Ciao and CiaoPP, its abstract interpretation-
based static analyzer. We do so in two different ways. The first tests only the code of
abstract domains and uses LPtest in a straightforward manner: we encode into Ciao
assertions some theoretical properties that abstract domains must satisfy in order to
be sound, and then we apply the tool to validate those assertions.

The second method can be used to test the analyzer as a whole in a simple and
automatic way, exploiting Ciao’s unified assertion framework. Broadly, it consists
in checking, over a suite of benchmarks, that the properties inferred statically are
satisfied dynamically. For each benchmark, the code is analyzed, which produces
as a result a new file with the original code and the inferred assertions interspersed.
Then, those assertions are tested using LPtest. If any assertion violation is reported,
it means that the assertion was incorrectly inferred by the analyzer and thus that an
error in the analyzer has been found.

1.2 Contributions

Our contributions can be summarized as follows:

• We have developed an approach and a tool for assertion-based random test gen-
eration for Prolog and related languages. It has a number of characteristics in

2

Introduction

common with property-based testing from functional languages, as exemplified
by QuickCheck [14], but provides the assertions and properties required in order
to cover (C)LP features such as logical variables and non-ground data structures
or non-determinism, with related properties such as modes, variables sharing,
non-failure, determinacy and number of solutions, etc. In this, LPtest is most
similar to PrologTest [1], but we argue that our framework is more general and
we support richer properties.

• Our approach offers a number of advantages that stem directly from framing it
within the Ciao model. This includes the integration with compile-time checking
(static analysis) and the combination with the run-time checking framework, etc.
using a single assertion language. This for example greatly simplifies error re-
porting and diagnosis, which can all be inherited from these parts of the frame-
work. It can also be combined with other test-case generation schemes. To the
extent of our knowledge, this has only been attempted partially by PropEr [48].
Also, since Erlang is in many ways closer to a functional language, PropEr does
not support Prolog-relevant properties and it is not integrated with static anal-
ysis. In comparison to PrologTest, we provide combination with static analysis,
through an integrated assertion language, whereas the assertions of PrologTest
are specific to the tool, and we also support a larger set of properties.

• In our approach the automatic generation of inputs is performed by running
in generation mode the properties (predicates) in those preconditions, taking
advantage of the specialized SLD search rules of the language (e.g., breadth
first, iterative deepening, and, in particular, random search) or implementations
specialized for such generation. In particular, we perform automatic genera-
tion of instances of Prolog regular types, instantiation modes, sharing relations
among variables and grounding, arithmetic constraints, etc. To the extent of
our knowledge all previous tools only supported generation for types, while we
also consider the latter.

• We have enhanced assertion and property-based test generation by combining
it with static analysis and abstract domains. To the extent of our knowledge
previous work had at most discarded properties that could be proved statically
(which in LPtest comes free from the overall setting, as mentioned before), but
not used static analysis information to guide or improve the testing process.

• We have implemented automatic shrinking for our tool, and in particular we
have developed an automatic shrinking algorithm for Prolog regular types.

• We have applied assertion-based random testing as a case study to test sound-
ness properties of CiaoPP’s abstract domains, encoded manually into Ciao asser-
tions.

• We have proposed a simple, automatic method for testing abstract interpretation-
based static analyzers based on checking that the properties inferred statically
are satisfied dynamically. Although the idea of checking at run time the prop-
erties or assertions inferred by the analysis for different program points is not
new, we argue that is made more applicable, general, and scalable by the use of
a unified assertion-based framework for static analysis and dynamic debugging,
as the one of Ciao. While other approaches require the development of tailored
instrumentation or monitoring, and require significant effort in their design and

3

1.3. Outline

implementation, by framing it in the Ciao framework we can implement with the
already existing components in the system in a very simple way (so much so
that our initial prototype was, in fact, barely 50 lines of code long).

• The work on assertion-based random testing has been published in the Post-
Proceedings of the 29th International Symposium on Logic-based Program Syn-
thesis and Transformation (LOPSTR’19), volume 12042 of LNCS [11]; and the
work on testing the assertions inferred by the analyzer, in the Post-Proceedings
of the 30th International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’20), volume 12561 of LNCS [12].

1.3 Outline

The rest of this document is organized as follows:

Chapter 2 gives background knowledge needed to describe the main ideas and con-
tributions of this work, that is, a more detailed description of Ciao’s unified assertion
framework and CiaoPP’s static and dynamic debugging framework prior to this work.

Chapter 3 is dedicated to assertion-based random testing and our tool LPtest. First
we review in Section 3.1 our approach to assertion-based testing in the context of
Prolog and Ciao. In Sec. 3.2 we introduce our test input generation schema. In
Sec. 3.3, we show how assertion-based testing can be combined with and enhanced
by static analysis. Sec. 3.4 is dedicated to shrinking of test cases in LPtest.

In Chapter 4 we present our two approaches to testing static analyzers using assertion-
based random testing, in Section 4.1 and Section 4.2 respectively.

Finally, Chapter 5 discusses related work and Chapter 6 summarizes our conclusions
and plans for future work.

4

Chapter 2

Background

2.1 Ciao and The Ciao Model

In this chapter we review in more detail those aspects of the Ciao model that are
relevant to our approach, including the assertion language and the blended static and
dynamic assertion checking framework built around it. A more detailed presentation
can be found in [6, 29, 51, 30, 43, 27] and their references.

2.2 The Assertion Language.

Ciao assertions are linguistic constructs, which allow expressing properties of pro-
grams. There are two types of assertions in Ciao that are relevant herein: predicate
assertions and program-point assertions. The first ones are declarations that pro-
vide partial specifications of a predicate. They have the following syntax: :- [Status]
pred Head : [Calls] => [Success] + [Comp], indicating that if a call to the goal Head
satisfies precondition Calls, it must satisfy post-condition Success on success and
global computational properties Comp. Program-point assertions are reserved literals
that appear in clause bodies and describe the constraint store at the corresponding
program point. Their syntax is [Status](State). Examples of both types of assertions
are provided in the code fragment below:�

1 :- check pred append(X,Y,Z) : (list(X),list(Y)) => list(Z) + is_det.
2 :- check pred append(X,Y,Z) : (var(X),var(Y),list(Z)) => (list(X),list(Y)) + non_det.
3

4 append([],X,X).
5 append([X|Xs],Ys,[X|Zs]) :-
6 append(Xs,Ys,Zs),
7 check((list(Xs),list(Ys),list(Zs))).� �

Assertion fields Calls, Success, Comp and State, are conjunctions of properties. Such
properties are predicates, typically written in the source language (user-defined or
in libraries) and thus runnable. They must meet certain conditions (e.g., termina-
tion) [30] and are marked as such via prop/1 declarations. Since they are runnable,
they can be used as run-time checks, and, for our purposes, they are also typically
native to CiaoPP, i.e., abstracted and inferred by some domain in CiaoPP. A wide range
of properties is supported natively: from types, modes and variable sharing, to deter-

5

2.3. Static Analysis.

Code
(user, builtins,
libraries)

Assertions
(user, builtins,
libraries)

:- check
:- test
:- trust
Unit-tests

Static
Analysis

(Fixpoint)

Assertion
Normal-

izer &
Library

Interface

Analysis Info

Static
Com-

parator

RT-Check

Unit-Test

:- texec

:- check

:- false
:-
checked

Possible
run-time
error

Compile-
time error

Verification
warning

Verified

Test Case
Generator

Preprocessor (CiaoPP)
Program

Figure 2.1: The Ciao assertion framework (CiaoPP’s verification/testing architecture).

minism, (non)failure and resource consumption. We refer the reader to [49, 30, 27]
and their references for a full description of the Ciao assertion language.

Assertions are used everywhere in Ciao, from documentation and foreign interface
definitions to static analysis and dynamic debugging. Depending on their origin and
intended use, they have a different status, the Status field in the syntax described
above. Assertion statuses relevant herein include true, which is used for assertions
that are output from the analysis (and thus must be safe approximations), or the
default status check, which indicates that the validity of the assertion is unknown
and it must be checked, statically or dynamically. We will return to this crucial issue
below.

Fig. 3.1 depicts the overall architecture of the Ciao unified assertion framework.
Hexagons represent tools, and arrows indicate the communication paths among
them. The input to the process is the user program, optionally including a set of
assertions; this set always includes any assertion present for predicates exported by
any libraries used (left part of Fig. 3.1).

2.3 Static Analysis.

One use of Ciao assertions is as an interface to the static analyzer. As mentioned
above, assertions can be used to indicate what we want the analyzer to check (the
default check status), or to guide the analysis by feeding it information that it might be
unable to infer by itself (trust status). The latter includes as a special case providing
information on the entry points to the module being analyzed (i.e., on the calls to
the predicates exported by the module –entry status). Assertions are also one of
the possible output formats in which the analysis results are produced by the static
analyzer (assertions with true status). If this type of output is chosen, a new source
file for the analyzed program will be created, exactly as the original but with true
program-point assertions interspersed between every two consecutive literals of each
clause, and with one or more true predicate assertions for each predicate.

The exact technical and theoretical details of how this is achieved are out of the
scope of this work. For our purposes it is sufficient to say that the CiaoPP ana-

6

Background

lyzer is abstract interpretation-based, and its design consists of a common abstract-
interpretation framework (the fixpoint algorithm(s)) parameterized by different, “plug-
gable” abstract domains. Depending on the domain or combination of domains se-
lected for the analysis, different properties will be inferred and will appear in the
emitted true assertions or be used to verify or simplify check assertions.

2.4 Ciao’s Debugging Framework

Consider the following Ciao code and assertion (with the standard definition of quick-
sort):�

1 :- pred qs(Xs,Ys) : (list(Xs), var(Ys)) => (list(Ys), sorted(Ys)) + not_fails.
2

3 :- prop list/1.
4 list([]).
5 list([_|T]) :- list(T).
6

7 :- prop sorted/1.
8 ...� �

This assertion has a calls field (the conjunction after ‘:’), a success field (the conjunc-
tion after ‘=>’), and a computational properties field (after ‘+’). It states that a valid
calling mode for qs/2 is to invoke it with its first argument instantiated to a list, and
that it will then return a list in Ys, that this list will be sorted, and that the predicate
will not fail.

The first step to validate that assertion in Ciao’s debugging framework would be to use
static analysis to either detect an assertion violation, or to prove (parts of) it, verifying
(simplifying) the assertion, as is illustrated in Fig. 3.1 (the Static Comparator).

For example, compile-time analysis with a types/shapes domain can easily detect
that, if the predicate in the example above is called as stated in the assertion, the
list(Ys) check on success will always succeed, and that the predicate itself will also
succeed. If this predicate appears within a larger program, analysis can also typically
infer whether or not qs/2 is called with a list and a free variable. However, perhaps,
e.g., sorted(Ys) cannot be checked statically (this is in fact often possible, but let us
assume that, e.g., a suitable abstract domain is not at hand). The assertion would
then be simplified to:�
:- pred qs(Xs,Ys) => sorted(Ys).� �
Cases like this, where (parts of) assertions can not be proven nor disproven statically,
are quite common, due to the inherent imprecision of the analysis, specially with
user-defined properties that are not native to abstract domains. In those occasions,
the remaining unproved (parts of) assertions are written into the output program with
check status and then this output program can optionally be instrumented with run-
time checks. These dynamic checks will encode the meaning of the check assertions,
ensuring that an error is reported at run-time if any of these remaining assertions
is violated (the dynamic part of the model). Note that the fact that properties are
written in the source language and runnable is essential in this process, and allows

7

2.4. Ciao’s Debugging Framework

checking new user-defined and native properties without having to extend the run-
time checking framework.

For our example, sorted(Ys) will be called at run time within the assertion checking-
harness, right after calls to qs/2, and if the property fails and error will occur.

The checking of sorted/1 in the example above will occur in principle during execution
of the program, i.e., in deployment. However, in many cases it is not desirable to wait
until then to detect errors. This is the case for example if errors can be catastrophic or
perhaps if there is interest in testing, perhaps for debugging purposes, more general
properties that have not been formally proved and whose main statements are not
directly part of the program (and thus, will never be executed), such as, e.g.:�

1 :- pred revrev(X) : list(X) + not_fails.
2 revrev(X) :- reverse(X,Y),reverse(Y,X).� �

This implies performing a testing process prior to deployment. The Ciao model in-
cludes a mechanism, integrated with the assertion language, that allows defining test
assertions, which will run (parts of) the program for a given input and check the cor-
responding output, as well as driving the run-time checks independently of concrete
application data [43]. For example, if the following (unit) tests are added to qs/2:�

1 :- test qs(Xs,Ys) : (Xs = []) => (Ys = []).
2 :- test qs(Xs,Ys) : (Xs = [3,2,4,1]) => (Ys = [1,2,3,4]).� �
qs/2 will be run with, e.g., [3,2,4,1] as input in Xs, and the output generated in Ys
will be checked to be instantiated to [1,2,3,4]. This is done by extracting the test
drivers [43]:�

1 :- texec qs([],_).
2 :- texec qs([3,2,4,1],_).� �

and the rest of the work (checking the assertion fields) is done by the standard asser-
tion run-time checking machinery. In our case, this includes checking at run time
the simplified assertion “:- pred qs(Xs,Ys) => sorted(Ys).”, so that the output in Ys
will be checked by calling the implementation of sorted/1. This overall process is
depicted in Fig. 3.1.

8

Chapter 3

Assertion-Based Random Testing

3.1 Overview

As mentioned before, the goal of LPtest is to integrate random testing of assertions
within Ciao’s assertion-based verification and debugging framework (Fig. 3.1). Given
an assertion for a predicate, we want to generate goals for that predicate satisfying the
assertion precondition (i.e., valid call patterns for the predicate) and execute them to
check that the assertion holds for those cases or find errors. As also mentioned in the
introduction, the Ciao framework already provides most of the components needed
for this task: the run-time checking framework allows us to check at runtime that
the assertions for a predicate are not violated, and the unit-test framework allows
us to specify and run concrete goals to check those assertions. We only need to be
able to generate terms satisfying the assertion preconditions and feed them into the
other parts of the framework (the new yellow box in Fig. 3.1). This generation of test
cases is discussed in Sec. 3.2, and the following example shows how everything is
integrated step by step.

Consider again a similar assertion for the qs/2 predicate, and assume that the pro-
gram has a bug and fails for lists with repeated elements:�

1 :- module(qs,[qs/2],[assertions , nativeprops]).
2 ...
3 :- pred qs(Xs,Ys) : (list(Xs,int), var(Ys))
4 => (list(Ys,int), sorted(Ys)) + not_fails.
5 ...
6 partition([],_,[],[]).
7 partition([X|Xs],Pv,[X|L],R) :- X < Pv, !, partition(Xs,Pv,L,R). % should be =<
8 partition([X|Xs],Pv,L,[X|R]) :- X > Pv, partition(Xs,Pv,L,R).� �

Following Fig. 3.1, the assertions of the qs module are verified statically [30]. As a
result, parts of each assertion may be proved true or false (in which case no testing is
needed for them), and, if any other parts are left after this process, run-time checking
and/or testing is performed for them. CiaoPP generates a new source file which in-
cludes the original assertions marked with status checked, false, or, for the ones that
remain for run-time checking, check. LPtest starts by reporting a simple adaptation
of CiaoPP’s output. E.g., for our example, LPtest will output:�

1 Testing assertion:

9

3.1. Overview

Code
(user, builtins,
libraries)

Assertions
(user, builtins,
libraries)

:- check
:- test
:- trust
Unit-tests

Static
Analysis

(Fixpoint)

Assertion
Normal-

izer &
Library

Interface

Analysis Info

Static
Com-

parator

RT-Check

Unit-Test

:- texec

:- check

:- false
:-
checked

Possible
run-time
error

Compile-
time error

Verification
warning

Verified

Test Case
Generator

Preprocessor (CiaoPP)
Program

Figure 3.1: The Ciao assertion framework (CiaoPP’s verification/testing architecture).

2 :- pred qs(Xs,Ys) : (list(Xs,int), var(Ys))
3 => (list(Ys,int), sorted(Ys)) + not_fails.
4

5 Assertion was partially verified statically:
6 :- checked pred qs(Xs,Ys) (list(Xs,int), var(Ys)) => list(Ys,int).
7 Left to check::
8 :- check pred qs(Xs,Ys) => sorted(Ys) + not_fails.� �
LPtest will then try to test dynamically the remaining assertion. For that, it will first
collect the Ciao properties that the test case must fulfill (i.e., those in the precondition
of the assertion, which is taken from the original assertion, which is also output by
CiaoPP), and generate a number of test case drivers (texec’s) satisfying those proper-
ties. Those test cases will be pipelined to the unit-test framework, which, relying on
the standard run-time checking instrumentation, will manage their execution, cap-
ture any error reported during run-time checking, and return them to LPtest, which
will output:�

1 Assertion
2 :- check pred qs(Xs,Ys) => sorted(Ys) + not_fails.
3 proven false for test case:
4 :- texec qs([5,9,-3,8,9,-6,2],_).
5 because:
6 call to qs(Xs,Ys) fails for
7 Xs = [5, 9,-3,8,9,-6,2]� �

Finally, LPtest will try to shrink the test cases, enumerating test cases that are pro-
gressively smaller and repeating the steps above in a loop to find the smallest test
case which violates the assertion. LPtest will output:�

1 Test case shrinked to:
2 :- texec qs([0,0],_).� �

The testing algorithm for a module can thus be summarized as follows:

10

Assertion-Based Random Testing

'

&

$

%

1. (CiaoPP) Use static analysis to check the assertions. Remove proved assertions,
simplify partially proved assertions.

2. (LPtest) For each assertion, generate N test cases from the properties in the
precondition, following the guidelines in Sec. 3.2. For each test case, go to 3.
Then go to 4.

3. (RTcheck) Use the unit-test framework to execute the test case and capture any
run-time checking error (i.e., assertion violation).

4. (LPtest) Collect all failed test cases from RTcheck. For each of them, go to 5 to
shrink them, and then report them (using RTcheck).

5. (LPtest) Generate a simpler test case not generated yet.
– If not possible, finalize and return current test case as shrinked test case.

If possible, go to 3 to run the test.
* If the new test case fails, go to 5 with the new test case.
* If it succeeds, repeat this step.

3.1.1 Examples

The use of the Ciao static verification and run-time checking framework in this
(pseudo-)algorithm, together with the rich set of native properties in Ciao, allows
us to specify and check a wide range of properties for our programs. We provide a
few examples of the expressive power of the approach:

3.1.1.1 (Conditional) Postconditions.

We can write postconditions using the success (=>) field of the assertions. Those
postconditions can range from user-defined predicates to properties native to CiaoPP,
for which there are built-in checkers in the run-time checking framework. These
properties include types, which can be partially instantiated, i.e., contain variables,
and additional features particular to logic programming such as modes and sharing
between variables. As an example, one can test with LPtest the following assertions,
where covered(X,Y) means that all variables occurring in X also occur in Y:�

1 :- pred rev(Xs,Ys) : list(Xs) => list(Ys).
2 :- pred sort(Xs,Ys) : list(Xs,int) => (list(Ys,int), sorted(Ys)).
3 :- pred numbervars(Term,N,M) => ground(Term).
4 :- pred varset(Term,Xs) => (list(Xs,var), covered(Term,Xs)).� �

For this kind of properties, LPtest tries to ensure that at least some of the test cases
do not succeed trivially (by the predicate just failing), and warns otherwise.

3.1.1.2 Computational Properties.

LPtest can also be used to check properties regarding the computation of a predicate.
These properties are typically native and talk about features that range from deter-
minism and multiplicity of solutions to resource usage (cost). They can be checked
with LPtest, as long as the run-time checking framework supports it (e.g., some prop-
erties, like termination, are not decidable). Examples of this would be:�

11

3.2. Test Case Generation

1 :- pred rev(X,Y) : list(X) + (not_fails , is_det, no_choicepoints).
2 :- pred append(X,Y,Z) : list(X) => cost(steps,ub,length(X)).� �

3.1.1.3 Rich Generation.

The properties supported for generation include not only types, but also modes and
sharing between variables, and arithmetic constraints, as well as a restricted set of
user-defined properties. As an example, LPtest can test the following assertion:�

1 :- prop sorted_int_list(X).
2

3 sorted_int_list([]).
4 sorted_int_list([N]) :- int(N).
5 sorted_int_list([N,M|Ms]) :- N =< M, sorted_int_list([M|Ms]).
6

7 :- pred insert_ord(X,Xs,XsWithX)
8 : (int(X), sorted_int_list(X))
9 => sorted_int_list(XsWithX).� �

3.2 Test Case Generation

The previous section illustrated specially the parts that LPtest inherits from the Ciao
framework, but a crucial step was skipped: the generation of test cases from the calls
field of the assertions, i.e., the generation of Prolog terms satisfying a conjunction
of Ciao properties. This was obviously one of the main challenges we faced when
designing and implementing LPtest. In order for the tool to be integrated naturally
within the Ciao verification and debugging framework, this generation had to be as
automatic as possible. However, full automation is not always possible in the pres-
ence of arbitrary properties potentially using the whole Prolog language (e.g., cuts,
dynamic predicates, etc.). The solution we arrived at is to support fully automatic
and efficient generation for reasonable subsets of the Prolog language, and provide
means for the user to guide the generation in more complex scenarios.

3.2.1 Pure Prolog.

The simplest and essential subset of Prolog is pure Prolog. In pure Prolog every pred-
icate, and, in particular, every Ciao property, is itself a generator: if it succeeds with
some terms as arguments, those terms will be (possibly instances of) answers to the
predicate when called with free variables as arguments. The problem is that the clas-
sic depth-first search strategy used in Prolog resolution, with which those answers
will be computed, is not well suited for test-case generation. One of Ciao’s features
comes here to the rescue. Ciao has a concept of packages, syntactic and/or seman-
tic extensions to the language that can be loaded module-locally. This mechanism
is used to implement language extensions such as functional syntax, constraints,
higher order, etc., and, in particular alternative search rules. These include for ex-
ample (several versions of) breadth first, iterative deepening, Andorra-style execution,
etc. These rules can be activated on a per-module basis. For example, the predicates
in a module that starts with the following header:�

1 :- module(myprops, _, [bf]).� �
12

Assertion-Based Random Testing

(which loads the bf package) will run in breadth-first mode. While breadth-first is
useful mostly for teaching, other alternative search rules are quite useful in practice.
Motivated by the LPtest context, i.e., with the idea of running properties in generation
mode, we have developed also a randomized alternative search strategy package, rnd,
which can be described by the following simplified meta-interpreter:�

1 solve_goal(G) :- random_clause(G,Body), solve_body(Body).
2

3 random_clause(Head,Body) :-
4 findall(cl(Head,B),meta_clause(Head,B),ClauseList),
5 once(shuffle(ClauseList ,ShuffleList)),
6 member(cl(Head,Body),ShuffleList). % Body=[] for facts
7

8 solve_body([]).
9 solve_body([G|Gs]) :- solve_goal(G), solve_body(Gs).� �

The actual algorithm used for generation is of course more involved. Among other
details, it only does backtracking on failure (on success it starts all over again to pro-
duce the next answer, without repeating traces), and it has a growth control mecha-
nism to avoid getting stuck in traces that lead to non-terminating generations.

Using this search strategy, a set of terms satisfying a conjunction of pure Prolog
properties can be generated just by running all those properties sequentially with
unbounded variables. This is implemented using different versions of each property
(generation, run-time check) which are generated automatically from the declarative
definition of the property using instrumentation. In particular, this simplest subset
of the language allows us to deal directly with regular types (e.g., list/1).

3.2.2 Mode, Sharing, and Arithmetic Constraints.

We extend the subset of the language for which generation is supported with arith-
metic (e.g., int/1, flt/1, </2), mode-related extralogical predicates and properties
(e.g., free/1, gnd/1), and sharing-related native properties (e.g., mshare/1, which de-
scribes the sharing –aliasing– relations of a set of variables using sharing sets [32],
and indep/2, that states that two variable do not share). When a goal or a property
of this kind appears during generation, the variables occurring in it are constrained
using a constraints domain. The domain ensures that those constraints are satisfi-
able during all steps of generation, failing and backtracking otherwise. There is a last
step in generation in which all free variables are randomly further instantiated in a
way that those constraints are satisfied.

This can be seen conceptually as choosing first a trace at random for each property
and collecting constraints in the trace, and then randomly sampling (enumerating)
the constrains. However, since the constraints introduced by unification are terms,
it is equivalent to solving a predicate with the random search strategy and treating
each builtin or native property as a constraint. In practice, we support more builtins
for generation in properties (e.g., ==/2 just unifies two variables, we have shape con-
straints that handle =../2, and support negation to some extent), but the approach
has only been tested significantly for the subset of Prolog presented so far.

In the last phase of constraints (random sampling), unconstrained free variables can
be further instantiated with some probability, using random shape and sharing con-
straints, chosen among native properties and properties defined by the users on mod-

13

3.3. Integration with Static Analysis

ules that are loaded at the time. This way, random terms are still generated for an
assertion without precondition, or the generated term for list(X) is not always a list
of free variables. This is also the technique used to further instantiate a free variable
constrained as ground but for which no shape information is available.

3.2.3 Generation for Other Properties.

For the remaining properties which use Prolog features not covered so far (e.g., dy-
namic predicates), there is a last step in the generation algorithm in which they are
simply checked for the terms generated so far. User-defined generators are encour-
aged for assertions with preconditions that are complex enough to reach this step.
There is a limit to how many times generation can reach this step and fail, to avoid
getting stuck in an inefficient or non-terminating generate-and-check loop. To rec-
ognize these properties without inspecting the code (left as future work), users are
trusted to mark the properties suitable for generation, and only the native properties
discussed and the regular types are considered suitable by default.

3.3 Integration with Static Analysis

The use of a unified assertion framework for testing and analysis allows us to enhance
LPtest random testing by combining it with static analysis.

First of all, as illustrated in Sec. 2.1 and Fig. 3.1, CiaoPP first performs a series
of static analyses through which some of the assertions may be verified statically,
possibly partially. Thus, only some parts of some assertions may need to be checked
in the testing phase [30].

Beyond this, and perhaps more interestingly in our context, statically inferred infor-
mation can also help while testing the remaining assertions. In particular, it is used
to generate more relevant test cases in the generation phase. Consider for example
the following assertion:�
:- pred qs(Xs,Ys) => sorted(Ys).� �
Without the usual precondition, LPtest would have to generate arbitrary terms to
test the assertion, most of which would not be relevant test cases since the predicate
would fail for them, and therefore the assertion would be satisfied trivially. However,
static analysis typically infers the output type for this predicate:�
:- pred qs(Xs,_) => list(Xs,int).� �
I.e., analysis infers that on success Xs must be a list, and so on call it must be com-
patible with a list if it is to succeed (inputs that generate failure are also interesting
of course, but not to check properties that should hold on success). Therefore the
assertion can also be checked as follows:�
:- pred qs(Xs,_) : compat(Xs,list(int)) => sorted_int_list(Xs).� �

14

Assertion-Based Random Testing

where compat(Xs,list(int))means that Xs is either a list of integers or can be further
instantiated to one. Now we would only generate relevant inputs (generation for
compat/2 is implemented by randomly uninstantiating a term), and LPtest is able to
prove the assertion false. The same can be done for modes and sharing to some
extent: variables that are inferred to be free on success must also be free on call,
and variabless inferred to be independent must be independent on call too. Also,
when a predicate is not exported, the calls assertions inferred for it can be used
for generation. In general, the idea here is to perform some backwards analysis.
However, this can also be done without explicit backwards analysis by treating testing
and (forward) static analysis independently and one after the other, which makes the
integration conceptually simple and easy to implement.

3.3.1 A Finer-Grain Integration.

We now propose a finer-grained integration of assertion-based testing and analysis,
which still treats analysis as a black box, although not as an independent step. So
far our approach has been to try to check an assertion with static analysis, and if
this fails we perform random testing. However, the analysis often fails to prove the
assertion because its precondition (i.e., the entry abstract substitution to the analy-
sis) is too general, but it can prove it for refinements of that entry, i.e., refinements of
the precondition. In that case, all test cases satisfying that refined precondition are
guaranteed to succeed, and therefore useless in practice. We propose to work with
different refined versions of an assertion, by adding further, exhaustive constraints
in a native domain to the precondition, and performing testing only on the versions
which the analysis cannot verify statically, thus pruning the test case input space.
For example, for an assertion of a predicate of arity one, without mode properties,
a set of assertions equivalent to the original one would result by generating three
different assertions with the same success but preconditions ground(X), var(X), and
(nonground(X), nonvar(X)). The idea is to generalize this to arbitrary, maybe infinite
abstract domains, for which a given abstract value is not so easily partitioned as in
the example above. Alternatively, the test exploration can be limited to subsets of
the domain, since in any case the testing process cannot achieve completeness in
general. The core of an algorithm for this domain partition would be the following:
to test an assertion for a given entry A ∈ Dα, the assertion is proved by the analysis
or tested recursively for a set of abstract values S ⊆ {B|B ∈ Dα, B v A} lower than
that entry, and random test cases are generated in the “space” between the entry
and those lower values γ(A) \

⋃
γ(B), where γ is the concretization function in the

domain. For this it is only necessary to provide a suitable sampling function in the
domain, and a rich generation algorithm for that domain. But note that, e.g., for the
sharing-freeness domain, we already have the latter: we already have generation for
mode and sharing constraints, and a transformation scheme between abstract values
and mode/sharing properties. Note also that all this can still be done while treating
the static analysis as a black box, and that if the enumeration of abstract values
is fine-grained enough, this algorithm also ensures coverage of the test input space
during generation.

15

3.4. Shrinking

3.4 Shrinking

One flaw of random testing is that often the failed test cases reported are unnecessary
complex, and thus not very useful for debugging. Many property-based tools intro-
duce shrinking to solve this problem: after one counter-example is found, they try to
reduce it to a simpler counter-example that still fails the test in the same way. LPtest
supports shrinking too, both user-guided and automatic. We present the latter.

The shrinking algorithm mirrors that of generation, and in fact reuses most of the
generation framework. It can be seen as a new generation with further constraints:
bounds on the shape and size of the generated goal. The traces followed to generate
the new term from a property must be “subtraces” of the ones followed to generate
the original one. The random sampling of the constraints for the new terms must be
“simpler” than for the original ones. The final step in which the remaining properties
are checked is kept.

We present the algorithm for the first step. Generation for the shrinked value fol-
lows the path that leads to the to-be-shrinked value, but at any moment it can non-
deterministically stop following that trace and generate a new subterm using size
parameter 0. Applying this method to shrink lists of Peano numbers is equivalent to
the following predicate, where the first argument is the term to be shrinked and the
second a free variable to be the shrinked value on success:�

1 shrink_peano_list([X|Xs],[Y|Ys]) :-
2 shrink_peano_number(X,Y),
3 shrink_peano_list(Xs,Ys).
4 shrink_peano_list(_,Ys) :-
5 gen_peano_list(0,Ys). % X=[]
6

7 shrink_peano_number(s(X),s(Y)) :-
8 shrink_peano_number(X,Y).
9 shrink_peano_number(_,Y) :-

10 gen_peano_number(0,Y). % Y=0.� �
This method can shrink the list [s(0),0,s(s(s(0)))] to [s(0),0] or [s(0),0,s(s(0))],
but never to [s(0),s(s(s(0)))]. To solve that, we allow the trace of the to-be-shrinked
term to advance non-deterministically at any moment to an equivalent point, so that
the trace of the generated term does not have to follow it completely in parallel. It
would be as if the following clauses were added to the the previous predicate (the one
which sketches the actual workings of the method during meta-interpretation):�

1 shrink_peano_list([_|Xs],Ys) :-
2 shrink_peano_list(Xs,Ys).
3

4 shrink_peano_number(s(X),Y) :-
5 shrink_peano_number(X,Y).� �

With this method, [s(0),s(s(s(0)))] would now be a valid shrinked value.

This is implemented building shrinking versions of the properties, similarly to the
examples presented, and running them in generation mode. However, since we want
shrinking to be an enumeration of simpler values, and not random, the search strat-
egy used is the usual depth-first strategy and not the randomized one presented in
Sec. 3.2. The usual sampling of constraints is used too, instead of the random one.

16

Assertion-Based Random Testing

The number of potential shrinked values grows exponentially with the size of the
traces. To mitigate this problem, LPtest commits to a shrinked value once it checks
that it violates the assertion too, and continues to shrink that value, but never starts
from another one on backtracking. Also, the enumeration of shrinked values returns
first the values closer to the original term, i.e., if X is returned before Y, then shrinking
Y could never produce X. Therefore we never repeat a shrinked value 1 in our greedy
search for the simplest counterexample.

1Actually, we do not repeat subtraces, but two different subtraces can represent the same value
(e.g., there are two ways to obtain s(0) from s(s(0))).

17

Chapter 4

Testing Static Analyzers

Static analysis tools are nowadays a crucial component of the development environ-
ments for many programming languages. They are widely used in different steps of
the software development cycle, such as code optimization and verification, and they
are the subject of significant research interest and practical application. Unfortu-
nately, modern analyzers are often very large and complex software artifacts, and
this makes them prone to bugs. This is a limitation to their applicability in real-life
production compilers and development environments, where they are typically used
in critical tasks like verification or code optimization, that need to rely strongly on
the soundness of the analysis results.

However, the validation of static analyzers is a challenging problem, which is not well
covered in the literature or by existing tools. Well-established methodologies or even
guidelines to this end do not really exist. This is due to the fact that direct appli-
cation of formal methods is not always straightforward with code that is so complex
and large, even without considering the problem of having precise specifications to
check against —a clear instance of the classic problem of who checks the checker.
In current practice, extensive testing is the most extended and realistic option, but it
poses some significant challenges too. Testing separate components of the analyzer
misses integration testing, and designing proper oracles for testing the complete tool
is really challenging.

Our objective in this chapter is to apply assertion-based random testing to validate
and debug CiaoPP, Ciao’ abstract interpretation-based static analyzer, which faces
this very problem. As other “classic” analyzers, this analyzer has evolved for a long
time, incorporating a large number of abstract domains, features, and techniques,
adding up to over 1/2 million lines of Ciao code. These components have in turn
reached over the years different levels of maturity. While the essential parts, such as
the fixpoint algorithms and the classic abstract domains, have been used routinely
for a long time now and it is unusual to find bugs, other parts are less developed and
yet others are prototypes or even proofs of concept.

In Section 4.1, we encode into Ciao assertions some theoretical properties that CiaoPP’s
abstract domains must satisfy in order to be sound, and apply LPtest to validate
those assertions as a case study. In Section 4.2, we check with LPtest, over a suite of
benchmarks, that the assertions inferred statically with CiaoPP are satisfied dynami-
cally.

19

4.1. Testing Abstract Domain Properties

4.1 Testing Abstract Domain Properties

In order to better illustrate the ideas presented in the previous chapter, we present in
this section a case study of LPtest which consists in testing the correctness of the im-
plementation of some of CiaoPP’s abstract domains. In particular, we focus herein on
the sharing-freeness domain [46] and the correctness of its structure as a lattice and
its handling of builtins. Tested predicates include leq/2, which checks if an abstract
value is below another in the lattice, lub/3 and glb/3, which compute the least up-
per bound and greatest lower bound of two abstract values, builtin_success/3, which
computes the success substitution of a builtin from a call substitution, and abstract/2,
which computes the abstraction for a list of substitutions.

4.1.1 Generation.

Testing these predicates required generating random values for abstract values and
builtins. The latter is simple: a simple declaration of the property builtin(F,A), which
simply enumerates the builtins together with their arity, is itself a generator, and
using the generation scheme proposed in Sec. 3.2 it becomes a random generator,
while it can still be used as a checker in the run-time checking framework. The
same happens for a simple declarative definition of the property shfr(ShFr,Vs), which
checks that ShFr is a valid sharing-freeness value for a list of variables Vs. This is
however not that trivial and proves that our generation scheme works and is useful
in practice, since that property is not a regular type, and among others it includes
sharing constraints between free variables. These two properties allowed us to test
assertions like the following:�

1 :- pred leq_reflexive(X) : shfr(X,_) + not_fails.
2 leq_reflexive(X) :- leq(X,X).
3

4 :- pred lub(X,Y,Z) : (shfr(X,Vs), shfr(Y,Vs)) => (leq(X,Z), leq(Y,Z)).
5

6 :- pred builtin_sucess(Func,Ar,Call,Succ)
7 : (builtin(Func,Ar), length(Vs,Ar), shfr(Call,Vs))
8 + (not_fails , is_det, not_further_inst([Call]))}� �

To check some assertions we needed to generate related pairs of abstract values.
That is encoded in the precondition as a final literal leq(ShFr1,ShFr2), as in the next
assertion:�

1 :- pred builtins_monotonic(F, A, X, Y)
2 : (builtin(F,A), length(Vs,A), shfr(X,Vs), shfr(Y,Vs), leq(X,Y))
3 + not_fails.
4

5 builtins_monotonic(F,A,X,Y) :-
6 builtin_success(F,A,X,X2), builtin_success(F,A,Y,Y2), leq(X2,Y2).� �

In our framework the generation is performed by producing first the two values in-
dependently, and checking the literal. This became inefficient, so we decided to write
our own generator for this particular case. Finally, we tested the generation for arbi-
trary terms with the following assertion, which checks that the abstract value result-
ing from executing a builtin and abstracting the arguments on success is lower than
the one resulting of abstracting the arguments on call and calling builtin_success/3:

20

Testing Static Analyzers

�
1 :- pred builtin_soundness(Blt, Args)
2 : (builtin(Blt), Blt=F/A, length(Args,A), list(Args, term))
3 + not_fails.
4

5 builtin_soundess(Blt,Args) :- ...� �
4.1.2 Analysis.

Many properties used in our assertions were user-defined, complex, and not native to
CiaoPP, so there were many cases in which the analysis could not abstract them pre-
cisely. However, the analysis did manage to simplify or prove some of the remaining
ones, particularly regular types and those dealing with determinism (+ is_det) and
efficiency (no_choicepoints). Additionally, we successfully did the experiment of not
defining the regular type builtin/2, and letting the analysis infer it on its own and
use it for generation. We also tested by hand the finer integration between testing
and analysis proposed in Sec. 3.3: some assertions involving builtins could not be
proven for the general case, but this could be done for some of the simpler builtins,
and thus testing could be avoided for those particular cases.

4.1.3 Bugs Found.

We did not find any bugs in the implementations for different domains of the lattice
operations leq/2, lub/2, and glb/2. This was not surprising: they are relatively simple
and commonly used in CiaoPP. However, we found several bugs in builtin_success/2
(part of the description of the “transfer function” for some language built-ins) in some
domains. Some of them were minor and thus had never been found or reported
before: some builtin handlers left unnecessary choicepoints, or failed for the abstract
value ⊥ (with which they are never called in CiaoPP). Others were more serious: we
found bugs for less commonly-used builtins, and even two larger bugs for the builtins
=/2 and ==/2. The handler failed for the literal X=X and for literals like f(X)==g(Y), both
of which do not normally appear in realistic programs and thus were not detected
before.

4.2 Testing Properties Inferred by the Analyzer

In this section, we propose an algorithm that combines LPtest and some other basic
components of Ciao’s assertion framework in a novel way that allows testing the
static analyzer almost for free. Intuitively, it consists in checking, over a suite of
benchmarks, that the properties inferred statically are satisfied dynamically. The
overall testing process, for each benchmark, can be summarized as follows: first the
code is analyzed and the analysis results are expressed by the analyzer as assertions
interspersed within the original code. Then these assertions are switched into run-
time checks, that will ensure that violations of those assertions are reported at run
time. Finally, random test cases are generated and executed to exercise those run-
time checks. If any assertion violation is reported, since these assertions (the analyzer
output) must cover all possible concrete executions, it means that the assertion was
incorrectly inferred by the analyzer and thus that an error in the analyzer has been
found. This process can be easily automated, and if it is repeated for an extensive and
varied enough suite of benchmarks, it can be used to effectively validate (even if not

21

4.2. Testing Properties Inferred by the Analyzer

fully verify) the analyzer or to discover new bugs. Furthermore, the implementation,
when framed within the Ciao assertion-based validation framework, is very simple,
since, as we will show, only a basic code transformation and a simple driver need to
be implemented to obtain a very useful, working system.

The idea of checking at run time the properties or assertions inferred by the anal-
ysis for different program points is not new. For example, [57] successfully applied
this technique for checking a range of different aliasing analyses. However, these
approaches require the development of tailored instrumentation or monitoring, and
require significant effort in their design and implementation. We argue that the test-
ing approach is made more applicable, general, and scalable by the use of a unified
assertion-based framework for static analysis and dynamic debugging, as the one of
Ciao. As mentioned before, framing things in such a framework, the approach can
be implemented with the already existing components in the system, in a very simple
way, so much so that our initial prototype was, in fact, barely 50 lines of code long.
We argue also that our approach is particularly useful in a mixed production and re-
search setting like that of CiaoPP, in which there is a mature and domain-parametric
abstract interpretation framework used routinely, but new, experimental abstract
domains and overall improvements are in constant development. Those domains
can easily be tested relying only on the existing abstract-interpretation framework,
runtime-checking framework, and unified assertion language, provided only that the
assertion language is extended to include the properties relevant for the domains.

4.2.1 Overview of the Approach

After introducing the relevant elements of the Ciao assertion model, we can now
sketch the main idea of our approach with a motivating example. Assume we have
this simple Prolog program, where the entry assertion indicates that the predicate
is always called with its second argument instantiated to a list and the third a free
variable:�

1 :- entry prepend(X,Xs,Ys) : (list(Xs), var(Ys)).
2

3 prepend(X,Xs,Ys) :-
4 Ys=[X|Rest],
5 Rest=Xs.� �

Assume that we analyze it with a simple modes abstract domain that assigns to each
variable in an abstract substitution one the following abstract values: g (variable is
ground), v (variable is free), ng (variable is not ground), nv (variables is not free),
ngv (variable is not ground nor free), or any (nothing can be said about the variable).
Assume also that the analysis is incorrect because it does not consider sharing (alias-
ing) between variables, so when updating the abstract substitution after the Rest=Xs
literal, the abstract value for Ys is not modified at all. The result of the analysis will
be represented, as explained in Chapter 2, as a new source file with interspersed as-
sertions, as shown in Fig. 4.1 (lines 3-5, 8, 10, and 12). Note that the correct result,
if the analysis considered aliasing, would be that there is no groundness information
for Ys at the end of the clause (line 12), since there is none for X or Xs at the beginning
either. Ys could only be inferred to be nonvar, but instead is incorrectly inferred to be
nonground too (line 10). Normally unknown/1 properties would not actually appear in
the analysis output, but are included for clarity.

22

Testing Static Analyzers

�
1 :- entry prepend(X,Xs,Ys) : (list(Xs), var(Ys)).
2

3 :- true pred prepend(X,Xs,Ys)
4 : (unknown(X), nonvar(Xs), var(Ys))
5 => (unknown(X), nonvar(Xs), nonground(Ys), nonvar(Ys)).
6

7 prepend(X,Xs,Ys) :-
8 true((unknown(X), nonvar(Xs), var(Ys), var(Rest))),
9 Ys=[X|Rest],

10 true((unknown(X), nonvar(Xs), nonground(Ys), nonvar(Ys), var(Rest))),
11 Rest=Xs,
12 true((unknown(X), nonvar(Xs), nonground(Ys), nonvar(Ys), nonvar(Rest))).� �

Figure 4.1: An incorrect simple mode analysis.

�
1 :- entry prepend(X,Xs,Ys) : (list(Xs), var(Ys)).
2

3 :- check pred prepend(X,Xs,Ys)
4 : (unknown(X), nonvar(Xs), var(Ys))
5 => (unknown(X), nonvar(Xs), nonground(Ys), nonvar(Ys)).
6

7 prepend(X,Xs,Ys) :-
8 check((nonvar(Xs), var(Ys), var(Rest))),
9 Ys=[X|Rest],

10 check((nonvar(Xs), nonground(Ys), nonvar(Ys), var(Rest))),
11 Rest=Xs,
12 check((nonvar(Xs), nonground(Ys), nonvar(Ys), nonvar(Rest))).� �

Figure 4.2: The instrumented program.

What we would like at this point, is to be able to check dynamically the validity of
the true assertions from the analyzer. Thanks to the different aspects of the Ciao
model presented previously, the only thing needed in order to achieve this is to (1)
turn the status of the true assertions produced by the analyzer into check, as shown in
Fig. 4.2. This would normally not make any sense since these true assertions have
been proved by the analyzer. But that is exactly what we want to check, i.e., whether
the information inferred is incorrect. To do this, (2) we run the transformed program
(Fig. 4.2) again through CiaoPP (Fig. 3.1) but without performing any analysis. In that
case the check literals (stemming from the true literals of the previous run) will not
be simplified in the comparator (since there is no abstract information to compare
against) and instead will be converted directly to run-time tests. I.e., the check(Goal)
literals will be expanded and compiled to code that, every time that this program point
is reached, in every execution, will check dynamically if the property (or properties)
within the check literal (i.e., those in Goal) succeed, and an error message will be
emitted if they do not. The only missing step to complete the automation of the
approach is to (3) use the random test case generator to generate a set of test cases
for prepend/3, and run those test cases. The framework will ensure that instances of
the goal prepend(X,Xs,Ys) are generated where Xs is a list and Ys is a free variable,
but otherwise X and the elements of Xs will be instantiated to random terms. In this
example, as soon as a test case is generated where both X and all elements in Xs are
ground, the program will report a runtime-checking error in the check in line 12,
letting us know that the third program-point assertion, and thus the analysis, is

23

4.2. Testing Properties Inferred by the Analyzer

incorrect.1

The same procedure can be followed to debug different analyses with different bench-
marks. If the execution of any test case reports a runtime-checking error for one as-
sertion, it will mean that the assertion was not correct and the analyzer computed an
incorrect over-approximation of the semantics of the program. Alternatively, if this
experiment, which can be automated easily, is run for an extensive suite of bench-
marks without errors, we can gain more confidence that our analysis implementation
is correct, even if perhaps imprecise (although of course we cannot have actual cor-
rectness in general by testing).

4.2.2 The Algorithm

In this section we present in more detail the actual algorithm for combining the com-
ponents of the framework used in order to test the static analyzer.

4.2.2.1 Basic Reasoning Behind the Approach

We start by establishing more concretely the basic reasoning behind the approach
in terms of abstract interpretation and safe upper and lower approximations. The
mathematical notation in this subsection is purely for readability, as a proper for-
malization is outside the scope of the paper, and in any case arguably not really
necessary, thanks to the simplicity of the approach.

An abstract interpretation-based static analysis computes an over-approximation S+
P

of the collecting semantics SP of a program P . Such collecting semantics can be
broadly defined as a control flow graph for the program decorated at each node with
the set of all possible states that could occur at run-time at that program point. Dif-
ferent approximations of this semantics will have smaller or larger sets of possible
states at each program point. Let us denote by S′P ⊂P S′′P the relation that estab-
lishes that an approximation of SP , S′′P , is an over-approximation of another, S′P . The
analysis will be correct if indeed SP ⊂P S+

P .

Since SP is undecidable, this relation cannot be checked in general. However, if we
had a good enough under-approximation S−P of SP , it can be tested as S−P ⊂P S+

P . If
it does not hold and S−P 6⊂P S+

P , then it would imply that SP 6⊂P S+
P , and thus, the

results of the analysis would be incorrect, i.e., the computed S+
P would not actually

be an over-approximation of SP .

An under-approximation of the collecting semantics of P is easy to compute: it suf-
fices with running the program with a subset I− of the set I of all possible initial
states. We denote the resulting under-approximation SI

−
P , and note that SP = SIP ,

which would be computable if I is finite and P always terminates. That is the method
that we propose for testing the analysis: selecting a large and varied enough I−,
computing SI

−
P and checking that SI

−
P ⊂P S

+
P .

A direct implementation of this idea is challenging. It would require tailored instru-
mentation and monitoring to build and deal with a partially constructed collecting
semantic under-approximation as a programming structure, which then would need
to be compared to the one the analysis handles. However, as we have seen the process

1In the discussion above we have assumed for simplicity that the original program did not already
contain check assertions. In that case these need to be treated separately.

24

Testing Static Analyzers

Algorithm 1 Analysis Testing Algorithm (for program P and domain D)
1: procedure ANATEST(P,D)
2: result← NONE

3: Pan ← analyze and annotate P with domain D (incl. program-point assertions).
4: Pcheck ← Pan where true assertion status is replaced by check
5: Prtcheck ← instrument Pcheck with run-time checks
6: repeat
7: Choose an exported predicate p and generate a test case input
8: if p(input) in Pcheck produces runtime errors then
9: result← ERROR(input)

10: else if maximum number of test executions is reached then
11: result← TIMEOUT

12: until result 6= NONE return result

can be greatly simplified by reusing some of the components already in the system,
following these observations:

• We can work with one initial state i at a time, following this reasoning:
SI

−
P ⊂P S

+
P ⇐⇒ ∀i ∈ I−, S{i}P ⊂P S+

P .

• We can use the random test case generation framework for selecting each initial
state i.

• Instead of checking S{i}P ⊂P S+
P , we can instrument the code with run-time checks

to ensure the execution from initial state i does not contradict the analysis at any
point. That is, that the state of the program at any program point is contained
in the over-approximation of the set of possible states that the analysis inferred
and output as Ciao assertions.

4.2.2.2 The Algorithm

We now show the concrete algorithm for implementing our proposal, i.e., the driver
that combines and inter-operates the different components of the framework to achieve
the desired results. The essence of the algorithm (Alg. 1) is the following: non-
deterministically choose a program P and a domain D from a collection of bench-
marks and domains, and execute the ANATEST(P,D) procedure until an error is found
or a limit is reached. Unless the testing part is ensured to explore the complete exe-
cution space, it could in principle be useful to revisit the same (P,D) pair more than
once. When the algorithm detects a faulty program-point assertion for some input
(ERROR(input)), it means that the concrete execution reaches a state not captured by
the (over-approximation of the) analysis. In such case it is possible to reconstruct
(or store together with the test output) additional information to diagnose the prob-
lem. E.g., comparing the concrete execution trace (which is logged during testing)
with the analysis graph (recoverable from Pan, the program annotated with analysis
results), domain operations (inspecting the analysis graph), and transfer functions
(from predicates that are native to each domain).

25

4.2. Testing Properties Inferred by the Analyzer

4.2.2.3 Other Details and Observations

We now discuss some details and observations on the algorithm that may have been
left out or oversimplified in the algorithm sketch:

4.2.2.3.1 Analysis Crashes. An implicit assumption throughout our discussion
so far is that the analysis always terminates without errors, but the results computed
may be unsound. Of course, it is also possible that a bug in the analysis produces a
crash, or even leads to non-termination. It is also possible that the analysis output
is malformed (e.g., there are missing assertions in Pan). Those errors are of course
also checked and reported by our tool. Non-termination is handled with timeouts
and possible warnings (both for analyses and concrete executions).

4.2.2.3.2 Benchmark Selection. No prior requirement is imposed on the origin
or characteristics of the benchmark suite. It could consist of automatically generated
programs, an existing benchmark suite, or just real-life code. Each may have its
own advantages and disadvantages (e.g., automatically generated code may test more
convoluted or corner cases, but real-life code may find the bugs that actually occur
in programs), but in principle, our approach is agnostic in this regard.

4.2.2.3.3 Entry Points. There is no restriction regarding the number of entry
points or inputs to a program to be analyzed for. It is common in tools related to
ours to use as benchmarks programs with a single entry point with no inputs (e.g.,
just a single void main() function as entry point for C). Our benchmarks are typi-
cally Ciao modules, and their entry points to analysis and testing are their exported
predicates. In Ciao programs signatures and types (as well as entry assertions) are
optional. Admissible inputs (i.e., the initial set of possible states for analysis or test
case generation) can be specified by writing assertions for the exported predicates, by
means of entry assertions, or skipped altogether. Note also that if our benchmarks
had the restriction mentioned above (in our case, exporting only a main/0 predicate),
then test case generation would not be needed for our algorithm.

4.2.2.3.4 Test Case Generation. In the absence of entry assertions, the test case
generation framework [11] has already some mechanisms to generate relevant test
cases, instead of random, nonsensical inputs which would exercise few run-time
checks before failing. However, these generators have limitations, and the assertion-
based testing framework is in fact best used with assertions that have descriptive-
enough call patterns, or with custom user-defined generators in their absence. To
tackle this problem, our tool makes also use of test assertions when available in the
benchmarks, using also the test cases specified in the benchmarks besides those
randomly generated. This can help, e.g., when using a benchmark that works with
files and has paths as input, for which relevant test cases would not likely be found
with random generation. Note however that the tool would still work without any
entry or test assertions; it would just become less effective.

4.2.2.3.5 Error Diagnosis and Debugging. It is important to note that although
error diagnosis and debugging is primarily left for the user to manually perform,
our tool facilitates the task in some aspects. Firstly, the assertion-based testing tool
supports shrinking of failed test cases, so we can expect reasonably small variable

26

Testing Static Analyzers

substitutions in the errors reported. Note however that benchmark reduction, e.g.,
by delta debugging [59], is currently not supported. Secondly, as sketched in Algo-
rithm 1, the error location and trace reported by the runtime-checks instrumentation
provide an approximated idea of the point where the analysis went wrong, if not of
the reason why. For example, if the runtime-check error points to a program-point
assertion right after a call to a builtin, then we typically know that the analysis erred
in the builtin handler.

4.2.2.3.6 Multivariance and Path-Sensitivity. As presented, our approach might
miss some analysis errors even when the right test cases are used, since we have
apparently disregarded multi-variance and path-sensitivity. In fact in CiaoPP the in-
formation inferred is fully multi-variant, and separate path information is kept to
each variant. However, in order to produce an output that is easy for the program-
mer to inspect, i.e., that is close to the source program, when outputting the analysis
results CiaoPP by default combines the different versions of each predicate (and the
associated information) into a single code version and a single combined assertion for
each program point and predicate. If this default output is used when implementing
our approach, it is indeed entirely possible that the analysis errs at a program point
in one path but the algorithm never detects it: this can happen if, for example, in
another path leading to the same program point (such that the two paths and their
corresponding analysis results are collapsed –lubbed– together at the same program
point) the analysis infers a too general value (higher in the domain lattice) at that
program point and thus, the error is not detected. However, this potential problem is
easily addressed by simply changing the corresponding flag in CiaoPP so that the dif-
ferent versions are not collapsed and are instead materialized into different predicate
instances. This is done in CiaoPP by selecting the versions transformation prior to
emitting the output. In this case multiple versions may be generated for a given pred-
icate, if there are separate paths to it with different abstract information, and the
corresponding analysis information will be annotated separately for each abstract
path through the program in the program text of the different versions, avoiding the
problem mentioned above.

4.2.3 Applications and Examples

In this section we discuss interesting use cases and applications of our approach. As
observed before, our testing technique can be seen as a sanity or coherence check,
and thus it can be targeted to test different components of the system depending on
which ones are assumed to be trusted. Some examples follow. A few of them have
actually been implemented and we report on them in the following section. We hope
to implement the others in our future work.

4.2.3.1 Debugging Abstract Domains.

The first application of our approach, which has been illustrated in the examples,
is to test the abstract domains. In general the Ciao abstract interpretation engine
(the fixpoint algorithms and all the surrounding infrastructure of the system, into
which the domains are “plugged-in”) includes the components of the analyzer we
trust most, since they have been used and refined for more than 30 years. Thus, it
makes sense to take this as the trusted base and try to find errors in the domains.

27

4.2. Testing Properties Inferred by the Analyzer

This situation is realistic and frequent, since CiaoPP is at the same time a production
and a research tool, and new domains are constantly being developed. In order to
test a new domain with the algorithm proposed, two components need to be present.
The first one is a translation interface from the abstract values in the domain to Ciao
properties, which is needed to express the analysis results as assertions. But note
that this is actually already a requirement for any abstract domain that intends to
make full use of the framework, so it is normally implemented anyway in all domains.
The other component is to have builtin checks for those properties to be used by the
run-time checking framework, if those properties are declared native and not written
in the source language and thus already runnable and checkable. This is also a
standard requirement on domains to be able to make full use of the framework, so
they are typically also implemented with the domain. In particular, all current Ciao
abstract domains include the functionalities mentioned, and can be tested as is with
the proposed approach. We show the results for some of them in the case study
described in Sec. 4.2.4.

4.2.3.2 Debugging Trust Assertions and Custom Transfer Functions.

One feature of CiaoPP’s analyses is that they can be guided by the user, which can
feed the analyzer with information that can be assumed to be true at points where
otherwise the analysis would lose precision. We have already introduced in Sec. 2.1
one of these mechanisms, trust assertions, but there are others. One is custom ab-
stract transfer functions, similar to those that need to be implemented for abstracting
each builtin within each domain, but that the user can provide for any predicate. A
particular instance of this mechanism is when the user specifies that one predicate
is indistinguishable from or should behave like another with respect to a domain: the
equiv declaration. Our approach can be used to test these mechanisms too. Both to
test that they are applied correctly by the analyzer, if the user-provided information
is trusted to be correct, and to test that the user-provided information is correct, if
what is trusted is that the information is applied correctly. The latter is in particular
very useful, since even a completely sound analyzer can produce unsound results if it
assumes some property to be true when it is actually not, and thus there will always
be the need to test such properties.

4.2.3.3 Testing the Abstract Interpretation Engine.

Another idea that comes to mind is whether we can test the abstract interpretation
engine (the fixpoint algorithms and all the surrounding infrastructure of the frame-
work) instead of the domains, by using domains that are simple enough to be used
as a trusted base. While the classic algorithms are quite stable, new fixpoints are
also added to the system (e.g., recently a modular and incremental fixpoint) which
can of course bring new bugs. A first abstract domain that could be useful for this
purpose is the concrete domain itself (which is actually implemented in CiaoPP as the
pd –partial deduction– domain). If we give the analysis a singleton set of initial states
as entry point, the analyzer should behave as an interpreter for the program starting
from that initial state, provided the program terminates. The assertions resulting
from this “analysis” will use the =/2 property and be essentially a program which is
adorned at each program point with the concrete states(s) that the analyzer infers
will be occurring at run time, expressed as conjunctions of substitutions using =/2.
Then, when running this program, the run-time checks would check that the variables

28

Testing Static Analyzers

are indeed instantiated to the concrete values inferred. Non-deterministic programs
could be equally handled with member/2 (∈) instead of =/2 (=). A second domain that
could be useful in this context is the pdb domain, which can be used to perform
reachability analysis. The properties appearing in the assertions resulting from this
analysis would just be possibly_reachable/0 (>) and not_reachable/0 (⊥), which indi-
cates if a program point is definitely unreachable at run-time.2 The run-time checks
would just report an error any time a check for the property not_reachable/0 (⊥) is
invoked at run time. This test would then detect if the analyzer incorrectly marks
reachable parts of the program as unreachable.

4.2.3.4 Testing the Overall Consistency of the Framework.

So far we have focused on applications in testing analysis soundness. But doing so
has the implicit assumption that there are clear semantics and specifications for the
analyzer to follow, and that is not always the case. Sometimes the semantics is un-
derspecified, and then a discrepancy between what the analysis infers and what the
program executes is not so much an error but a disparity in the interpretation of such
an under-specification. In those cases our tool helps ensure that at least the analysis
and run-time semantics are consistent. A relevant example can be found in the case
of the abstraction of built-ins within abstract domain implementations. For some of
them the specification is not complete (sometimes even the ISO-Prolog standard) and
again our tool can at least check for inconsistencies in the interpretations made by
the analyses and the run-time system.

In this same line, the tool has helped us find inconsistencies between the under-
standing of Ciao properties in the analysis and in the runtime-checks framework.
With many properties this cannot happen (e.g., with pure predicates) because both
the analysis and the run-time checking derive the semantics from the actual code
defining the property. But for more complex properties the implementations may be
different, perhaps developed by different people, with different interpretations of the
property semantics. An actual example is the property cardinality/3, which pro-
vides upper and lower bounds to the number of solutions that a predicate might
produce. It is a property that has not seen a lot of use (determinacy and/or non-
failure are the ones used most frequently), and our experimental evaluation exposed
that for cardinality/3 the analysis was considering only different solutions while the
runtime-checks framework counted also repeated ones.

4.2.3.5 Integration Testing of the Analyzer and Third Parties.

Finally, even if every piece of the analyzer is validated separately, our tool can still
help in testing how all its parts integrate together to form a functional and sound
analyzer, and, even more interestingly, it can also test the correctness of the different
integrations with external or third party solvers used by the analyzer (e.g., the PPL
library).

2Note that this, combined with non-failure analysis [18, 7], can also infer definitely_reachable/0,
but that is a more complex domain.

29

4.2. Testing Properties Inferred by the Analyzer

Abstract Domain Properties Abstracted Maturity Level References
shfr aliasing, modes mature [47]
def aliasing, modes intermediate [20]
gr aliasing, modes intermediate [8]

eterms types mature [56]
etermsvar types experimental [56]

nf failure mature [18, 7]
det determinism mature [40, 41]

Table 4.1: Domains used for the evaluation of the approach.

4.2.4 A More Detailed Case Study

As a case study, in order to validate our approach and confirm its effectiveness, we
have studied further the Debugging Abstract Domains application of Section 4.2.3, by
applying our prototype more systematically to some of the analyses in CiaoPP.

4.2.4.1 Setup.

The analyses tested all use the standard configuration of the abstract interpretation
framework (i.e., the PLAI fixpoint, multi-variance on calls, etc.) but differ in the ab-
stract domains used for the analysis. The complete list of abstract domains tested
can be seen in the first column of Table 4.1. The second column indicates the differ-
ent properties which the domains reason about, such as variable aliasing, variable
modes, variable types, (non)failure, or determinism. The domains range in maturity,
from stable domains like shfr and eterms, to mere prototypes like etermsvar. The
third column of the figure indicates this level of maturity with three different values:
mature, intermediate, experimental. For more details about the domains we refer to
the citations in the fourth column.

The experiment has been run over some selected benchmarks with increasing levels
of complexity and language features. We have started with simple, existing CiaoPP
benchmarks used for, e.g., demos, statistics and integration testing, for which in
principle the analyses tested should be correct. Then we have continued with a large
database of anonymized solutions for Prolog assignments in undergraduate courses,
which on one hand are not expected to use necessarily the most sophisticated fea-
tures of the language (although there are always exceptions), but on the other hand
are known to exhibit a high degree of creativity in combining language elements in
unusual and unpredictable ways, including many that do not make sense at all. The
intuition is that these combinations may exercise corner cases of the analyses in a
similar (but hopefully somewhat more focused way) than random program genera-
tion. Finally, we have applied the experiment to some selected modules of the Ciao
code base using more advanced features. Additionally, we have cherry-picked some
benchmarks which were expected to reveal some known bugs, either still unfixed or
explicitly reintroduced in the system for this experiment, and some using deliberately
features not supported by a particular analysis such as, e.g., attributed variables.
Some of the benchmarks have been modified by adding entry assertions to guide test
case generation, and existing test cases from unit tests (i.e., test assertions) have
been used in modules where using random test cases is ineffective or just plain dan-
gerous (e.g., predicates that have files as input). The experiments were run with

30

Testing Static Analyzers

Ciao/CiaoPP version 1.19-221.

4.2.4.2 Results.

While we are planning on performing a larger set of experiments, 3 the results so far
are promising and have allowed us to draw some interesting conclusions and obser-
vations. A good number of bugs and inconsistencies were indeed found using the
technique, many of them known but also some new ones. First, our experiment was
successful in finding known bugs in previous versions of the analyses, that have now
been fixed, and also in revealing known limitations of different analyses for some
language features. For example, the fact that some of the aliasing domains do not
support rational terms was easily detected, and also that many domains do not sup-
port attributed variables. Some new, but still not unexpected bugs were found in one
of the most experimental domains (etermsvar). Furthermore, also a few new bugs
were found even in mature domains. These are typically related to the handling of
rarely-used built-ins, which explains why they have gone unnoticed, but they are
still bugs and have been (or are being) fixed. In addition, while the testing process
was aimed at the domains, it also uncovered some bugs in related components of the
Ciao assertion framework and their integration, which have been fixed too. We thus
conclude that our approach is indeed effective in revealing and discovering bugs and
inconsistencies in the domains and also in the overall framework.

Another overall conclusion from the experiment is that benchmark selection is very
important when focusing our approach on testing specific domains. No bugs were
found for the most mature domains using standard benchmarks and the undergrad-
uate Prolog assignments. The subtle bugs mentioned before in less-used built-ins
were found instead when using benchmarks extracted from Ciao’s code base, i.e., in
complex, system code. On the other hand, a good number of errors were found in
the experimental domain with even the simpler benchmarks. In fact, in this case, the
many errors triggered obfuscated sometimes the real (possibly multiple) origin of the
problems, but this is to be expected in immature code: consider for example that just
the ISO-standard contains a very large set of built-ins and the implementation of an
experimental domain typically does not support all of them.

Finally, it is important to point out that we also found out that there are some bugs
that are unlikely to be found with benchmarks like the ones used in the tests, because
they are bugs that will probably never occur in realistic programs. One example
is the simple bug found in [11] for the handler of the builtin =/2 in the sharing-
freeness domain. The code did not consider that the two arguments could be the
same variable, and thus the analysis failed for any program with the literal X=X. Since
that literal always succeeds and is redundant in every program, it will likely not
appear in any reasonable benchmark and this error would not be detected by our
tool. To find bugs of this kind with our approach, randomly generated benchmarks
would be needed.

3We are working on including the technique as part of the Ciao continuous integration infrastructure,
and plan to report on a larger number of CiaoPP analyses over a wider range of programs.

31

Chapter 5

Related Work

Random testing has been used for a long time in Software Engineering [23]. As men-
tioned before, the idea of using properties and assertions as test case generators was
proposed in the context of the Ciao model [5, 28, 50] for logic programs, although it
had not really been exploited significantly until this work. QuickCheck [14] provided
the first full implementation of a property-based random test generation system. It
was first developed for Haskell and functional programming languages in general and
then extended to other languages, and has seen significant practical use [31]. It uses
a domain-specific language of testable specifications and generates test data based
on Haskell types. ErlangQuickCheck and PropEr [48] are closely related systems for
Erlang, where types are dynamically checked and the value generation is guided by
means of functions, using quantified types defined by these generating functions. We
use a number of ideas from QuickCheck and the related systems, such as applying
shrinking to reduce the test cases. However, LPtest is based on the ideas of the
(earlier) Ciao model and we do not propose a new assertion language, but rather use
and extend that of the Ciao system. This allows supporting Prolog-relevant proper-
ties, which deal with non-ground data, logical variables, variable sharing, etc., while
QuickCheck is limited to ground data. Also, while QuickCheck offers quite flexible con-
trol of the random generation, we argue that using random search strategies over
predicates defining properties is an interesting and more natural approach for Pro-
log.

The closest related work is PrologTest [1], which adapts QuickCheck and random
property-based testing to the Prolog context. We share many objectives with PrologTest
but we argue that our framework is more general, with richer properties (e.g., variable
sharing), and is combined with static analysis. Also, as in QuickCheck, PrologTest
uses a specific assertion language, while, as mentioned before, we share the Ciao
assertions with the other parts of the Ciao system. PrologTest also uses Prolog pred-
icates as random generators. This can also be done in LPtest, but we also propose
an approach which we argue is more elegant, based on separating the code of the
generator from the random generation strategy, using the facilities present in the
Ciao system for running code under different SLD search rules, such as breadth first,
iterative deepening, or randomized search.

Other directly related systems are EasyCheck [13] and CurryCheck [24] for the Curry
language. In these systems test cases are generated from the (strong) types present in
the language, as in QuickCheck. However, they also deal with determinism and modes.

33

To the extent of our knowledge test case minimization has not been implemented in
these systems.

There has also been work on generating test cases using CLP and partial evaluation
techniques, both for Prolog and imperative languages (see, e.g., [22, 21] and its ref-
erences). This work differs from (and is complementary to) ours in that the test cases
are generated via a symbolic execution of the program, with the traditional aims of
path coverage, etc., rather than from assertions and with the objective of randomized
testing.

Other related work includes fuzz testing [45], where “nonsensical” (i.e., fully random)
inputs are passed to programs to trigger program crashes, and grammar-based test-
ing, where inputs generation is based on a grammatical definition of inputs (similar
to generating with regular types) [25]. Schrijvers proposed Tor [53] as a mechanism
for supporting the execution of predicates using alternative search rules, similar in
spirit to Ciao’s implementation of search-strategies via packages.

The need for validating program analyzers was discussed by [10], and the topic has
motivated interesting research over the past years. On the formal verification side,
there have been some pen-and-paper proofs, such as that of the Astree analyzer [15],
some automatic and interactive proofs, such as [19, 54], and some verification efforts,
which include [3, 38, 33]. Testing efforts for program analyzers include e.g., static
analyzers [57, 60, 16, 35], symbolic execution engines [34], refactoring engines [17],
compilers [58, 36, 55, 37, 52, 39], SMT solvers [4], among others. Most of these
testing approaches use programs in the target language as test cases and and apply
testing techniques like fuzzing (e.g., [58, 34, 4]) or differential testing [42], (e.g., [58,
36, 34, 4, 35]). In [9] and [44] abstract domain properties are tested, the latter using
QuickCheck [14]. Among the different approaches mentioned, the closest to ours are
those that cross-check dynamically observed and statically inferred properties [57,
60, 16, 2].

In [57] the actual pointer aliasing in concrete executions is cross-checked with the
pointer aliasing inferred by an aliasing analyzer. Compared to us, they require sig-
nificant tailored instrumentation which cannot be reused for testing other analyses.
However, their approach is agnostic to the (C) aliasing analyzer.

Another cross-check is done in [60] for C model checkers and the reachability prop-
erty, but they obtain the assertions dynamically, and check them statically, comple-
mentarily to our approach. Unlike us, they again need tailored instrumentation that
cannot be reused to test other analyses, and their benchmarks must be determinis-
tic and with no input, the latter limiting the power of the approach as a testing tool.
However, their approach is agnostic to the (C) model checker.

In [16] a wide range of static analysis tests are performed over randomly generated
programs. Among others, they check dynamically, at the end of the program, one
assertion inferred statically, and they perform the sanity check of ensuring that the
analyzer behaves as an interpreter when run from a singleton set of initial states.

34

Chapter 6

Conclusions

We have presented an approach and a tool, LPtest, for assertion-based random test-
ing of Prolog programs that is integrated with the Ciao assertion model. In this con-
text, the idea of generating random test values from assertion preconditions emerges
naturally since preconditions are conjunctions of literals, and the corresponding
predicates can conceptually be used as generators. LPtest generates valid inputs
from the properties that appear in the assertions shared with other parts of the model.
We have shown how this generation process can be based on running the property
predicates under non-standard (random) search rules and how the run time-check in-
strumentation of the Ciao framework can be used to perform a wide variety of checks.
We have proposed methods for supporting (C)LP-specific properties, including com-
binations of shape-based (regular) types and variable sharing and instantiation. We
have also proposed some integrations of the test generation system with static anal-
ysis and provided a number of ideas for shrinking in our context. Finally, we have
shown some results on the applicability of the approach and tool to the verification
and checking of the implementations of some of Ciao’s abstract domains.

Building on this tool, we have proposed a simple, automatic method for testing ab-
stract interpretation-based static analyzers based on checking that the properties
inferred statically are satisfied dynamically. We have leveraged the Ciao unified as-
sertion language and framework, and have constructed a prototype implementation of
our method with little effort by combining components already present in the frame-
work: the static analyzer, the runtime-checker, the random test-case generator, and
the unit-tester. We just wrote a very reduced amount of glue code that pilots the com-
bination and interplay of the intervening components. We have applied our prototype
to a good number of the abstract interpretation-based analyses in CiaoPP, which rep-
resent different levels of code maturity. The results are encouraging and show that
our tool can effectively discover and locate interesting, unexpected, non-trivial, pre-
viously undetected bugs.

35

Bibliography

[1] C. Amaral, M. Florido, and V. Santos Costa. PrologCheck - Property-Based Test-
ing in Prolog. In Functional and Logic Programming - 12th Int’l. Symp., FLOPS,
volume 8475 of LNCS, pages 1–17. Springer, 2014.

[2] Esben Sparre Andreasen, Anders Møller, and Benjamin Barslev Nielsen. Sys-
tematic approaches for increasing soundness and precision of static analyzers.
In Proceedings of the 6th ACM SIGPLAN International Workshop on State Of the
Art in Program Analysis, SOAP 2017, page 31–36, New York, NY, USA, 2017.
Association for Computing Machinery.

[3] Sandrine Blazy, Vincent Laporte, André Maroneze, and David Pichardie. Formal
verification of a C value analysis based on abstract interpretation. In Francesco
Logozzo and Manuel Fähndrich, editors, Static Analysis, pages 324–344, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[4] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging SMT solvers.
In Proceedings of the 7th International Workshop on Satisfiability Modulo Theo-
ries, SMT ’09, page 1–5, New York, NY, USA, 2009. Association for Computing
Machinery.

[5] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. V. Hermenegildo,
J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations in Val-
idation and Diagnosis of Constraint Logic Programs. In Proc. of the 3rd Int’l. WS
on Automated Debugging–AADEBUG, pages 155–170. U. Linköping Press, May
1997.

[6] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. V. Hermenegildo,
J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations in
Validation and Diagnosis of Constraint Logic Programs. In Proc. of the 3rd Int’l.
Workshop on Automated Debugging–AADEBUG’97, pages 155–170, Linköping,
Sweden, May 1997. U. of Linköping Press.

[7] F. Bueno, P. Lopez-Garcia, and M. V. Hermenegildo. Multivariant Non-Failure
Analysis via Standard Abstract Interpretation. In 7th Int’l. Symposium on Func-
tional and Logic Programming, volume 2998 of LNCS, pages 100–116. Springer-
Verlag, April 2004.

[8] F. Bueno, P. Lopez-Garcia, G. Puebla, and M. V. Hermenegildo. A Tutorial on
Program Development and Optimization using the Ciao Preprocessor. Techni-
cal Report CLIP2/06, Technical University of Madrid (UPM), Facultad de Infor-
mática, 28660 Boadilla del Monte, Madrid, Spain, January 2006.

37

BIBLIOGRAPHY

[9] Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Peter Müller. Au-
tomatically testing implementations of numerical abstract domains. In Proceed-
ings of the 33rd ACM/IEEE International Conference on Automated Software En-
gineering, ASE 2018, page 768–778, New York, NY, USA, 2018. Association for
Computing Machinery.

[10] Cristian Cadar and Alastair Donaldson. Analysing the program analyser. In
International Conference on Software Engineering, Visions of 2025 and Beyond
Track (ICSE V2025), pages 765–768, 5 2016.

[11] I. Casso, J. F. Morales, P. Lopez-Garcia, and M. V. Hermenegildo. An Integrated
Approach to Assertion-Based Random Testing in Prolog. In Maurizio Gabbrielli,
editor, Post-Proceedings of the 29th International Symposium on Logic-based Pro-
gram Synthesis and Transformation (LOPSTR’19), volume 12042 of LNCS, pages
159–176. Springer-Verlag, April 2020.

[12] Ignacio Casso, José F. Morales, Pedro López-García, and Manuel V.
Hermenegildo. Testing Your (Static Analysis) Truths. In Maribel Fernández, edi-
tor, Logic-Based Program Synthesis and Transformation - 30th International Sym-
posium, LOPSTR 2020, Bologna, Italy, September 7-9, 2020, Post-Proceedings,
volume 12561 of Lecture Notes in Computer Science, pages 271–292. Springer,
2021.

[13] Jan Christiansen and Sebastian Fischer. EasyCheck - Test Data for Free. In
Functional and Logic Programming, 9th Int’l. Symp., FLOPS, pages 322–336, April
2008.

[14] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. In Fifth ACM SIGPLAN Int’l. Conf. on Functional
Programming, ICFP’00, pages 268–279. ACM, 2000.

[15] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. The ASTRÉE analyzer. Lecture Notes
in Computer Science, 3444:21–30, September 2005. 14th European Symposium
on Programming, ESOP 2005, held as part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2005 ; Conference date: 04-04-2005
Through 08-04-2005.

[16] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John Regehr,
Boris Yakobowski, and Xuejun Yang. Testing static analyzers with randomly
generated programs. In Alwyn E. Goodloe and Suzette Person, editors, NASA
Formal Methods, pages 120–125, Berlin, Heidelberg, 2012. Springer Berlin Hei-
delberg.

[17] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing
of refactoring engines. In Proceedings of the the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC-FSE ’07, page 185–194, New York,
NY, USA, 2007. Association for Computing Machinery.

[18] S.K. Debray, P. Lopez-Garcia, and M. V. Hermenegildo. Non-Failure Analysis for
Logic Programs. In 1997 International Conference on Logic Programming, pages
48–62, Cambridge, MA, June 1997. MIT Press, Cambridge, MA.

38

BIBLIOGRAPHY

[19] Catherine Dubois. Proving ML Type Soundness within Coq. In Mark Aagaard
and John Harrison, editors, Theorem Proving in Higher Order Logics, pages 126–
144, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[20] M. García de la Banda, M. V. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Trans. on Programming Languages and Systems, 18(5):564–615, 1996.

[21] M. Gómez-Zamalloa, E. Albert, and G. Puebla. On the Generation of Test Data
for Prolog by Partial Evaluation. In Proc. of WLPE’08, pages 26–43, 2008.

[22] M. Gómez-Zamalloa, E. Albert, and G. Puebla. Test Case Generation for Object-
Oriented Imperative Languages in CLP. Theory and Practice of Logic Program-
ming, ICLP’10 Special Issue, 10 (4–6), 2010.

[23] Dick Hamlet. Random Testing. In J. Marciniak, editor, Encyclopedia of Software
Engineering, page 970–978. Wiley, 1994.

[24] Michael Hanus. CurryCheck: Checking Properties of Curry Programs. In Logic-
Based Program Synthesis and Transformation - 26th Int’l. Symp. LOPSTR 2016,
Revised Selected Papers, pages 222–239, September 2016.

[25] Mark Hennessy and James F. Power. An Analysis of Rule Coverage as a Crite-
rion in Generating Minimal Test Suites for Grammar-based Software. In 20th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2005), pages 104–113, November 2005.

[26] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. TPLP, 12(1–
2):219–252, 2012.

[27] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. Theory and
Practice of Logic Programming, 12(1–2):219–252, January 2012.

[28] M. V. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial
Specifications, and an Extensible Assertion Language for Program Validation
and Debugging. In The Logic Programming Paradigm: a 25–Year Perspective,
pages 161–192. Springer-Verlag, 1999.

[29] M. V. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial
Specifications, and an Extensible Assertion Language for Program Validation
and Debugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren,
editors, The Logic Programming Paradigm: a 25–Year Perspective, pages 161–
192. Springer-Verlag, July 1999.

[30] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated Pro-
gram Debugging, Verification, and Optimization Using Abstract Interpretation
(and The Ciao System Preprocessor). Science of Computer Programming, 58(1–
2):115–140, October 2005.

[31] John Hughes. QuickCheck Testing for Fun and Profit. In Michael Hanus, editor,
Practical Aspects of Declarative Languages, pages 1–32, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

39

BIBLIOGRAPHY

[32] D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable
Aliasing in Logic Programs. In North American Conference on Logic Programming,
1989.

[33] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and
David Pichardie. A Formally-Verified C Static Analyzer. SIGPLAN Not.,
50(1):247–259, January 2015.

[34] Timotej Kapus and Cristian Cadar. Automatic testing of symbolic execution en-
gines via program generation and differential testing. In IEEE/ACM International
Conference on Automated Software Engineering (ASE 2017), pages 590–600, 11
2017.

[35] Christian Klinger, Maria Christakis, and Valentin Wüstholz. Differentially test-
ing soundness and precision of program analyzers. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis, IS-
STA 2019, page 239–250, New York, NY, USA, 2019. Association for Computing
Machinery.

[36] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence
modulo inputs. In Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, page 216–226, New York,
NY, USA, 2014. Association for Computing Machinery.

[37] Vu Le, Chengnian Sun, and Zhendong Su. Finding deep compiler bugs via
guided stochastic program mutation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, page 386–399, New York, NY, USA, 2015. As-
sociation for Computing Machinery.

[38] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, July 2009.

[39] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
Many-core compiler fuzzing. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’15, page 65–76,
New York, NY, USA, 2015. Association for Computing Machinery.

[40] P. Lopez-Garcia, F. Bueno, and M. V. Hermenegildo. Determinacy Analysis
for Logic Programs Using Mode and Type Information. In Proceedings of the
14th International Symposium on Logic-based Program Synthesis and Transfor-
mation (LOPSTR’04), number 3573 in LNCS, pages 19–35. Springer-Verlag, Au-
gust 2005.

[41] P. Lopez-Garcia, F. Bueno, and M. V. Hermenegildo. Automatic Inference of
Determinacy and Mutual Exclusion for Logic Programs Using Mode and Type
Analyses. New Generation Computing, 28(2):117–206, 2010.

[42] William M. McKeeman. Differential testing for software. Digital Technical Journal,
10:100–107, 1998.

[43] E. Mera, P. Lopez-Garcia, and M. V. Hermenegildo. Integrating Software Testing
and Run-Time Checking in an Assertion Verification Framework. In 25th Int’l.
Conference on Logic Programming (ICLP’09), volume 5649 of LNCS, pages 281–
295. Springer-Verlag, July 2009.

40

BIBLIOGRAPHY

[44] Jan Midtgaard and Anders Møller. QuickChecking Static Analysis Properties.
Softw. Test., Verif. Reliab., 27(6), 2017.

[45] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the
reliability of UNIX utilities. Commun. ACM, 33(12):32–44, 1990.

[46] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. In ICLP’91,
pages 49–63. MIT Press, June 1991.

[47] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In International
Conference on Logic Programming (ICLP 1991), pages 49–63. MIT Press, June
1991.

[48] Manolis Papadakis and Konstantinos Sagonas. A PropEr Integration of Types
and Function Specifications with Property-Based Testing. In 10th ACM SIGPLAN
workshop on Erlang, pages 39–50, September 2011.

[49] G. Puebla, F. Bueno, and M. V. Hermenegildo. An Assertion Language for Con-
straint Logic Programs. In P. Deransart, M. V. Hermenegildo, and J. Maluszyn-
ski, editors, Analysis and Visualization Tools for Constraint Programming, num-
ber 1870 in LNCS, pages 23–61. Springer-Verlag, September 2000.

[50] G. Puebla, F. Bueno, and M. V. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Proc. of LOPSTR’99,
LNCS 1817, pages 273–292. Springer-Verlag, March 2000.

[51] G. Puebla, F. Bueno, and M. V. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro-
gram Synthesis and Transformation (LOPSTR’99), number 1817 in LNCS, pages
273–292. Springer-Verlag, March 2000.

[52] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xue-
jun Yang. Test-case reduction for C compiler bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, page 335–346, New York, NY, USA, 2012. Association for Computing
Machinery.

[53] Tom Schrijvers, Bart Demoen, Markus Triska, and Benoit Desouter. Tor: Modu-
lar search with hookable disjunction. Sci. Comput. Program., 84:101–120, 2014.

[54] Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. A type
system for certified binaries. SIGPLAN Not., 37(1):217–232, January 2002.

[55] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code
mutation. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2016, page 849–863, New York, NY, USA, 2016. Association for Computing
Machinery.

[56] C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic
Programs. In 9th International Static Analysis Symposium (SAS’02), volume 2477
of Lecture Notes in Computer Science, pages 102–116. Springer-Verlag, Septem-
ber 2002.

41

BIBLIOGRAPHY

[57] Jingyue Wu, Gang Hu, Yang Tang, and Junfeng Yang. Effective dynamic de-
tection of alias analysis errors. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, page 279–289, New
York, NY, USA, 2013. Association for Computing Machinery.

[58] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understand-
ing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’11, page 283–294,
New York, NY, USA, 2011. Association for Computing Machinery.

[59] Andreas Zeller. Yesterday, my program worked. today, it does not. why? SIG-
SOFT Softw. Eng. Notes, 24(6):253–267, October 1999.

[60] Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhen-
dong Su. Finding and understanding bugs in software model checkers. In Pro-
ceedings of the 13th Joint Meeting of the 18th European Software Engineering
Conference and the 27th Symposium on the Foundations of Software Engineering,
pages 763–773, 2019.

42

	Introduction
	Motivation and Objectives
	Towards Automatic Generation: Assertion-Based Random Testing
	Testing the Static Analyzer

	Contributions
	Outline

	Background
	Ciao and The Ciao Model
	The Assertion Language.
	Static Analysis.
	Ciao's Debugging Framework

	Assertion-Based Random Testing
	Overview
	Examples
	(Conditional) Postconditions.
	Computational Properties.
	Rich Generation.

	Test Case Generation
	Pure Prolog.
	Mode, Sharing, and Arithmetic Constraints.
	Generation for Other Properties.

	Integration with Static Analysis
	A Finer-Grain Integration.

	Shrinking

	Testing Static Analyzers
	Testing Abstract Domain Properties
	Generation.
	Analysis.
	Bugs Found.

	Testing Properties Inferred by the Analyzer
	Overview of the Approach
	The Algorithm
	Basic Reasoning Behind the Approach
	The Algorithm
	Other Details and Observations
	Analysis Crashes.
	Benchmark Selection.
	Entry Points.
	Test Case Generation.
	Error Diagnosis and Debugging.
	Multivariance and Path-Sensitivity.

	Applications and Examples
	Debugging Abstract Domains.
	Debugging Trust Assertions and Custom Transfer Functions.
	Testing the Abstract Interpretation Engine.
	Testing the Overall Consistency of the Framework.
	Integration Testing of the Analyzer and Third Parties.

	A More Detailed Case Study
	Setup.
	Results.

	Related Work
	Conclusions

