To be published in the Computer Languages Journal

Improving the Efficiency of Nondeterministic Independent
And-parallel Systems

Enrico Pontelli, Gopal Gupta Manuel Carro
DongXing Tang Manuel Hermenegildo
Laboratory for Logic and Databases Facultad de Informatica
Dept. of Computer Science Universidad Politécnica de Madrid
New Mexico State University 28660-Boadilla del Monte
Las Cruces, NM, USA Madrid, Spain
{epontell,gupta,dtang}@cs.nmsu.edu {mcarro,herme}@fi.upm.es
Abstract

We present the design and implementation of the and-parallel component of ACE. ACE
is a computational model for the full Prolog language that simultaneously exploits both
or-parallelism and independent and-parallelism. A high performance implementation of the
ACE model has been realized and its performance reported in this paper. We discuss how
some of the standard problems which appear when implementing and-parallel systems are
solved in ACE. We then propose a number of optimizations aimed at reducing the overheads
and the increased memory consumption which occur in such systems when using previously
proposed solutions. Finally, we present results from an implementation of ACE which in-
cludes the optimizations proposed. The results show that ACE exploits and-parallelism
with high efficiency and high speedups. Furthermore, they also show that the proposed op-
timizations, which are applicable to many other and-parallel systems, significantly decrease
memory consumption and increase speedups and absolute performance both in forwards
execution and during backtracking.

Keywords: Independent And-parallelism, Or-parallelism, Implementation Issues, Mem-
ory Management, Performance Evaluation, Logic Programming.

1 Introduction

1.1 Logic Programming and Prolog

Logic programming is a programming paradigm where programs are expressed as logical rules
[35, 8]. Logic programming languages have been shown to be suited to a wide range of applica-
tions, from compilers to databases and to symbolic applications, as well as for general purpose
programming (see, e.g., [49]). Arguably, the most popular logic programming language nowadays
is Prolog. Unlike conventional programming languages, Logic Programming languages disallow
destructive assignment and include little explicit control information. Not only this allows cleaner
(declarative) semantics for programs, and hence a better understanding of them by their users,



it also makes it easier for an evaluator of logic programs to employ different control strategies for
evaluation. That is, different operations in a logic program can often be executed in any order
without affecting the (declarative) meaning of the program.' In particular, these operations can
be performed by the evaluator in parallel. Furthermore, the cleaner semantics also make logic
languages more amenable to automatic compile-time analysis and transformation.

An important characteristic of logic programming languages is that they greatly facilitate
exploiting parallelism in an ¢mplicit way. This can be done directly by the program evaluator, as
suggested above, or, alternatively, it can be done by a parallelizing compiler, whose task then is
essentially unburdening the evaluator from making run-time decisions regarding when to run in
parallel. Finally, of course, the program can be parallelized by the user. In all cases, the advantage
offered by logic programming is that the process is easier because of the more declarative nature of
the language and its high level, which contribute in preventing the parallelism in the application
from being hidden in the coding process. Furthermore, the parallelization process can be done
quite successfully in an automatic way, requiring little or no input from the user. Clearly,
implicit exploitation of parallelism can in many cases have significant advantages over explicit
parallelization.? In that sense, Prolog offers a possible path for solving the new form of “(parallel)
software crisis” that is posed to arise with the new wider availability of multiprocessors*—given
systems, such as the one described in this paper, one can run Prolog programs written for
sequential machines in parallel with little or no effort. For the rest of the paper we assume that
the reader is familiar with Prolog and its execution model.

It must be pointed out that while the preferred target areas of Prolog are Symbolic and Al
applications, our system, as any other Prolog system (parallel or not), can also be used for the
execution of general purpose programs [49], retaining the advantages in performance of parallel
execution. This is borne out from some of the benchmarks we have used in Section 5 of this

paper.

1.2 Parallelism in Logic Programming

Three principal kinds of (implicitly exploitable) control parallelism can be identified in logic
programs (and, thus, Prolog) [9].

1. Or-parallelism arises when more than one clause defines some predicate and a literal unifies
with more than one clause head—the corresponding bodies can then be executed in parallel
with each other [38, 1]. Or-parallelism is thus a way of efficiently searching for solutions to
the query, by exploring alternative solutions in parallel.

2. Independent and-parallelism arises when more than one goal is present in the query or in the
body of a clause, and it can be determined that these goals do not “affect” each other
in the sequential execution-they can then be safely executed (independently) in parallel
[16, 28, 36, 24, 27].

'Data dependencies or side effects however do pose constraints in the evaluation order.

2This does not mean, of course, that a knowledgeable user should be prevented from parallelizing programs
manually or even programming sequentially but in a particular way that makes it possible for the system to
uncover more parallelism.

3For example, affordable (shared memory) multiprocessor workstations are already being marketed by vendors
such as Sun (Sun Sparc 10-2000), SGI (Challenge), etc.



3. Dependent and-parallelism arises when two or more non-independent goals (in the sense above)
are executed in parallel. In this case the shared variables are used as a means of communi-
cation. Several proposals and systems adhere to this execution paradigm. Some of them try
to retain the Prolog semantics and behavior, either relying on low—level machinery [46] or
on a mixture of compile-time techniques and specialized machinery [10]. Other proposals
depart from standard Prolog semantics, mainly restricting or disallowing backtracking and
using matching instead of general unification [50, 32, 34, 12, 2]. In general, these decisions
simplify the architecture of the system.

1.3 ACE: An And-Or Parallel System and Execution Model

The ACE (And-or/parallel Copying-based Execution) model 21, 41] uses stack-copying [1] and
recomputation [19] to efficiently support combined or- and independent and-parallel execution.
ACE represents an efficient combination of or- and independent and-parallelism in the sense
that it strives to pay for the penalties for supporting either form of parallelism only when that
form of parallelism is actually exploited. It achieves this by ensuring that, in the presence of
only or-parallelism, execution in ACE be essentially the same as in the MUSE [1] system—a
stack-copying based purely or-parallel system, while in the presence of only independent and-
parallelism, execution be essentially the same as in the &-Prolog [24] system—a recomputation
based purely and-parallel system. This efficiency in execution is accomplished by extending the
stack-copying techniques of MUSE to deal with an organization of processors into teams [10].

It is important to observe that reaching this goal goes far beyond solving a simple engineering
problem in combining two existing systems. The experience of ACE showed that the combination
of two forms of parallelism leads to question most of the design choices and requires new solutions
to previously solved problems (e.g. memory management schemes). This allowed us to get a
better insight in the issues to be tackled in implementing general parallel logic programming
systems. Some of these fundamental issues are briefly sketched in Section 2.5.

The ACE system is an efficient implementation of the ACE model supporting the full Pro-
log language, that has been developed at the Laboratory for Logic, Databases, and Advanced
Programming of the New Mexico State University, in collaboration with the CLIP group at the
Technical University of Madrid, Spain. In this paper we will present briefly how some of the
standard problems which appear when implementing and-parallel systems are solved in ACE.
We then propose a number of optimizations aimed at reducing the overheads and the increased
memory consumption. Finally, we present results from an implementation of the system which
includes the optimizations proposed. The results show that ACE exploits and-parallelism with
very high efficiency and excellent speedups. These results are comparable and often superior
than those presented for other pure and-parallel systems. Furthermore, they also show that the
proposed optimizations, which are applicable to many other and-parallel systems, significantly
decrease memory consumption and increase speedups and absolute performance both in forwards
execution and during backtracking. The ACE implementation belongs to the second generation
of and-parallel systems, since it combines the techniques used in older, first generation systems
(e.g. the first versions of &-Prolog [24]) with new innovative optimizations to obtain a highly
efficient system.

As mentioned before, in this paper we are exclusively concerned with the analysis of the
and-parallel component of the ACE system; for further details on the whole ACE system the
interested reader is referred to [21].



2 Independent And-parallelism

As pointed out above, the main purpose of this paper is to illustrate the structure, features,
and optimizations of the and-parallel engine developed for the ACE system, and evaluate its
performance. In this section we explain the computational behavior of the and-parallel engine
in more detail.

Much work has been done to date in the context of independent and-parallel execution of Prolog
programs. Practical models and systems which exploit this type of parallelism [28, 36, 24, 46|
are generally designed for shared memory platforms and based on the “marker model”, and on
derivations of the RAP-WAM/PWAM abstract machines, originally proposed in [28, 30] and
refined in [24, 47, 48]. This model has been shown to be practical through its implementation
in the &-Prolog system, which proved capable of obtaining quite good speedups with respect to
state of the art sequential systems. Our design of the and-parallel component of ACE is heavily
influenced by this model and its implementation in &-Prolog. However, in addition to supporting
or-parallelism, ACE also incorporates a significant number of optimizations which considerably
reduce the parallel overhead and result in better overall efficiency. These optimizations are
fairly general, and are applicable to any and-parallel system whose implementation is based
on the markers model. The election of having a shared memory space, in contrast to many
other proposals which use distributed memory models, is now supported by the availability of
commercial multiprocessors in the market and their relative ease of programming. In addition,
shared memory machines offer a model for the implementor which is simpler and more portable
than that offered by distributed memory architectures.

2.1 Introduction

As in the RAP-WAM, ACE exploits independent and-parallelism using a recomputation based
scheme [19]—no sharing of solutions is performed (at the and-parallel level). This means that for
a query like 7- a,b, where a and b are nondeterministic, b is completely recomputed for every
solution of a (as in Prolog).

For simplicity and efficiency, we adopt the solution proposed by DeGroot [16] of restricting
parallelism to a nested parbegin-parend structure. This is illustrated in Figure 1 which sketches
the structure of the computation tree created in the presence of and-parallel computation with
the previously mentioned parbegin-parend structure, where the different branches are assigned to
different and-agents (and-agents are processing agents working in and-parallel with each other).
Since and-agents are computing just different parts of the same computation (i.e. they are
cooperating in building one solution of the initial query) they need to make available to each
other their (partial) solutions. Doing this in a distributed memory machine would need a traffic
of data which would impact negatively on performance. This is avoided in a shared memory
machine by having different but mutually accessible logical address spaces. This can be seen in
through an example: let us consider the following clause (taken from a program for performing
symbolic integration):

integrate(X + Y,Z) <« integrate(X,X;), integrate(Y,Y;), Z = X; + Y;

The execution of the two subgoals in the body can be carried out in and-parallel. But at the
end of the parallel part, the execution is sequential and it requires access to terms created in the
stacks of different and-agents (see figure 2).



