
The Ciao Approach
to the Dynamic vs. Static Language Dilemma

(Position/System/Demo Paper1)

M. V. Hermenegildo1,2 F. Bueno1 M. Carro1 P. López-Garćıa2,4

E. Mera3 J. F. Morales2 G. Puebla1

1Universidad Politécnica de Madrid (UPM)
{bueno,mcarro,german,herme}@fi.upm.es

2Madrid Institute of Advanced Studies
in SW Development Technology (IMDEA Software Institute)

{manuel.hermenegildo,pedro.lopez,jose.morales}@imdea.org
3Universidad Complutense de Madrid (UCM)

edison@fdi.ucm.es
4Scientific Research Council (CSIC)

Dynamic vs. Static Languages

The environment in which much software needs to be developed nowadays (de-
coupled software development, use of components and services, increased inter-
operability constraints, need for dynamic update or self-reconfiguration, mash-up
development, etc.) is posing requirements which align with the classical argu-
ments for dynamic languages and which in fact go beyond them. Examples of
often required dynamic features include making it possible to (partially) test and
verify applications which are partially developed and which will never be “com-
plete” or “final,” or which evolve over time in an asynchronous, decentralized
fashion (e.g., software service-based systems). These requirements, coupled with
the intrinsic agility in development of dynamic programming languages such as
Python, Ruby, Lua, JavaScript, Perl, PHP, etc. (with Scheme or Prolog also in
this class) have made such languages a very attractive option for a number of
purposes that go well beyond simple scripting. Parts written in these languages
often become essential components (or even the whole implementation) of full,
mainstream applications.

At the same time, detecting errors at compile-time and inferring many prop-
erties required in order to optimize programs are still important issues in real-
world applications. Thus, strong arguments are still also made in favor of static
languages. For example, many modern logic and functional languages (such as,
e.g., Mercury [24] or Haskell [12]) impose strong type-related requirements such
as that all types (and, when relevant, modes) have to be defined explicitly or

1 In addition to the other references, this recent tutorial overview of Ciao [11] covering
more fully the points made in this position paper can be downloaded from:
http://clip.dia.fi.upm.es/papers/hermenegildo10:ciao-design-tplp-tr.pdf

http://clip.dia.fi.upm.es/papers/hermenegildo10:ciao-design-tplp-tr.pdf


that all procedures have to be “well-typed” and “well-moded.” One argument
supporting this approach is that it clarifies interfaces and meanings and facili-
tates “programming in the large” by making large programs more maintainable
and better documented. Also, the compiler can use the static nature of the lan-
guage to generate more specific code, which can be better in several ways (e.g.,
performance-wise).

The Ciao Approach

In the design of Ciao [7,6,2,10,11] we certainly had the latter arguments in mind,
but we also wanted Ciao to be useful (as the “scripting” languages) for highly
dynamic scenarios such as those listed above, for “programming in the small,”
for prototyping, for developing simple scripts, or simply for experimenting with
the solution to a problem. We felt that compulsory type and mode declarations,
and other related restrictions, can sometimes get in the way in these contexts.
Ciao aims at combining the flexibility of dynamic/scripting languages with the
guarantees of static languages, to bridge programming in the small and program-
ming in the large, while performing efficiently on platforms ranging from small
embedded processors to powerful multicore architectures.

Important components of the solution we came up with are the rich Ciao as-
sertion language and the Ciao methodology for dealing with such assertions [3,8,22],
which implies making a best effort to infer and check properties statically, even
highly complex ones, by using powerful and rigorous static analysis tools based
on safe approximations, while accepting that complete verification may not al-
ways be possible (at least in a fully automated way) and run-time checks may
sometimes be needed. This approach opens up the possibility of dealing in a uni-
form way with a wide variety of properties besides traditional types (e.g., rich
modes, determinacy, non-failure, shapes, sharing/aliasing, term linearity, time,
memory, general resources,. . . ), while at the same time allowing all assertions to
be optional.

The Ciao assertion language provides a homogeneous framework which al-
lows, among other things, static and dynamic verification (including unit test-
ing [17]) to work cooperatively in a unified way. It is also instrumental for auto-
documentation. The Ciao Preprocessor (CiaoPP) [3,8,21,9]) is a compile-time
tool, based on abstract interpretation and other related techniques, which is
capable of statically finding non-trivial bugs, verifying that the program com-
plies with specifications (written in the assertion language), introducing run-time
checks for (parts of) assertions that cannot be verified statically, and perform-
ing many types of program optimizations (including automatic parallelization).
Such optimizations produce code that is highly competitive not only with other
dynamic (or “scripting”) languages but even that of static languages, when the
optimizing compiler is used, all while retaining the interactive development en-
vironment of a dynamic language. This static/dynamic compilation architecture
supports modularity and separate compilation throughout.

In the Ciao approach many properties used in assertions, including for exam-
ple types, are written directly (or with convenient syntactic sugar) in the source



language, so that they can be run and experimented with. I.e., one can test in-
teractively if a certain data structure belongs to a type, has a particular size, or
does not contain aliased pointers by just passing the data structure to the defini-
tion of the corresponding property and executing it. Furthermore, properties can
often be used to enumerate (produce examples) of data which meet the property,
such as, e.g., generating concrete examples of a type. This is all instrumental in
the implementation of run-time checks and testing. The underlying logic engine
and meta-programming capabilities of Ciao are fundamental in these tasks.

As mentioned above, the assertion language and preprocessor design also
allows a smooth integration with unit testing. Unit tests are expressed as asser-
tions. Then, as with other assertions, the (parts of) unit tests that can be verified
at compile-time are eliminated, and sometimes it not not necessary whole sets
of tests.

We argue that the solutions that were adopted in the Ciao design allow
programming both in the small and in the large, combining effectively the ad-
vantages of the strongly typed and untyped language approaches. In contrast,
systems which focus exclusively on automatic compile-time checking are often
rather strict about the properties which the user can write. This is understand-
able because otherwise the underlying static analyses are of little use for proving
the assertions.

Some Related Work

The Ciao model is related to the soft typing approach [4]. However, compile-time
inference and checking in the Ciao model is not restricted to types (nor requires
properties to be decidable), and it draws many new synergies from its novel
combination of assertion language, properties, certification, run-time checking,
testing, etc. The practical relevance of the combination of static and dynamic
features is in fact illustrated by the many other languages and frameworks which
have been proposed lately aiming at bringing together ideas of both worlds. This
includes the very interesting recent work in gradual typing for Scheme [25] (and
the related PLT-Scheme/Racket language), the recent uses of “contracts” in
verification [16,19], and the pragmatic viewpoint of [14], but applied to pro-
gramming languages rather than specification languages. The fifth edition of
ECMAScript [5], on which the JavaScript and ActionScript languages are based,
includes optional (soft-)type declarations to allow the compiler to generate more
efficient code and detect more errors. The Tamarin project [18] intends to use this
additional information to generate faster code. For Python, the PyPy project [23]
has designed a language, RPython [1], that imposes constraints on the programs
to ensure that they can be statically typed. RPython is moving forward as a gen-
eral purpose language. This line of thought has also brought the development of
safe versions of traditional languages, such as, e.g., CCured [20] or Cyclone [13]
for C, as well as of systems that offer functionality similar to those of the Ciao
assertion preprocessor, such as Deputy (http://deputy.cs.berkeley.edu/) or
Spec# [15]. In summary, we argue that Ciao pioneered what are becoming rela-

http://deputy.cs.berkeley.edu/


tively widely accepted approaches to marrying the static and dynamic language
worlds.

Language Extensibility in Ciao

While not as directly related to the dynamic vs. static dilemma, another im-
portant characteristic of Ciao is that it is built up from a kernel that includes
significant extensibility capabilities, i.e., it includes an easily programmable and
modular way of defining new syntax and giving semantics to it in terms of that
kernel language. This idea is not exclusive to Ciao, but in Ciao the facilities that
enable building up from a simple kernel are extensive and explicitly available
from the system programmer level to the application programmer level.

Also, this mechanism to add new syntax to the language and give semantics
to such syntax can be activated or deactivated on a per-compilation unit basis
without interfering with others. In fact, all Ciao operators, “builtins,” and most
other syntactic and semantic language constructs are user-modifiable and live
in libraries. Using these facilities, Ciao provides the programmer with a large
number of useful features from different programming paradigms and styles, and
the use of each of these features can be turned on and off at will for each program
module. Thus, a given module may be using, e.g., higher order functions and
constraints, while another module may be using imperative operations, objects,
predicates, Prolog meta-programming builtins, and concurrency.

Conclusions

We believe that Ciao has pushed and is continuing to push the state of the art in
solving the currently very relevant and challenging conundrum between statically
and dynamically checked languages. It pioneered what we believe is the most
promising approach in order to be able to obtain the best of both worlds: the
combination of a flexible, multi-purpose assertion language with strong program
analysis technology. This allows support for dynamic language features while at
the same time having the capability of achieving the performance and efficiency
of static systems. We believe that a good part of the power of the Ciao approach
also comes from the synergy that arises from using the same framework and
assertion language for different tasks (static verification, run-time checking, unit
testing, documentation, . . . ) and its interaction with the design of Ciao itself (its
module system, its extensibility, or the support for predicates and constraints).

References

1. Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis.
RPython: a Step towards Reconciling Dynamically and Statically Typed OO Lan-
guages. In DLS ’07: Proceedings of the 2007 Symposium on Dynamic Languages,
pages 53–64, New York, NY, USA, 2007. ACM.



2. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and
G. Puebla-(Eds.). The Ciao System. Ref. Manual (v1.13). Technical re-
port, School of Computer Science, T.U. of Madrid (UPM), 2009. Available at
http://www.ciaohome.org.

3. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int’l Workshop on Au-
tomated Debugging–AADEBUG’97, pages 155–170, Linköping, Sweden, May 1997.
U. of Linköping Press.

4. Robert Cartwright and Mike Fagan. Soft Typing. In Programming Language
Design and Implementation (PLDI 1991), pages 278–292. SIGPLAN, ACM, 1991.

5. ECMA International. ECMAScript Language Specification, Standard ECMA-
262, Edition 5. Technical report, September 2009. Available at http://wiki.

ecmascript.org.
6. M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garćıa de la Banda,

P. López-Garćıa, and G. Puebla. The CIAO Multi-Dialect Compiler and System:
An Experimentation Workbench for Future (C)LP Systems. In Parallelism and
Implementation of Logic and Constraint Logic Programming, pages 65–85. Nova
Science, Commack, NY, USA, April 1999.

7. M. Hermenegildo and The CLIP Group. Some Methodological Issues in the De-
sign of CIAO - A Generic, Parallel, Concurrent Constraint System. In Principles
and Practice of Constraint Programming, number 874 in LNCS, pages 123–133.
Springer-Verlag, May 1994.

8. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De-
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The
Logic Programming Paradigm: a 25–Year Perspective, pages 161–192. Springer-
Verlag, July 1999.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2), 2005.

10. M. Hermenegildo and The Ciao Development Team. Why Ciao? –An Overview of
the Ciao System’s Design Philosophy. Technical Report CLIP7/2006.0, Technical
University of Madrid (UPM), School of Computer Science, UPM, December 2006.
Available from: http://cliplab.org/papers/ciao-philosophy-note-tr.pdf.

11. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales, and
G. Puebla. An Overview of Ciao and its Design Philosophy. Technical Report
CLIP2/2010.0, Technical University of Madrid (UPM), School of Computer Sci-
ence, March 2010. Under consideration for publication in Theory and Practice of
Logic Programming (TPLP).

12. P. Hudak, S. Peyton-Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M.
Guzman, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Par-
tain, and J. Peterson. Report on the Programming Language Haskell. Haskell
Special Issue, ACM Sigplan Notices, 27(5), 1992.

13. Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe dialect of c. In Carla Schlatter El-
lis, editor, USENIX Annual Technical Conference, General Track, pages 275–288.
USENIX, 2002.

14. Leslie Lamport and Lawrence C. Paulson. Should your specification language be
typed? ACM Transactions on Programming Languages and Systems, 21(3):14, May
1999.

http://clip.dia.fi.upm.es/papers/aadebug97-informal_bitmap.pdf
http://clip.dia.fi.upm.es/papers/aadebug97-informal_bitmap.pdf
http://wiki.ecmascript.org
http://wiki.ecmascript.org
http://clip.dia.fi.upm.es/papers/ciao-novascience_bitmap.pdf
http://clip.dia.fi.upm.es/papers/ciao-novascience_bitmap.pdf
http://clip.dia.fi.upm.es/papers/ciao-ppcp_bitmap.pdf
http://clip.dia.fi.upm.es/papers/ciao-ppcp_bitmap.pdf
http://clip.dia.fi.upm.es/papers/prog-glob-an_bitmap.pdf
http://clip.dia.fi.upm.es/papers/prog-glob-an_bitmap.pdf
http://clip.dia.fi.upm.es/papers/prog-glob-an_bitmap.pdf
http://clip.dia.fi.upm.es/papers/ciaopp-sas03-journal-scp.pdf
http://clip.dia.fi.upm.es/papers/ciaopp-sas03-journal-scp.pdf
http://clip.dia.fi.upm.es/papers/ciaopp-sas03-journal-scp.pdf
http://clip.dia.fi.upm.es/papers/ciao-philosophy-note-tr.pdf
http://clip.dia.fi.upm.es/papers/ciao-philosophy-note-tr.pdf
http://cliplab.org/papers/ciao-philosophy-note-tr.pdf
http://clip.dia.fi.upm.es/papers/hermenegildo10:ciao-design-tplp-tr.pdf


15. Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verifi-
cation challenges for sequential object-oriented programs. Formal Asp. Comput.,
19(2):159–189, 2007.

16. Francesco Logozzo et al. Clousot. http://msdn.microsoft.com/en-us/devlabs/

dd491992.aspx.
17. E. Mera, P. López-Garćıa, and M. Hermenegildo. Integrating Software Testing and

Run-Time Checking in an Assertion Verification Framework. In 25th International
Conference on Logic Programming (ICLP’09), number 5649 in LNCS, pages 281–
295. Springer-Verlag, July 2009.

18. Mozilla. Tamarin Project, 2008. Available at http://www.mozilla.org/

projects/tamarin/.
19. MSR. Code contracts. http://research.microsoft.com/en-us/projects/

contracts/.
20. George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley

Weimer. Ccured: type-safe retrofitting of legacy software. ACM Trans. Program.
Lang. Syst., 27(3):477–526, 2005.

21. G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program
Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski,
editors, Analysis and Visualization Tools for Constraint Programming, number
1870 in LNCS, pages 63–107. Springer-Verlag, September 2000.

22. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,
Analysis and Visualization Tools for Constraint Programming, number 1870 in
LNCS, pages 23–61. Springer-Verlag, September 2000.

23. A. Rigo and S. Pedroni. PyPy’s Approach to Virtual Machine Construction. In
Dynamic Languages Symposium 2006. ACM Press, October 2006.

24. Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of Mercury:
an Efficient Purely Declarative Logic Programming Language. Journal of Logic
Programming, 29(1–3):17–64, October 1996.

25. Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of
typed scheme. In George C. Necula and Philip Wadler, editors, Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, pages
395–406. ACM, 2008.

http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://clip.dia.fi.upm.es/papers/testchecks-iclp09.pdf
http://clip.dia.fi.upm.es/papers/testchecks-iclp09.pdf
http://www.mozilla.org/projects/tamarin/
http://www.mozilla.org/projects/tamarin/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://clip.dia.fi.upm.es/papers/preproc-disciplbook_bitmap.pdf
http://clip.dia.fi.upm.es/papers/preproc-disciplbook_bitmap.pdf
http://clip.dia.fi.upm.es/papers/assert-lang-disciplbook_bitmap.pdf
http://clip.dia.fi.upm.es/papers/assert-lang-disciplbook_bitmap.pdf

