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Resumen

Uno de los grandes retos para los métodos formales es resolver el problema de fia-
bilidad del software. El concepto de métodos formales hace referencia a técnicas y
herramientas basadas en procedimientos matematicos que se utilizan para especifi-
car, validar y verificar sistemas de software. Actualmente, estas técnicas matematicas
no estan integradas en la industria del desarrollo software y es debido principalmente
a la falta de conocimiento sobre los métodos formales entre los profesionales. Es por
ello que las universidades y centros de investigacion tienen un papel esencial para el
desarrollo de herramientas capaces de proporcionar el entrenamiento necesario para
que estudiantes y profesionales puedan hacer uso de estos métodos.

Hemos escogido el sistema Ciao ya que incluye un conjunto tnico de herramientas
para solucionar los retos planteados anteriormente. Entre estas se incluye CiaoPP,
una herramienta automatica de analisis estatico que permite inferir propiedades del
software y localizar errores combinando técnicas estaticas y dinamicas. En esta te-
sis de master proponemos una arquitectura para la generacion de tutoriales de la
herramienta CiaoPP que proporcionen contenido tanto interactivo como estatico. La
generacion de este contenido es posible gracias a la existencia de filtros aplicados por
la herramienta exfilter para obtener ejemplos y ejercicios individualizados. También
haremos uso de otras herramientas de Ciao como Ciao Playground y LPdoc.






Abstract

One of the grand challenges for formal methods is to solve the software reliability
problem. The notion of formal methods refers to techniques and tools based on
mathematical procedures that are used to specify, validate and verify software sys-
tems. Currently, these mathematical techniques are not integrated in the software
development industry and it is mainly due to the lack of knowledge about formal
methods among professionals. That is why universities and research institutes have
an essential role to play in the development of tools capable of providing the necessary
training so that students and professionals can make use of these methods.

We have opted for the Ciao system as it includes a unique of set of tools for facing
the challenges mentioned above. These include CiaoPP, an automatic static analysis
tool that infers software properties and locates errors combining static and dynamic
techniques. In this master thesis we propose an architecture for the generation of
tutorials of the CiaoPP tool that provides both interactive and static content. The
generation of this content is possible thanks to the existence of filters applied by the
exfilter tool to obtain individualized examples and exercises. We also make use of
other tools such as Ciao Playground and LPdoc.
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Chapter 1

Introduction

Modern software is growing in size and complexity in its demand for functionality and
performance, making the software reliability problem more significant than ever [12].
The software industry is becoming more aware of this difficulty and is starting to pay
attention to formal methods.

Formal methods address this problem by using rigorous mathematical techniques for
describing, verifying, and analyzing software systems. Even though formal methods
have been advocated as a means of increasing system reliability, use in the computing
industry of these mathematical formalisms is limited in practice [2]. Several reasons
have been identified [11, 3]: there are not enough programmers with the appropriate
training to make use of them, although its relevance in education is gradually grow-
ing [18, 32]. Other reasons are the complex notation and the difficulty in mastering
the support tools. We should also take into consideration the fact that there are some
misconceptions about the use of formal methods [26].

The most frequently mentioned way of resolving this situation is a reform of educa-
tion in order to provide the next generations of students with sufficient background
and practical experience in formal methods [8, 47, 20]. However, teaching these
techniques faces a number of challenges. On the one hand, despite the fact that the
amount of literature on teaching formal methods has been growing, these texts are
often aimed at researchers. Additionally, there is relatively little material covering
certain topics, and in particular program analysis. In addition, the majority of the
available material usually resides in conventional textbooks and it is not straight-
forward to convert it to more compelling channels such as interactive systems. The
2020 expert survey on formal methods [20] considers that universities and research
institutes have a central role to play in the construction of such software tools and
make sure that industry professionals and students can learn about formal methods.

Modern learning tools generally make use of advanced technology to produce content
and interactive user feedback, so that they can be up to a certain degree described
under the term intelligent tutoring systems (ITS) [5, 48]. Since these systems typically
need to encode large amounts of knowledge, it is important to determine what to
teach, as well as when and how to teach it. Most of the intelligent techniques used
for this purpose can be classified into three groups [5, 4]:

1. Curriculum sequencing. Since every student is different, it is often interesting
to have a non-linear curriculum depending on the abilities and capabilities of
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1.1. Structure of the document

each student. Such systems construct for each student an individual learning
path.

2. Intelligent analysis of student solutions. A solution analyzer’s objective is to
decide whether the solution is correct or not, find the error made by the student,
and identify possible causes in order to help the student correct it.

3. Interactive problem-solving support. This last technique provides students
with personalized and intelligent help on each problem-solving step. The level of
assistance can vary: from highlighting an error, to giving a hint, or to executing
the next step for the user.

All these functionalities are intended to support the “intelligent” duties of the human
teacher.

Then, if there is a solution, why hasn’t it been solved before? A contributing factor
is that it is only recently that the maturation of web solutions has given rise to the
possibility of easily bringing platforms and environments to the web, such as inter-
active tutorials, making them more accessible and also scalable. With that, efficiency
of code on the Web has become more important than ever. Thanks to recent inno-
vations such as WebAssembly [25] users can write, compile, and run code in several
languages directly from their browsers.

There are a few models currently working: jsCoq [19] is one of the first systems to
embed a full theorem prover inside a browser. It is a platform and user environment
for the Coq interactive proof assistant. For educational use, jsCoq allows the user to
start interacting with proof scripts right away. This technology has been already used
in different places: examples, tutorials, and courses'. Also Lean [14] has developed a
playground accessible through the web. The intended uses of this infrastructure are
web applications such as web IDEs?, “live” tutorials and documentation®, and online
exercises. Moreover, it was used to develop course material for an interactive theorem
proving course being offered in the spring of 2015 at CMU.

Our take on the problem is to devise a mechanism that produces code fragments au-
tomatically (content) and interactive user feedback by running the exfilter support
tool in combination with the Ciao Prolog Playground [23, 24]. Our main goal is to
help students and other users learn how to use advanced tools like CiaoPP (as well
as to learn Prolog) without having to install and learn complex IDEs and environ-
ments, letting them try examples in a playground environment. More generally, our
objective is to provide a tool that allows educators to create educational material. In
addition to developing a specific tool, exfilter, we have also used this tool to create
an interactive tutorial for CiaoPP. The tutorial introduces users to the approach of
using static analysis as a program development tool and allows them to familiarize
themselves with CiaoPP and other features of the Ciao system.

1.1. Structure of the document

The rest of the document is structured as follows: Chapter 2 describes the Ciao sys-
tem, the framework that we have used to develop our tool. In Chapter 3 we introduce

Thttps://github.com/jscoq/jscoq#jsCoq-Users
2https:/ /leanprover.github.io/tutorial /?live
Shttp://leanprover.github.io/tutorial
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Introduction

the proposed architecture for the generation of interactive tutorials, the exfilter tool,
and a description of the available filters. Chapter 4 presents the tutorial created,
which serves to evaluate the suitability of our architecture. Moreover, the tutorial
illustrates the use of the combination of the Ciao tools on representative examples to
verify their correctness. In Chapter 5 we provide some performance results by ana-
lyzing the examples of the tutorial. Finally, Chapter 6 summarizes the conclusions
and suggests some possible new lines for future study.






Chapter 2

The Ciao System

Ciao [28] is a modern, multiparadigm programming language with an advanced pro-
gramming environment. The main motivation behind the system is to offer a combi-
nation of programming paradigms and development tools that together help program-
mers produce better, more correct code in less time and with less effort. Regarding
the objective of code correctness and the associated development tools, the two main
approaches used currently are verification, which uses formal methods to prove spec-
ifications of the code, and testing.

The Ciao language introduces a development workflow [46, 30, 31] that unifies the
above two approaches. In the Ciao model, program assertions (Section 2.2) are fully
integrated into the language, acting as specifications for static analysis and as run-
time check generators, unifying run-time verification and unit testing with static ver-
ification and static debugging. In Ciao the assertions are optional: if a program con-
tains no user-provided assertions, Ciao can check the program against the assertions
contained in the libraries used by the program.

The assertions used in Ciao are designed to serve many purposes: They can be pro-
cessed by an autodocumenter (LPdoc, Section 2.3) in order to generate useful docu-
mentation while the system preprocessor (CiaoPP, Section 2.1) will use these asser-
tions to report static analysis and verification results to the programmer.

Furthermore, the language is designed to be extensible in a simple and modular way
using “packages” (syntactic and semantic extensions) and “bundles”.

A high-level view of the Ciao System is shown in Figure 2.1. Blue-colored boxes
represent user-written code; green boxes represent different tools within the system:
the compiler, LPdoc and the CiaoPP Program Processor; and the red box represents
the execution environment of the system, i.e., its run-time abstract machine and
libraries.

2.1. CiaoPP: The Ciao Program Processor

CiaoPP! [30, 31, 46, 7] is the abstract interpretation-based program (pre)processor of
Ciao. It is capable of statically finding non-trivial bugs, verifying that the program
complies with specifications, and performing many types of program optimizations.

Thttps://cliplab.org/~clip/Software/Ciao/ciaopp- 1.2.0.html/ciaopp_ref_man.html
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2.1. CiaoPP: The Ciao Program Processor
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Figure 2.1: A high-level view of the Ciao system [28].

These can be applied to (Ciao) Prolog programs and also to many other high- and
low-level languages, based on computing provably safe approximations of properties,
using the technique of abstract interpretation [13]. The tasks performed by CiaoPP
include:

» Inference of properties at the level of predicates and literals of the program,
including types, modes and other variable instantiation properties, non-failure,
determinacy, bounds on computational cost, bounds on sizes of terms in the
program, etc.

» Static debugging and verification. This includes checking how programs call
system library predicates and also checking the assertions present in the pro-
gram or in other modules used by the program.

= Source to source program transformations such as program specialization, slic-
ing, partial evaluation, and program parallelization (with granularity control). It
also produces run-time test annotations for assertions that cannot be checked
completely at compile-time, so that the program can be run safely by dynami-
cally checking properties, and also generates test cases automatically from as-
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Figure 2.2: Architecture of the CiaoPP verification framework.

sertions.

= Producing abstract models of programs that act as certificates of the correct-
ness of the code. The system is used to certify that code is safe with respect
to the given policy (i.e., an abstraction-carrying code approach to mobile code
safety [1]).

All the aforementioned features rely on the statically inferred properties based on
fixpoint computation. Figure 2.2 provides an overview of the components of CiaoPP.
The input to the process is the user program (possibly written in a different lan-
guage) which can include a set of assertions (specification of the program). The Static
Analyzer component has several fixpoint computation algorithms that are used to
produce analysis information. This information (true assertions) is used to statically
check the assertions in the Static Comparator. For each assertion originally with
status check, the result of this process can be: that it is verified (the new status is
checked), that a violation is detected (the new status is false), or that it is not possible
to decide either way, in which case the assertion status remains as check, as detailed
in the next section. In such cases, a warning and/or a run-time test generated by the
Run-time Check Annotator component for (the part of) the assertion that could not be
discharged at compile-time may be displayed.

Test cases can be also generated by the test generation module (CiaoTest [10, 9]).
CiaoTest is integrated into CiaoPP and is able to generate goals for a predicate (texec’s)
satisfying the assertion precondition. This module executes these goals to check
that this assertion holds for those cases or, alternatively, find errors. CiaoTest also
executes any user-defined unit tests relying on the run-time checking framework.

CiaoPP has been applied to the analysis, verification, and optimization of a number
of languages (besides Ciao) such as Java, XC (C like) [38], Java bytecode [41, 40],
ISA [37], LLVM IR [36], Michelson [43], ..., and resources ranging from execution
time to energy consumption [39, 35].
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2.2. Assertions

2.2. Assertions

Assertions are linguistic constructions which allow expressing properties of pro-
grams. In this thesis we use the Ciao assertion language [46, 30, 31, 45]. These
assertions can be used to express different properties of predicates in the source
code, including functional properties, e.g., types, modes, sharing, aliasing, ..., as
well as nonfunctional properties such as resource usage (energy, time, memory, ...),
determinacy or non-failure. The user uses them in order to write specifications, ex-
press properties that some part of the code must fulfill, describe unknown code, etc.

One of the most commonly-used components of the Ciao assertion language is the
pred assertion [30, 31, 6], which allows describing sets of preconditions and condi-
tional postconditions on the state for a given predicate as well as global properties. A
pred assertion is of the form:

:- [ Status ] pred Head [: Pre ] [=> Post ] [+ Comp ].

where Head is a predicate descriptor that denotes the predicate that the assertion
applies to, and Pre and Post are conjunctions of property literals. These properties are
predicates which can also be used as run-time checks and can be inferred by some
abstract domain in CiaoPP. Pre expresses properties that hold when Head is called,
namely, at least one Pre must hold for each call to Head. Post states properties
that hold if Head is called in a state compatible with Pre and the call succeeds.
Finally, Comp can be used to describe properties of the computation such as cost,
termination, determinism, non-failure, etc., and they apply to calls to the predicate
that meet Pre.

Each assertion has a Status which is a keyword of the meaning of the assertion. The
existing Statuses are the following:

= check: the assertion expresses properties that must hold at run-time, i.e., that
the analyzer should prove or generate run-time checks for them. check is the
default status, and can be omitted.

» trust: the assertion represents an actual behavior of the predicate that the ana-
lyzer assumes to be correct although it may not be able to infer it automatically.

» checked: the analyzer proved that the property holds in all executions.
= true: the analyzer inferred the assertion.
= false: the analyzer proved that the property does not hold in some execution.

As mentioned before, parts of assertions that cannot be discharged statically will
remain in check status and run-time tests will be generated for them if necessary.

Example 1 Consider the following check assertions of app/3:

:- pred app(Xs, Ys, Zs) : ( list(Xs), list(Ys) ) => list(Zs).
:- pred app(Xs, Ys, Zs) : list(Zs) => ( list(Xs), list(Ys) ).

:- prop list/1.
list ([]1) .
list ([_|T]) :- 1list(T) .
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the first assertion expresses that calls to predicate app/3 with the first and second
arguments bound to a list are admissible, and that if such calls succeed then the third
argument should also be bound to a list. The second assertion captures another mode
of use, stating that calls with just the third argument bound to a list are also admissible,
and in that case on success the first and second arguments should be bound to a list.

Note the definition of the 1ist/1 property (in this case a regular type) in lines 5-6. There
are properties, such as num/1, 1ist/1, or var/1, which are builtin properties, i.e., are
defined in modules which are loaded by default, so there is no need to define them.

Definition 1 (Meaning of a Set of Assertions for a Predicate) Given a predicate rep-
resented by a normalized atom Head, and a corresponding set of assertions {a; ...a,},
with a; = “:- pred Head : Pre; => Post;.” the set of assertion conditions for Head
is {C(), Cl, ey Cn}, with:

- calls(Head, \/;_, Pre;) i=0
success(Head, Pre;, Post,;) i=1...n

where calls(Head, Pre)states conditions on all concrete calls to the predicate de-
scribed by Head, and success(Head, Pre;, Post;) describes conditions on the success
constraints produced by calls to Head if Pre; is satisfied. These allow representing
behaviors for the same predicate for different call substitutions (multivariance). If
the assertions a; above, i = 1,...,n, include a + Comp field, then the set of assertion
conditions also include conditions of the form comp(Head, Pre;, Comp,), for i = 1,...,n,
that express properties of the whole computation for calls to Head if Pre; is satisfied.

The assertion conditions for the assertions in the example above are:

calls( app(Xs,Ys, Xs), ((list(Xs)Alist(Ys))V (list(Zs)))),
success( app(Xs,Ys, Xs), (list(Xs)Alist(Ys)), list(Zs))),
success( app(Xs,Ys, Xs), (list(Zs)), (list(Xs)Alist(Ys)))

2.3. LPdoc

LPdoc [27, 29] is a tool which generates documentation manuals automatically from
one or more logic program source files, written in ISO-Prolog, the Ciao language ex-
tensions, and other (C)LP languages, as well as text files in several formats. In par-
ticular, LPdoc processes Prolog files adorned with assertions and machine-readable
comments, which should be written in the Ciao assertion language. From these, it
generates manuals in many formats including postscript, pdf, texinfo, info, HTML,
man, etc., as well as on-line help. In particular, LPdoc can create and maintain fully
automatically WWW and info sites containing on-line versions of the documents it
produces. A simplified view of LPdoc’s operation is illustrated in Figure 2.3.

One of the big advantages of this approach is that it is easier to keep the on-line
and printed documentation synchronized with the source code. As a result, manuals
change continually as the source code is modified.

As mentioned above, one of the most useful characteristics of the assertions used in
Ciao is that they are designed to serve many purposes. Any assertions present in
programs can be processed by LPdoc for the purpose of generating documentation.
LPdoc is specially relevant in our context because it includes specific commands for

9
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\
Main.pl }» SETTINGS | | Manuals }%( texinfo
»>— User files }» info
- : Lo —= Installation scripts‘ dvi
 Comp1.pl ‘ _ —-|_Ipdoc | postscript
Sys. files ‘ > Index entries ‘ pdf
html
M "> WWW & info sites | | man, ...

Figure 2.3: Overall operation of LPdoc

embedding editable and runnable code in place or in the Ciao Playground, presented
in the following section.

2.4. The Ciao Prolog Playground

The Ciao Playground [23] is a web-based Prolog development tool that allows the ex-
ecution of programs and queries through the browser. It is based on a web-based
editor component and the wasm build grade of Ciao (using WebAssembly? and com-
piled with Emscripten3).

The Ciao Prolog Playground offers three main functionalities:

= Avery easy way to run and share Prolog code, directly from any modern browser.
The main advantage over other ways of using Ciao is that the playground does
not require any installation or interaction with a server since everything runs
within the browser.

= An easy way to embed runnable code examples in tutorials, manuals, slides,
exercises, etc., and in general any kind of document. These documents can
be developed with many tools, such as Google Docs, Jupyter notebooks, Word,
Powerpoint, LaTeX, Pages, Keynote, web site generators, etc.

The examples are stored in the documents themselves and do not need to be
uploaded to (or edited in) any server.

= An easy way to create and distribute applications. The Playground can be spe-
cialized to create standalone web-based applications, with editor and top level,
which also do not need installation, running fully within the user’s browser. An
example is the s(CASP) playground [24].

In our case we will be using mainly the second functionality above, i.e., embedding
runnable code examples in documents. We will explain and illustrate the main fea-
tures of this use of the Ciao Playground by means of the following exercise. The
output generated for it by the LPdoc tool is shown in Figure 2.4:

Example 2.4 can be generated by including in the source file the following code:

2https: / /webassembly.org/
3https: //emscripten.org/

10
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1 % TASK 1 - Rewrite with Prolog arithmetic ®? ./

factorial(e,s(0)).
factorial(M,F)
M = s(N),
factorial(N,F1),
times(M,F1,F).

TODO: Replace s(@) by 1
TODO: Make sure that M > @
TODO: Compute N from M using is/2 (note that N is unbound! clear the equation)

o° o° of

o°

TODO: Replace times/3 by a call to is/2 (using *)

% When you are done, press the triangle (\"Run tests\") or the arrow (\"Load into playground\").

% Show solution

Figure 2.4: Exercise: factorial using ISO-Prolog arithmetic

‘‘ciao_runnable
:- module(_, _, [assertions]).

:- test factorial(A, B) : (A =0) => (B = 1) + (not_fails, is_det).
:- test factorial(A, B) : (A =1) => (B = 1) + (not_fails, is_det).
:- test factorial(A, B) : (A = 2) => (B = 2) + (not_fails, is_det).
:- test factorial(A, B) : (A = 3) => (B = 6) + (not_fails, is_det).
:- test factorial(A, B) : (A = 4) => (B = 24) + (not_fails, is_det).
:- test factorial(A, B) : (A = 5) => (B = 120) + (not_fails, is_det).
:- test factorial(A, B) : (A =0, B = 0) + (fails, is_det).

:- test factorial(A, B) : (A =5, B = 125) + (fails, is_det).

:- test factorial(A, B) : (A = -1) + (fails, is_det).

%! \begin{hint}
% TASK 1 - Rewrite with Prolog arithmetic

factorial(0,s(0)). % TODO: Replace s(0) by 1
factorial (M,F) :- % TODO: Make sure that M > 0
M= s(N), % TODO: Compute N from M using is/2 (note that N is unbound!

% clear the equation)
factorial (N,F1),
times (M,F1,F). % TODO: Replace times/3 by a call to is/2 (using *)

% When you are done, press the triangle (\"Run tests\") or the arrow (\"Load into
% playground\").
%! \end{hint}
%! \begin{solution}
factorial(0,1).
factorial (N,F) :-
N >0,
N1 is N-1,
factorial (N1,F1),
F is F1*N.
%! \end{solution}

6k

As we can see, we have defined LPdoc-style commands which mark different parts of
the program. The playground identifies the different parts and classifies them. For
example, the playground will recognize a solution, a hint, and the parts of the code
hidden to the user. In this case, the solution will be shown only when the “x Show
solution” button is clicked. The hint part is always visible.

When this exercise is opened, the page creates inside the browser the CiaoWorker,
which imports the main bundles (i.e., ciaowasm, core, and builder). When a button
is clicked, a certain function in the CiaoWorker is called to perform the correspond-
ing Ciao-related action(s). In our case, one button loads the code in the top-level
(the load_code function performs this task) and another button runs the tests (the
run_tests function executes this other action). In order to correctly print the output
on the top level, the solution of these queries is parsed and validated before finally
being shown.

11
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Another important point is that the CiaoWorker imports the minimum bundles and
does it just when needed. So when a tutorial runs the tests using the CiaoWorker, the
bundle required for the tests (ciaodbg) will be imported. Once a bundle is imported a
first time, it remains in the browser’s cache and does not need to be reloaded.

12
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Chapter 3

An Interactive Documentation
System for tutorials

3.1. The exfilter tool

The main purpose of exfilter is as an aid in the process of generating manuals and
tutorials automatically, in order to keep Ciao’s documentation synchronized with the
system and to avoid having to keep track of what documentation needs to be changed
when an update is made. The exfilter tool thus contributes to the process of learning
by aiding in the generation of educational resources such as exercises, examples, etc.

As mentioned before, CiaoPP performs a number of program debugging, analysis, and
source-to-source transformation tasks. The output produced by CiaoPP generally
contains significant amounts of information, including transformations, static anal-
ysis information, assertion checking, or verification counterexamples. These results
are typically presented as a new version of the source file annotated with (additional)
assertions, which are generally (but not only) Predicate Assertions.

The full analysis results produced by CiaoPP can be quite large, and cover the whole
file or program. However, most often, in a tutorial it is interesting to show only a small
fraction of this information at a time, the particular part that helps to understand
the topic or step being explained. In order to do so, we propose a mechanism which
includes the use of filters. These filters make it possible to extract only selected parts
of CiaoPP’s output such as, for example, particular properties of a concrete predicate,
particular types of assertions, etc. This thus allows exfilter to display only the
relevant information of the analysis. We illustrate the proposed mechanism with a
motivating example.

Let us revisit the append program:

:- module(_,app/3,[assertions]).
:- pred app(Xs, Ys, Zs) : ( list(Xs), list(Y¥s) ) => list(Zs) .
app ([1, Ys, Ys).

app ([X|Xs], Ys, [X[|Zs]) :-
app (Xs, Ys, Zs).

where as before the pred assertion indicates that app/3 should be called in this pro-

13
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3.1. The exfilter tool

gram with the first and second parameter being a list, and on success the third
argument should also be bound to a list. Assume that we analyze it with the regular
types domain where property list(X) is represented. Running the CiaoPP analyzer
we obtain the result of the analysis as a new source file.

At this point, we would like to extract one or many fragments of the analysis. Thanks
to the existence of filters, the only thing that we need to achieve this is to select the
filters that match with the output we are looking for. Considering the previous exam-
ple again, some of the different results that we can obtain are shown in Figure 3.1,
where first listing shows the output from CiaoPP (type analysis, predicate level output)
and the other two listings show two exfilter outputs where we have first selected the
checked assertions and in the second one the true assertion.

Listing 3.1: CiaoPP compiler output

(types) -
:- module(_,app/3,[assertions]). - LIStlng 3.2 apply filter 1

1 %% %% - check pred app(Xs,Ys,Zs)
%% %% :- check pred app(Xs,Ys,Zs) 2 %% %% : ( list(Xs), 1list(Ys) )
%% %% : ( list(Xs), list(Ys) ) 3 %% %% => list(Zs).

%% %% => list(Zs). 4
5 :- checked calls app(Xs,Ys,Zs)
:- checked calls app(Xs,Ys,Zs) 6 : ( list(Xs), list(Ys) ).
: ( list(Xs), list(Ys) ). 7

8 :- checked success app(Xs,Ys,Zs)

:- checked success app(Xs,Ys,Zs) 9 : ( list(Xs), list(Ys) )

: ( list(Xs), list(Ys) ) 10 => list(Zs).

=> list(Zs). -
- true pred app(Xs,Ys,Zs) Listing 3.3: apply filter 2

: ( list(Xs), list(Ys), term(Zs) )

=> ( list(Xs), list(Ys), list(Zs) ). 1| :- true pred app(Xs,Ys,Zs)

2 : ( list(Xs), list(Ys), term(Zs) )
app([1,Ys,¥s). 3 => ( list(Xs), list(Ys), list(Zs) ).
app ([X|Xs],Ys,[X|Zs]) :-

app (Xs,Ys,Zs).

Figure 3.1: A simple example applying exfilter

3.1.1. Filters

A filter is a set of keywords defining the relations between input and output. These
keywords are composed of words or phrases. For instance, if we run the analyzer
on a program, the properties that hold if a predicate succeeds can be represented by
true assertions. As mentioned before, a true predicate assertion is of the form:

:- true pred Head [: Pre] | => Post ] .

We can see that all true assertions follow the same syntax: they are preceded by
“:-” and the keywords true and pred. Once we have the pattern that true assertions
follow, we create a rule that searches for all predicates that start with “:- true pred”.
The rule is implemented using DCGs as follows:

truepred(Ys) --> ":- true pred ", tpkeep(Xs), {append(":- true pred ",Xs,XXs),
append (XXs, "\n\n",Ys)}.

tpkeep(".") --> ".", L.
tpkeep ([X|Xs]) --> [X], {X \= 0’. }, tpkeep(Xs).

14
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The principal filters that exist are summarized in Table 3.1, with a brief description
of the code fragments that the tool extracts.

Although these filters already extract a fraction of the analysis, it may happen that
from that first extraction we want an even smaller part. For this purpose, supple-
mentary filters have been created. Table 3.2 shows some of the other filters that the
first set of filters can be combined with. They follow the same idea explained above.

Filter Description
all keep all data
tpred all true (predicate) assertions

tpred_plus all true assertions including comp properties
tpred_regtype all true assertions and all regtypes

regtype only all regtype definitions
warnings all warnings
error all errors

check_pred all check assertions, false assertions and checked assertions
warn_error all warnings and all errors
test all tests

Table 3.1: Existing filters

Filter
&
(%) el 1
3 D o © o o
5 3 2 2 2 5 B B 5
. e 4 — O 9 > 5 o D o
Supplementary Filter Description - &5 4 5 22 5 J Y 92
© 8 9 4 P s B U g o
¥ 53 ¢ s Y o g
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Q
+

results of a specific predicate, with
Pred being the predicate.
assertions that contain a series of terms,

name = Pred

ol
ol
ol
>
>
>
>
ol
ol
ol

assertion = [Terms] where Terms is the list of terms to be X X X X X X X X X X
matched.
If we add this option then the comments
comments = on of the pred assertions will be added as X
well.

AD can be types or can be modes.

We have to add this option to obtain the
assertions related to a particular domain,
such as types or modes.

absdomain = AD

Table 3.2: Supplementary filters

3.1.2. Algorithm

In this section, we will explain the pseudocode of the algorithm used for the proto-
type implementation. Algorithm 1 takes as input a program File, a domain Domain, a
valid Filter, and one or more optional supplementary filters (Shown in Section 3.1.1).
The algorithm starts by analyzing the program file P_analysis. First, exfilter applies
the Filter for all predicates in P_analysis, i.e., filters those predicates which meet a
certain keywords requirement. Afterwards if the set of Fiilters_added is not empty, the
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3.1. The exfilter tool

tool checks if the filtered predicates verify the conditions of each of the supplemen-
tary filters. Finally, the algorithm returns two new files: one containing all filtered
predicates and another with the entire analysis.

We can see that it is a progressive process since each filter is applied successively
and not all at once. Whenever an abstract domain is not specified, CiaoPP chooses
a default set of analyses for the program such as, e.g., a types domain (the regular
types domain eterms) and a modes domain (the sharing/freeness domain shfr). The
algorithm only fails if a filter does not exist or is not written correctly.

Algorithm 1 Exfilter algorithm

1: procedure EXFILTER(F'ile, Domain, Filter, Filters_added)
2: P_analysis <+ Analyze F'ile with Domain
for all Predicate p € P_analysis do
result < Filter(p)
for all opt € Filters_added do
if opt(result) # () then
result < opt(result)
end if
end for
10: return result, P_analysis
11: end for
12: end procedure

© PN AR w

3.1.3. Incorporating automated feedback using exfilter

The fact that questioning and feedback improves learning and comprehension of texts
has long been supported by research [44]. Since one of the objectives of exfilter is to
support learning, we have created a mechanism which gives an appropriate feedback.
In order to concentrate all features in the same tool, we have added new filters for
the inclusion of exercises in the documentation by developing three distinct modes of
exercises:

» equal: Prints out the clauses from the user’s answer that do not match with
the file that contains the solution. It takes care of trivial differences such as
different variable names and different formatting of the code in the files.

This can be used for “fill in the blanks” exercises where people will not need to
write full lines or blocks of code, but rather fill in some portions of it and without
having to run the code.

The disadvantage of using this approach is that exfilter can miss a lot of
matches because the answers can be expressed in different ways. For example,
the user writes an illegal extra space, misses periods or misplaces commas, etc.
A solution would be to use an approach that focuses on querying for semantic
characteristics of code [21].

= errors: Another task is to find bugs in a program and fix them. Users submit
their solutions and exfilter checks them. To do this, we apply the above men-
tioned filter warn_error which looks for any error or warning. If there are none
then the program has been corrected successfully.

16



An Interactive Documentation System for tutorials

Additionally, a message filter has been created to extract a message or messages
by a certain term. For example, it can be used when trying to check whether
or not a predicate has singleton variables, and we do not care about the other
errors it may have. Using this filter, exfilter emits all messages containing the
term “singleton” checking if the predicate still has singleton variables or not.

= verify_assert: Given a specification we can ask a user to build a program.
Analysis information allows us to conclude that the program is incorrect or
incomplete, i.e., that the program does not satisfy the requirements. The idea is
that given the solution of the user, exfilter checks if the user’s program verifies
the assertions (specifications). In case of failure, the analyzer will provide hints
to understand the origin of the errors.

In order to do so, we have created two new filters: checked_pred and notchecked_pred.
checked_pred filters the checked assertions. In contrast, notchecked_pred filters
the false assertions and check assertions.

3.2. Architecture of the system

After introducing the exfilter tool, we provide an informal overview of the compo-
nents and workflow of our approach to generating tutorials (in our case, all tutorials
are generated with LPdoc using Ciao):

Interactive document source Static content generation | Interactive dynamic content

tutorial.lpdoc R Lo

:= doc(filetype, documentation).
:= doc(title, "Tutorial"). N

Dynamic document|

:= doc(module, "

I
I
I
I
I I
I I
1 . |
i [ tutorial.html |
Quick guide to using Gapl{CiaoPP}. L Exfilter :—‘;——M |
@section{Analyzing} | plugin o |
Let us analyze this implementation of o Playground !
I I
I I
I I

I i
the append predicate: ) 1" |
@includecode { code/app } | : !

I

Qexfilter{code/app.pl}{A,filter=tpred} :
I
I

:- module(app, [app/3], [assertionsl). T T
i~ entry app(A,B,C) : (list(A), 1list(B)). I

‘ I
Source Code ! i I i

app([1,Y,Y).
app([X|Xs], Ys, [XL|Zs]) :- app(Xs,Ys,Zs).

Figure 3.2: Architecture of the interactive documentation system.

The two core elements of our architecture are: the static content generation and the
interactive dynamic content. Static content remains the same across pages. In order
to include these, we have supplemented a plugin for LPdoc that recognizes a command
with syntax @exfilter{File}{Options} which concatenates File with Options, finds
the result file ensuring that this file exists, and incorporates it in the documentation.
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3.3. exfilter in the Ciao Playground

The generation process follows these steps: While we are writing the tutorial, if we
want to show an example (e.g., the result of analysis of a given predicate), we will
have to use the aforementioned LPdoc plugin for exfilter. This is done by inserting
the following command in the LPdoc document source:
@exfilter{app.pl}{A, filter=tpred}

This command is composed of the file to which we want to apply exfilter (app.pl)
and the analysis and the filter options that we want applied (-A,filter=tpred). If this
file has already been generated before, the contents of this file are simply included
in the documentation. But if it does not exist, then LPdoc will create the file and we
will have to run manually exfilter to fill it in!. Once the static content is generated,
using LPdoc we will be able to generate the output of the tutorial in HTML.

On the other hand, dynamic content changes based on user interaction with the page.
This enables users to do exercises and check their code directly from the tutorial.
As mentioned before, LPdoc includes specific commands for embedding editable and
runnable code in place. So when an exercise is included in the tutorial and the
assignment is completed, users can check their solution by running exfilter from
the browser. exfilter will “correct” that exercise and display the result.

3.3. exfilter in the Ciao Playground

In this section we explain the changes that we have made in the Ciao Playground in
order to include exfilter. We will describe it with representative examples.

As mentioned before, the purpose of exfilter is to facilitate the task of generating
appropriate examples and exercises to include in tutorials. We will start by explain-
ing how interactive examples are generated. To include the example used above in
a tutorial (as shown in Figure 3.3), we need to add the following code in the source file:

‘‘ciao_runnable
%! \begin{exfilter}
:- module(_,[app/3],[assertions]).

:- pred app(Xs , ¥Ys , Zs) : ( list(Xs), list(¥Ys) ) => list(Zs) .

app([]l, Ys , Ys).

app ([X|Xs], Ys , [X|zZs]) :-
app(Xs , Ys , Zs).

%! \end{exfilter}

%! \begin{opts}

comments=on, filter=check_pred
%! \end{opts}

We can see that new commands have been added to mark regions to be processed
by exfilter and options for it. The code between the exfilter directives is the code
that will be shown in the tutorial and the user can modify. The part between the opts
directives is the set of filters that we want to apply. In this case all check assertions,
false assertions and checked assertions together with the comments will be shown.

CiaoPP is run in another process when generating static content. This cannot be done
currently when the dynamic content is being generated due to current limitations in

! Although this may change, it is currently a deliberate choice, aimed at allowing a clean separation
of the generation of examples from the generation of manuals.
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An Interactive Documentation System for tutorials

WebAssembly. Thus, in order to implement this feature, CiaoPP is currently run in
the same process using conditional compilation. This is activated when compiling the
exfilter bundle with LINUXwasm32.

ciaopp_call_(Args,Result):- get_arch(wasm32), !,
io_once_port_reify(cmdrun_(Args), Port, OutString, ErrString),
Result = append(OutString,ErrString),
port_call (Port).

ciaopp_call_(Args,Out):-
process_call(path(ciaopp),Args, [stderr(stdout), stdout(string(Out))]).

Furthermore, to run exfilter directly from the browser using CiaoWorker we have
added an exfilter button and its functionality. When the “’” button is clicked, the
exfilter and CiaoPP bundles are imported. Note that this only happens the first time
since they remain in the browser’s cache. Then, the run_exfilter function will run
exfilter with the attributes that we have indicated. Finally, output is displayed to
the user, as we can see in Figure 3.4.

async function run_exfilter(pg) {

const mod = pg.curr_mod_path();

const modbase = pg.curr_mod_base();

const opts = pg.options_exfilter();

await pg.toplevel.do_query("run_dynamic(\""
{msg:’Loading exfilter’});

+ mod + N+ opts +”\”)”,

var str = await pg.cproc.w.readFile(modbase+’.txt’);
if (str !== null) {

await show_text(pg, str);
}

playgroundCfg.auto_action = ’exfilter’;

The code is also connected to the playground with a Load in playground button (i.e.,
the “ 7" button) that opens the user’s code in a new playground tab. This allows users
to use the top level and run queries on their code.

On the other hand, to include exercises like the one shown in Figure 3.5, we need to
add this code:

ciao_runnable

:- module(_, [app/3],[assertions]).

%! \begin{exfilter}

:- pred app(Xs , ¥Ys , Zs) : ( list(Xs), list(¥s) ) => list(Zs)

app([], Ys , ¥Yss).

app ([X|Xs], Ys , [X|Zs]) :- app(Xs , ¥Ys , Zs).

%! \end{exfilter?}

%! \begin{opts}

solution=errors,message=singleton

%! \end{opts}

%! \begin{solution}

:- pred app(Xs , ¥s , Zs) : ( list(Xs), list(Y¥s) ) => list(Zs)

app([], Ys , Ys).
app ([X|Xs], Ys , [X|Zs]) :- app(Xs , ¥Ys , Zs).
%' \end{solution}
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3.3. exfilter in the Ciao Playground

1 :- module(_, [app/3], [assertions]). 7
:= pred app(Xs , Ys , Zs) : ( list(Xs), list(Ys) ) list(Zs) .
app([l, Ys , Ys).
app([X|Xsl, Ys , [X]|Zs])
app(Xs , Ys , Zs).

Figure 3.3: Example: predicate app/3

1  :- module(_, [app/3], [assertions]). /

:= pred app(Xs , Ys , Zs) : ( list(Xs), list(Ys) ) list(Zs) .

app([l, Ys , Ys).
app([X|Xsl, Ys , [X]|Zs])
app(Xs , Ys , Zs).

%% %% :— check pred app(Xs,Ys,Zs)
%% %% ¢ ( list(Xs), list(Ys) )
%% %% => list(Zs).

:— checked calls app(Xs,Ys,Zs)
: ( list(Xs), list(Ys) ).

:— checked success app(Xs,Ys,Zs)
: ( list(Xs), list(Ys) )
=> list(Zs).

Figure 3.4: Result of applying exfilter to predicate app/3

Here the playground identifies the code that we want to show, the mode of the ex-
ercise and the solution. In our example, we want the user to correct the singleton
variable written in the base case of predicate app/3. The process is similar to the
previous one but in this case the run_exfilter_exercise function will return an ap-
propriate feedback using the filter errors and extracting the messages related to the
singleton variables. The result is shown in Figure 3.6.

async function run_exfilter_exercise(pg) {
const mod = pg.curr_mod_path(Q);
const modbase = pg.curr_mod_base();
const opts = pg.options_exfilter();
const sol = pg.solution_exercise();
await pg.toplevel.do_query("run_exercise(\"" + sol +
{msg:’Loading exfilter’});

+ mod + "\",\"" NN+ opts + "N\,

var str = await pg.cproc.w.readFile(modbase+’.txt’);

—
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if (str !== null) {

await show_text(pg,

}

playgroundCfg.auto_action =

str);

’exfilter_exercise’;
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1 :- pred app(Xs , Ys , Zs) : ( list(Xs), list(Ys) ) list(zs) . @7 /

app([l, Ys , Yss).
app([X|Xsl, Ys , [X|Zs])
app(Xs , Ys , Zs).

% Show solution

Figure 3.5: Exercise: Correct predicate app/3

1 :- pred app(Xs , Ys , Zs) : ( list(Xs), list(Ys) ) list(Zs)
app([l, Ys , Yss).
app([X|Xsl, Ys , [X|zs])
app(Xs , Ys , Zs).

WARNING: (lns 2-3) [Ys,Yss] - singleton variables in app/3

% Show solution

Figure 3.6: Result of applying exfilter to the answer



3.3. exfilter in the Ciao Playground
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Chapter 4

An interactive tutorial for CiaoPP

We have created a tutorial! with three main purposes:
= Showcase the capabilities of the tools developed.
= Exhibit the benefits of formal methods, and in particular of the CiaoPP approach.
= Serve as a didactic introduction to CiaoPP.

The tutorial demonstrates that there is no single method alone that guarantees cor-
rectness or finds all bugs, but we can be closer to this goal by using a combination of
techniques. The techniques that will be showcased include:

= Specification: How to define (parts of) what the program is supposed to do.

= Static Analysis: What one can tell about the program without executing it.

Verification: How to establish whether the program is correct or not based on
the above.

Testing: Can prove the presence of some bugs.

Debugging: Trying to locate the cause of incorrectness.

These techniques and the CiaoPP approach to them are actually independent of lan-
guage and architecture. However, and mentioned before, here we use the Ciao system
which this thesis extends.

The approach of using static analysis as a program development tool was actually
pioneered by the Ciao system. Ciao introduced a workflow that integrates static and
dynamic verification and debugging to work cooperatively in a unified way. The com-
bination of the Ciao tools covers all steps mentioned before.

The ability of Ciao to provide immediate feedback leads us to make of this a fun-
damental feature of the tutorial. Students can (a) submit their answers as many
times as necessary, by running each exercise through the exfilter tool and getting
immediate feedback, (b) get a helpful hint, (c) see the solution.

Figure 4.1 shows how the questions are presented to the student. A hint can be
given and when the “x Show solution” button is clicked the solution is shown. The

1https: //ciao-lang.org/ciao/bndls/exfilter /examples/introtutorial.html/new-tutorial.html
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4.1. Tutorial Content

question in Figure 4.1 is a training exercise to exhibit if the user can write the correct
assertion.

Exercise 3. What assertion would we need to add?

1 ;- pred remove_power(A,B,C) : (?, ?, ?) (?) . /'

Incorrect Bl

% Show solution

Hint: remove_power/3 is called in this program with the first parameter being a number, the second argument being of type list_pair
(i.e., bound to a list of pairs) and one variable. And on success the third argument is bound to a list-pair .

Exercise 3. What assertion would we need to add?

1 := pred remove_power(A,B,C) : (num(A), list_pair(B), var(C)) list_pair(C) . 9?7/

% Show solution

Hint: remove_power/3 is called in this program with the first parameter being a number, the second argument being of type list_pair
(i.e., bounds to a list of pairs) and one variable. And on success the third argument is bound to a list-pair.

Figure 4.1: Web interface for Exercise 3.

4.1. Tutorial Content

Our methodology supports self-study and combines exercises, explanations, and ex-
amples. The content of this tutorial has the aim of illustrating step-by-step the use
of the different Ciao tools on representative examples. In this section we will explain
how the tutorial is organized, as well as how exfilter has been applied.

4.1.1. Introduction

In the introduction the example program is presented in detail. First a statement is
referred to as the specification of the program, intended to provide a model of the
problem. It is a narrative, supplied with one or more examples of the inputs and
expected outputs.

Our example is taken from the Prolog programming contest at ICLP’95, Portland,
USA [17] and the specification given is:

“Write a predicate powers/3, which is called with as first argument a list of non-negative
numbers, as second argument a number N, and a free third argument. Such a call
must succeed exactly once and unify the third argument with the list that contains the
smallest N integers (in ascending order) that are a non-negative power of one of the
elements of the first argument”.

Some examples:
?7- powers([3,5,4],17,Powers)
Powers = [3,4,5,9,16,25,27,64,81,125,243,256,625,729,1024,2187,3125]

?- powers([2,9999999,9999998],20,Powers)
Powers = [2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144,
524288,1048576]
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?- powers([2,4],6,Powers) .
Powers = [2,4,8,16,32,64]

The implementation of the program is already given since the tutorial aims to teach
tools like CiaoPP rather than Prolog. However, it can be a good exercise to practice
with both.

4.1.2. Notation

We introduce the Ciao notation, i.e., modules, assertions and regular types.

Modules and exports. We start by defining the module. The source of a Ciao module
is typically contained in a single file. The predicates defined within a module are
visible only if they are exported. The module declaration is helpful because during the
analysis of a program, CiaoPP can assume that external calls are only to the exported
predicates. This fact will give us more accurate information about the program since
CiaoPP does not have to consider all the possible ways other predicates inside the
module may be called, and only those that can actually occur in the module.

Regular types and other properties. Regular types can be used as properties to
describe predicates. In CiaoPP we can define new regular types using regtype decla-
rations. There are properties like num/1, var/1, or not_fails that are builtins, defined
in libraries. For example, in our specification the first argument is a list of numbers.
This property is available in the Ciao libraries, however the user can declare it using
regtype declarations. So we show how to represent the set of all “lists of numbers” by
the regular type list_num:

:- regtype list_num(X) # "@var{X} is a list of numbers." .

list_num([]).

list_num([X|T]) :-

num(X),
list_num(T).

Assertions. We describe the assertion schema. The assertions are the (partial) spec-
ification of the program. Writing assertions is optional but we recommend doing it
since the more assertions are present in the program, the more likely errors will be
detected automatically. To familiarize the user with the syntax we have proposed
different exercises with the same pattern: first, we give a description of a particular
predicate and then the user has to write the corresponding pred assertion. This is an
example:

“In our example, we need that for any call to predicate powers /3 with the first argument
bound to a list of numbers, the second argument bound to a number, and the third one
unbound, if the call succeeds, then the third argument should also be bound to a list of
numbers.”

Exercise 2 (Solved). What assertion would we need to add?

:- pred powers(A,B,C) : (list_num(A), num(B), var(C)) => (list_num(C)).

In this kind of exercise, exfilter will compare syntactically the user’s answer with
the solution using the equal mode for exercises.
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1 % powers(X,N,P): P is the sorted list that contains the smallest N integers
% that are a positive (non-zero) power of one of the elements of the list X.
Load in playground

powers([1,_,[1).
powers (Factors,N,Powers)

quicksort(Factors, SFactors),

create_pairs(SFactors,Pairs),

first_powers(N,Pairs,Powers).

% quicksort(Xs,Ys): Performs a quicksort of a list Xs and returns the result
% in Ys

quicksort(Xs,Ys) gsort(Xs,Ys, [1).
qsort([1,DL,DL).
gsort([X|Xs],Head,Tail)
partition(Xs,X,L,R),
gsort(L,Head, [X|QR]),
gsort(R,QR,Tail).
partition((],_,[1,(1).

partition([X|Xs],Pv, [X|L],R) :~ X =< Pv, !, partition(Xs,Pv,L,R).
partition([X|Xs],Pv,L, [X|R]) := X > Pv, partition(Xs,Pv,L,R).

% create_pairs(F,P): F is a list and P is sorted list of pairs. Each
% element of P has the form (X,X), where X is a element of F.

Let us analyze this implementation of the powers/3 predicate. The Ciao system includes a large number of domains that can be used in this
program and has strategies for selecting between them. But, by default, CiaoPP analyzes programs with a types domain (the regular types

Coo Prolog playground O Embed Docs (D  Qswr 18
(B New Open Save Examples . Load P More... (# Share!
1 i~ module(_, [powers/3], [assertions]). use_module('/draft.pl').

:- use_module(library(classic/classic_predicates)). % powers(X,N,P): P yes
% that are a positive (non-zero) power of one of the elements of the 1

powers([],_,[1).

powers(Factors,N,Powers)
quicksort(Factors, SFactors),
create_pairs(SFactors,Pairs),
first_powers(N,Pairs,Powers).

% quicksort(Xs,Ys): Performs a quicksort of a list Xs and returns the

quicksort(Xs,Ys) gsort(Xs,Ys,[1).
gsort([1,0L,0L).

qsort([X|Xs],Head,Tail)
partition(Xs,X,L,R),
gsort(L,Head, [X|QR]),
gsort(R,QR,Tail).

partition((],_, [1,(1).
partition([X|Xs],Pv, [X|L],R) X =< Pv, !, partition(Xs,Pv,L,R).
partition([X|Xs],Pv,L, [X|R]) X > Pv, partition(Xs,Pv,L,R).

% create_pairs(F,P): F is a list and P is sorted list of pairs. Each
% element of P has the form (X,X), where X is a element of F.

create_pairs([],[]).
create_pairs([X|R], [(X,X)]S]) create_pairs(R,S).

Figure 4.2: Loading powers to the Ciao Playground.

After the introduction of these standard contents, the implementation of the program
is also presented. Figure 4.2 shows how the program can be loaded into the Ciao
Playground letting the student experiment with it. From this point on, the tutorial
illustrates the stages the programmer can follow to check the correctness of the pro-
gram.

4.1.3. Using the CiaoPP Program Processor

Static Analysis. Static analysis consists in answering an implicit question of the
form “What can you tell me about the collecting semantics of this program?”. In
order to answer this question CiaoPP computes safe approximations of the program
semantics at different relevant points.

Given a program, a collection of abstract domains is automatically selected based on
their relevance to the properties present in the programmer’s assertions or in Ciao
libraries. Domains are chosen by considering if they can abstract the properties in
the assertions. If a domain understands a property in an assertion, the domain is
run. A given property is often understood by more than one domain.

When the implementation of the program is shown we ask the users to run CiaoPP.
If the program contains no assertions, by default, CiaoPP analyzes programs with
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a types domain (the regular types domain eterms) and a modes domain (the shar-
ing/freeness domain shfr). In the tutorial we will be working mainly with these two.

The idea is that the user is reading the tutorial and working at the same time with
the example in the playground. In case the playground is not being used we show the
analysis result in the tutorial using exfilter and the filter warn_error (which filters
only the warning and error messages):

WARNING (ctchecks_pp_messages): (lns 22-22) At literal 1 could not verify assertion:
:- check calls B=<A

( nonvar(B), nonvar(A), arithexpression(B), arithexpression(A) ).
because on call arithmetic:=<(A,B)

[eterms] basic_props:term(B),basic_props:term(A),basic_props:term(A),basic_props:term(B),
basic_props:term(C)

[shfr] native_props:mshare([[B],[B,A]l,[B,A,B],[B,B],[A],[A],[A,B],[B],[CI]),
term_typing:var(A),term_typing:var(C)

WARNING (ctchecks_pp_messages): (lns 22-23) At literal 1 could not verify assertion:
:- check calls B>A

( nonvar(B), nonvar(A), arithexpression(B), arithexpression(A) ).
because on call arithmetic:>(A,B)

[eterms] basic_props:term(B),basic_props:term(A),basic_props:term(A),
basic_props:term(B),basic_props:term(C)

[shfr] native_props:mshare([[B],[B,A],[B,A,B],[B,B],[A],[A],[A,B],[B],[CI]),
term_typing:var(A),term_typing:var(C)

WARNING (ctchecks_pp_messages): (lns 27-39) At literal 1 could not verify assertion:
:- check calls A>B

( nonvar(A), nonvar(B), arithexpression(A), arithexpression(B) ).
because on call arithmetic:>(A,B)

[eterms] basic_props:term(A),rt188(B)
with:

- regtype rtl188/1.
rt188(0).
[shfr] native_props:mshare([[A]]),term_typing:ground([B])

WARNING (ctchecks_pp_messages): (lns 27-39) At literal 4 could not verify assertion:
:- check calls A is B
( ( var(A), nonvar(B), var(A), arithexpression(B) ); ( var(A), nonvar(B), var(A),
intexpression(B) ); ( nonvar(A), nonvar(B), num(A), arithexpression(B) );
( nonvar(A), nonvar(B), int(A), intexpression(B) ) ).
because on call arithmetic:is(A,B)

[eterms] basic_props:term(A),rt201(B)
with:

:- regtype rt201/1.
rt201(A*B) :-
term(A),
term(B).
[shfr] native_props:mshare([[A],[B]]),term_typing:var(A)

27



4.1. Tutorial Content

WARNING (ctchecks_pp_messages): (lns 47-48) At literal 1 could not verify assertion:
:- check calls A=\=B

( nonvar(A), nonvar(B), arithexpression(A), arithexpression(B) ).
because on call arithmetic:=\=(A,B)

[eterms] basic_props:term(A),rtl112(A),basic_props:term(B),basic_props:term(B)

[shfr] native_props:mshare([[A],[A,A],[A,A,B],[A,A,B,B],[A,A,B],[A,B],
[A,B,B],[A,B],[A],[A,B],[A,B,B],[A,B],[B],[B,B],[B]1])

WARNING (ctchecks_pp_messages): (lns 56-56) At literal 1 could not verify assertion:
:- check calls B=<A

( nonvar(B), nonvar(A), arithexpression(B), arithexpression(A) ).
because on call arithmetic:=<(A,B)

[eterms] rt112(A),basic_props:term(B),basic_props:term(B),basic_props:num(A),
arithmetic:arithexpression(C)

[shfr] native_props:mshare([[A],[A,B],[A,B,B],[A,B],[B],[B,B],[B]1]),
term_typing:ground([A,C])

These warnings are stating that there are a number of assertions that cannot be
shown to hold. In particular, the analysis is saying that it is not possible to ensure
that the calls that the program makes to predicates such as >=/2, </2, >/2, is/2,
and =</2 respect the corresponding preconditions or calling modes, which generally
require the arguments to be bound to arithmetic expressions when called. The in-
teresting thing to note here is that any assertions have been included in the code.
The warning messages stem from the assertions (specifications) that provide the
pre-conditions and post-conditions for such library predicates in the Ciao system
libraries. Thus, a first observation is that it is possible to identify potential bugs even
without actually adding assertions to programs.

In particular, in view of the warnings above, it seems useful to be able to ensure that
all these library predicates will always be called properly within our module and thus
be more confident about the program. From here on, our objective is teaching the
student how to gradually add assertions to provide information to the analyzer in
order to increase its precision.

We start by asking the user to add a pred assertion. From the specification of the
program (the problem statement) we know that the second argument is a number.
We write this as follows:

:- pred powers(A,B,C) : num(A) .

In particular, this assertion is stating that the predicate powers/3 will be called using
anumber as a second argument. When the user proceeds to run again CiaoPP, CiaoPP
will continue producing some warning messages but this time the following warning
message will not appear:

WARNING (ctchecks_pp_messages): (lns 22-34) At literal 1 could not verify assertion:
:- check calls A>B

( nonvar(A), nonvar(B), arithexpression(A), arithexpyression(B) ).
because on call arithmetic:>(A,B)

[eterms] basic_props:term(A),rtl122(B)
with:
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- regtype rtl22/1.
rt122(0).
[shfr] native_props:mshare([[A]]),term_typing:ground([B])

Another important point of this section is how to interpret the analysis output. As
the programmer adds assertions, the analysis with the selected domains is performed
and the resulting safe approximations are compared directly with the assertions that
have been added. For each assertion originally with status check, the result of this
process can be: that it is verified (the new status is checked), that a violation is
detected (the new status is false), or that it is not possible to decide either way, in
which case the assertion status remains as check.

By adding the assertion of Exercise 2 of the tutorial, the user will be able to check
that the file generated by CiaoPP will have the following assertion:

%% %% - check pred powers(A,B,C)
%% %% : ( list_num(A), num(B), var(C) )
%% %% => list_num(C).

:- checked calls powers(A,B,C)
( list_num(A), num(B), var(C) ).

:- checked success powers(A,B,C)
( list_num(A), num(B), var(C) )
=> list_num(C).

This means that the assertion that has been included has been marked as checked,
i.e., it has been validated. But this other information will also be emitted:

:- true pred sorted_insert(_A,X,_B)
( list(*((’basic_props:num’,’basic_props:num’)),_A), rt96(X), term(_B) )
=> ( list(*((’basic_props:num’,’basic_props:inum’)),_A), rt96(X), listl(*((num,num)),_B) ).

- regtype rt96/1.

rt96 ((A,B)) :-
num(A),
num(B) .

The assertion above, with a true prefix, expresses that the compiler has proved that
procedure sorted_insert/3 produces as output a list of pairs, a new inferred type
and a non-empty list of pairs. The students can see that the analyzer displays the
information they have to add, so we ask them to write it into the specification as
defining a new regular type. In our case, this regular type is defining the pairs, so
users can copy it and change the name to make it clearer. This can be done as follows:

:- regtype num_pair(P)
num_pair((X, Y)):-
num (X),
num(Y).

:- regtype list_pair(L)

list_pair([]).

list_pair([X|Xs]):-
num_pair(X),
list_pair(Xs).
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:- regtype list_pairl(L)

list_pairl([X|Xs]):-
num_pair(X),
list_pair(Xs).

The three fragments above are taken directly from the CiaoPP output by exfilter,
that also generates the code to be inserted in the tutorial. In the first one, we apply
the filter check_pred (i.e., filter all check assertions, false assertions, and checked
assertions). In the second one, we apply the filter tpred with the supplementary filter
name=sorted_insert and absdomain=types (i.e., filters all true assertion related to the
types of the predicate powers/3). And in the third one the filter regtype is used.

Program Debugging. In the sections above we ask the user to include assertions to
describe some properties that are required to hold on. But we also mentioned that
CiaoPP can identify errors without these assertions.

We start by giving a buggy implementation of predicate remove_power/3:

:- module(_, [remove_power/3],[assertions]).

remove_power (Power, [(Powerl,Factor) |RestOut], [(Powerl,Factor) |RestOut]) :-
Power =\= powerl, !.

remove_power (Power,[_|RestPFsIn],PFsOut) :-
remove_power (Power ,RestPFsIn,PFsOutl).

And we show the CiaoPP analysis output:

WARNING: (lns 5-6) [PFsOut,PFsOutl] - singleton variables in remove_power/3

WARNING (preproc_errors): (lns 2-4) goal arithmetic:=\=(Power,powerl) at literal 1 does not
<> succeed!

WARNING (preproc_errors): (lns 5-6) goal
< remove_power_bugl:remove_power (Power ,RestPFsIn,PFsOutl) at literal 1 does not succeed!

ERROR (ctchecks_pp_messages): (lns 2-4) At literal 1 false assertion:
:- check calls A=\=B

: ( nonvar(A), nonvar(B), arithexpression(A), arithexpression(B) ).
because on call arithmetic:=\=(A,B)

[eterms] basic_props:term(A),rt2(B)
with:

- regtype rt2/1.
rt2 (powerl).

The main challenge in debugging a verification failure is to obtain enough information
about the failed verification attempt to debug the error. To help the programmer with
this task, Ciao analysis displays information, warnings or makes suggestions. The
idea of this section is to assist the user in diagnosing the output of the analysis and
determining how to take corrective action. In the following we give an example of this
approach.

Singleton variable: The first message is a warning message which indicates that there
are singleton variables. We know that the singleton variables are those which appear
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only once in a clause. As mistyping a variable is a common mistake, CiaoPP out-
puts the standard warning message indicating if a variable is used only once (these
messages would also be produced by the compiler).

Exercise 5 (Detecting Bugs) What variable do you need to change? (Only change the
incorrect variable)

remove_power (Power, [ (Powerl,Factor) |RestOut], [(Powerl,Factor) |RestOut]) :-
Power =\= powerl, !.

remove_power (Power,[_|RestPFsIn],PFsOut) :-
remove_power (Power ,RestPFsIn,PFsOutl).

The student only has to correct the error explained. To do this, when the user submits
the answer, we ask exfilter to run CiaoPP and filter those error/warning messages
related to singleton variables (using the mode of exercises errors), if there is no mes-
sage then the answer is correct. The same procedure is performed for each of the
error/warning messages.

Although in the tutorial we have only worked so far with the two most used abstract
domains: shfr and eterms, as mentioned before CiaoPP has a wide variety of abstract
domains to perform analysis with. For example, knowing which predicates are deter-
ministic for a particular class of calls has several interesting uses in debugging and
verification.

In order to include this in the tutorial, we ask the user to analyze the example with the
nfdet analysis. The nfdet combined domain carries nonfailure (nf) and determinism
(det) info, i.e., the analysis will be able to detect procedures that can be guaranteed
not to fail (produce at least one solution) and to detect predicates which are deter-
ministic (produce at most one solution). It is also relevant to find predicates whose
clause tests are mutually exclusive (meaning that only one of their clauses will pass),
even if they are not deterministic, because they are called by other predicates that
can produce more than one solution. We explain these concepts through an example.

Imagine that the predicate sorted_insert/3 is defined without the cut:
sorted_insert([], X, [X]1).

sorted_insert([(X1,F1)|L1], (X,F), [(X,F), (X1,F1)|L1]):- X =< X1 .
sorted_insert([P|L1], X, [P|L]):- sorted_insert(L1l, X, L).

If we ask the user to analyze the program with this modification then CiaoPP’s output
will include the following assertions:

%% %% :- check pred sorted_insert(A,B,C)
%% %% : ( list_pair(A), num_pair(B), var(C) )
%% %% => list_pairl(QC).

:- checked calls sorted_insert(A,B,C)
: ( list_pair(A), num_pair(B), var(C) ).

:- checked success sorted_insert(A,B,C)

: ( list_pair(A), num_pair(B), var(C) )
=> list_pairl(C).
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The analyzer did verify the assertion, and, in addition to that, CiaoPP will display this
other information:

:- true pred sorted_insert(A,B,C)
: ( mshare([[C]D),
var(C), ground([A,B]), list_pair(A), num_pair(B), term(C) )
=> ( ground([A,B,C]), list_pair(A), num_pair(B), list_pairl(C) )
+ ( multi, covered, possibly_not_mut_exclusive ).

As we mentioned before, the + field in pred assertions describes properties of the
whole computation of the predicate (such as determinism or non-failure). multi states
that there is at least one solution but it may have more. covered means that for
any input there is at least one clause which succeeds. possibly_not_mut_exclusive
denotes that mutual exclusion is not ensured. The output shown above is due to
the fact that when the first argument is a non-empty list both the second and third
clauses succeed. When reasoning about determinacy, it is a necessary condition (but
not sufficient) that clauses of the predicate be pairwise mutually exclusive, i.e., that
only one clause will produce solutions.

In order to solve this, the user can add either the complementary test X > X1 in the
third clause, or a cut in the second clause. Obviously, for any particular call only one
of the clauses with X =< X1 or X > X1 will succeed. Adding one of these two options
and analyzing the program again the programmer can see that the predicate is now
deterministic:

:- true pred sorted_insert(A,B,C)
: ( mshare([[C]D),
var(C), ground([A,B]), list_pair(A), num_pair(B), term(C) )
=> ( ground([A,B,C]), list_pair(A), num_pair(B), list_pairl(C) )
+ ( det, covered, mut_exclusive ).

In the tutorial, in order to show the assertions related with the determinism of pred-
icate sorted_insert/3, we ask exfilter to run CiaoPP and analyze the example with
the nfdet abstract domain. Then the filter tpred_plus and the supplementary filter
name=sorted_insert are applied (i.e., filter all true assertions including comp proper-
ties of predicate sorted_insert).

Testing. The specification throughout the program is that predicate powers/3 is called
with a list of numbers as first argument, a number N as second argument, and a free
third argument. But, in the original specification instead of general numbers non-
negative integers are used. Thus, we now ask the user to define a new regular type
(we use nnegint from the Ciao libraries) and include it in the program:

:- prop list_nnegint(X) + regtype
# "Verifies that @var{X} is list of non-negative integers." .
list_nnegint([]).
list_nnegint ([X|T]) :-
nnegint (X),
list_nnegint(T).

(Note that here we could have also used parametric types, i.e., a parametric list type,
but we have used plain predicates for simplicity.) Then this assertion can be added:
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:- pred powers(A,B,C) : (list_nnegint(A), nnegint(B), var(C)) => list_nnegint(C) + not_fails.

In addition, the problem statement also establishes that the numbers in the list must
be in ascending order. For this purpose, we add an additional property that defines
a sorted list:
:- prop sorted/1.
sorted([]).
sorted([_]1).
sorted([X,Y|Ys]) :-
X=<Y,
sorted([Y]|Ys]).

and add it also to the assertion:

:- pred powers(A,B,C) : (list_nnegint(A), nnegint(B), var(C))
=> (list_nnegint(C), sorted(C))
+ not_fails .

However, when running CiaoPP, the user will see that this assertion cannot be proven
nor disproven statically with the standard CiaoPP domains.
:- check success powers(A,B,C)

: ( list_nnegint(A), nnegint(B), var(C) )
=> ( list_nnegint(C), sorted(C) ).

:- check comp powers(A,B,C)
: ( list_nnegint(A), nnegint(B), var(C) )
+ not_fails.

:- checked calls powers(A,B,C)
: ( list_nnegint(A), nnegint(B), var(C) ).

This is because there is no abstract domain that covers properly the sorted/1 prop-
erty. This is something that can occur specially with user-defined properties. In
order to deal with this problem there are different possible approaches:

1. The student can generate test cases automatically from the call field of the as-
sertions to try to find a counterexample, i.e., an error.

2. A new abstract domain can be implemented for a specific property, i.e., in this
case a new domain that infers if a list is sorted or not.

3. The property can be proven by hand or with an automatic theorem prover.

While the second and third solutions can potentially verify that there are no errors
in the program, the first one can find bugs but cannot verify that there are none.
However, the second and third solutions are beyond the scope of this tutorial, so we
ask the user to continue with the first approach. When CiaoPP cannot verify (parts
of) the assertions statically, runtime-checking instrumentation can be added to the
program. Runtime checks ensure that execution paths that violate the assertions are
captured during execution, serving as test oracles. However, since run-time checks
can become expensive if used indiscriminately, they are most often used before de-
ployment in combination with unit testing. Static analysis and dynamic testing are
complementary approaches to software validation. In CiaoPP, assertions that have
not been verified, the user can use CiaoTest [10, 9] (which is integrated into CiaoPP)
to check them and to find errors. This can be done in two ways: the student can
include some unit tests or CiaoPP/CiaoTest can also generate random tests.
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In order to show to the user how CiaoTest works, we make a modification to the
quicksort/2 predicate (this predicate is used in the implementation of powers/3):

% quicksort with a slight mistake: it may fail when there are repeated numbers in the list
quicksort(Xs,Ys) :- gsort(Xs,Ys,[]).

qsort([],DL,DL).

qsort ([X|Xs],Head,Tail) :-
partition(Xs,X,L,R),
gsort (L,Head, [X|QR]),
gsort(R,QR,Tail).

partition([]1,_,[1,[D).

partition([X|Xs],Pv,[X|L],R) :- X < Pv, !, partition(Xs,Pv,L,R). % (1) should be >= (or =<
— below)
partition([X|Xs],Pv,L,[X|R]) :- X > Pv, partition(Xs,Pv,L,R).

This predicate sorts a given list of integers from lowest to highest. However, we have
introduced an intentional bug (1 in the listing) that causes the program to fail
when a list with repeated elements is given.

The user can also add these three assertions to check the behavior of the predicate.
They cover the examples given in the problem statement.

:- test powers(A,B,C) : (A [3,4,5], B = 17)
=>(C [3,4,5,9,16,25,27,64,81,125,243,256,625,729,1024,2187,3125])
+ not_fails.
:- test powers(A,B,C) : (A = [2,9999999,9999998], B = 20)
=> (C =1[2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,
65536,131072,262144,524288,1048576])
+ not_fails.
:- test powers(A,B,C) : (A = [2,4], B = 6)
=> (C = [2,4,8,16,32,64])
+ not_fails.

When these (unit) tests are added, powers/3 will be run with for example [3,4,5] as
input A and 17 for input B. The output generated in C will then be checked to be
instantiated to [3,4,5,9, 16,25, 27,64, 81, 125, 243, 256, 625, 729, 1024, 2187, 3125].

As mentioned before, while we can find errors with unit tests, hand-written test cases
are tedious to write and they may not cover some cases. So random test generation
can be performed. If at least one unit test fails, then random test generation is
skipped. However, if all unit tests pass, test generation is performed as a last step to
try to find test cases that make the assertions fail, hence revealing faults in the code.

CiaoTest will generate by default 100 cases for each assertion, or will stop before if it
finds one case that does not meet the assertion post-condition. As mentioned before,
this generation is random, so in order to increase the number of cases, we can also
ask the user to run CiaoTest a couple of times.

If at this moment in the tutorial the students take a look into CiaoPP’s output file (and
also the messages issue by CiaoPP), they will see that some of the assertions left to be
checked after static analysis, have been proven false by counterexamples found via
test generation:
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:- checked calls powers(A,B,C)
( list_nnegint(A), nnegint(B), var(C) ).

:- false success powers(A,B,C)
( list_nnegint(A), nnegint(B), var(C) )
=> ( list_nnegint(C), sorted(C) )
+ by((texec 3)).

:- texec powers(A,B,_C)
( (A=[49,8,491), (B=27) )
+ id(3).

:- false comp powers(A,B,C)
( list_nnegint(A), nnegint(B), var(C) )
+ ( not_fails, by((texec 4)) ).

:- texec powers(A,B,_C)
( (A=[54,54,371), (B=97) )
+ id(4).

:- checked test powers(A,B,C)
( (A=[3,4,51), (B=17) )
=> (C=[3,4,5,9,16,25,27,64,81,125,243,256,625,729,1024,2187,3125])
+ not_fails.

:- checked test powers(A,B,C)
( (A=[2,9999999,9999998]), (B=20) )
=> (C=[2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144,
524288,1048576])
+ not_fails.

:- checked test powers(A,B,C)
( (A=[2,41), (B=6) )
=> (C=[2,4,8,16,32,64])
+ not_fails.

In the computation properties field of the assertions that have been marked as false,
they can see a new property by/1 that indicates the test case that made it fail. If
they look at the lists generated, it is not too difficult to realize that there are repeated
elements in them, and that dealing with this may be the source of our problems.

Again, one should keep in mind that even if CiaoTest does not find any cases that
violate the assertion, this does not assure that the assertion is true.

The last two code fragments of this explanation have been generated by exfilter
using the filters check_pred and test.
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Chapter 5

Experimental Evaluation

In this chapter we present the experimental evaluation of the architecture proposed
for the generation of interactive tutorials. We evaluate the two main parts of the
architecture: the static code generation and the interactive dynamic content. We ran
all experiments in a MacBook Air with Apple M1 processor and 16 GB of RAM.

5.1. Static code generation

First of all, we will summarise the static generation process scheme discussed before:
first, we indicate to LPdoc the source files and we include in these files the calls to
exfilter with the examples that we want to show, and the appropriate options. When
we run LPdoc it creates output files with placeholders for exfilter to fill in, and warns
us that we need to run exfilter to fill them. At this point exfilter is run which in
turn runs CiaoPP and produces the filtered outputs that are to be included in the final
versions of the LPdoc documents. Once this process has finished, LPdoc is run again,
now incorporating the filtered outputs in the appropriate places in the document
being generated.

We performed experiments with the static examples of the tutorial presented in the
previous chapter, measuring the times required for each part of the process. The time
LPdoc takes to generate the documentation is 3.1 seconds on average and the time it
takes for exfilter to run all the analyses and fill in all the slots in all the files is 17.6
seconds on average. These steps can be unified into one (this feature is implemented
and can be activated by the user if desired); in this case LPdoc calls exfilter directly.
With this option activated the tutorial generation takes 30.0 seconds on average.

In any case we have decided to activate by default the division of the process into
separate phases because then, when there is an error in the analysis or there is a
complex example which takes longer, it is easier to control and identify which part of
the process is causing the error or is taking too long.

5.2. Interactive dynamic content

In this case Ciao runs natively on the browser and, thanks to the absence of server
calls and the relatively high performance of WebAssembly, the process is quite fast
and smooth, once the system components have been loaded for the first time. The
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5.2. Interactive dynamic content

Supplementary  Execution time, ms

No Program Filter filters first exec other exec
1 remove_power_bug errors 1631.00 447.00
2 remove_power_bug warn_error 1665.00 449.00
3 powers verify_assert 2056.00 870.00
4 powers all name=powers 1777.00 629.00
5 powers check_pred comments=on 1771.00 578.00
6 sorted_insert tpred_plus 1675.00 443.00
7 gsort_bug errors message=arity 1630.00 432.00
8 create_pairs tpred_regtypes absdomain=types 1622.00 420.00
9 gsort test 1526.00 331.00

Table 5.1: Execution times running exfilter the first time and after the first execu-
tion.

Ciao system is modular and composed of several independent bundles. The most
important bundles are loaded when starting the playground, but not all bundles are
loaded by default. We have measured experimentally the performance of the play-
ground when the bundles necessary to execute exfilter are loaded and when they
are not. We have considered some of the examples shown in the tutorial presented in
the section 4. The selection is shown in table 5.1. We have tried to cover a reasonable
range of different filters. Column Program lists the name of the program analyzed.
Columns Filter and Supplementary filters are the set of filters applied. Finally, Ex-
ecution time shows the execution time of an exfilter query the first time and the
execution time after the first exfilter query in our experiment. Execution times are
given in milliseconds.

Table 5.1 shows the differences between the executing the first time (first exec) and
the rest of the executions, once everything is loaded (other exec). Both exfilter and
the CiaoPP-related bundles are only loaded in the first analysis. Although the main
goal is to have a correctly working exfilter system on the browser, in order to be
generate the results, the experimental evaluation also suggests that these results
can be obtained for these examples in reasonable times.

As we mentioned before, WebAssembly offers performance that is reasonably com-
petitive with native Ciao. The playground simulates the operation of the Ciao system
Emacs environment. In order to get an overall idea of the cost in terms of the time
taken to run exfilter in the playground when compared with running natively, on
different browsers, we present Table 5.2. Code compiled to WebAssembly runs on
average 1.77x slower in Chrome and 1.71x slower in Firefox than native code. We can
see that the performance achieved is sufficient for a large range of interactive and
complex tasks and to run exfilter effectively.
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Execution time, ms
Firefox Chrome Ciao

No Program

1 1,513 1,631 952
2 1,533 1,665 960
3 1,923 2,056 1,164
4 1,663 1,777 1,049
5 1,933 1,771 1,041
6 1,471 1,675 969
7 1,592 1,630 784
8 1,532 1,622 965
9 1,589 1,526 778
Slowdown: geomean x1.71 x1.77 -

Table 5.2: Performance comparison of running exfilter on the Ciao playground (on
different browsers) vs. running on a native Ciao on the same machine.



5.2. Interactive dynamic content
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Chapter 6

Conclusions

Formal methods are becoming more popular in the software industry, and accord-
ingly more relevant in education. Motivated by this and the development of some
innovative tools such as CiaoPP, WebAssembly, and the the Ciao playground we have
designed an architecture to generate interactive tutorials for the Ciao system. The
overall architecture consists of two phases: the static content generation and the in-
teractive dynamic content generation. The idea behind dividing the architecture into
two phases and not generating the whole content interactively is to save trouble for
the user. The static content is only generated once and then it is not modified until
there is a change in the program or in the system.

We now enumerate the main contributions of this thesis:

» First, we presented a tool capable of filtering analysis results. Without any
filtering, the full analysis result can be very large and showing all parts of it in a
tutorial can be tedious for the reader. In order to obtain the fragments desired
exfilter calls CiaoPP and once the program is processed by CiaoPP the set of
filters extract code fragments automatically from the analysis results. Although
we have shown the available filters, these are not fixed, i.e, they may be modified
or new filters can be created.

Our tool is also useful for the ease of recording results. When the static code
generation is done, results are displayed in files and these are stored. This
situation enables exfilter to determinate when a bug was discovered or when it
was fixed since it is possible to review the results of analysis of previous versions.

s Second, we have included exfilter in the Ciao playground. exfilter also in-
cludes filters that let users obtain useful feedback when trying, for example, to
understand and remedy verification failures. Therefore, this allows both exam-
ples and interactive exercises to be generated.

= Finally, we tested the architecture proposed creating a new tutorial for CiaoPP.
CiaoPP was selected since is a collection of static analysis and debugging tools
designed to optimise and verify Ciao programs using formal methods. This new
tutorial differs from those already created for the Ciao system in being capable
of providing inmmediate feedback and examples allowing self-study. So far, the
results shows that our approach works effectively and can be applied to other
systems.
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6.1. Future work

6.1. Future work

We end this thesis with some lines of future work.

Incremental analysis. Although our tool is fully functional, there are some im-
provements that can be made in terms of performance. exfilter currently performs
a complete re-analysis for each set of changes, which is sometimes too costly. In-
cremental analysis reduces the cost of re-analysis by reusing previous information.
CiaoPP performs incremental analysis [22] in the following way: When a module has
already been analyzed, CiaoPP takes advantage of it and becomes more efficient and
precise, since it will use the information obtained during analysis instead of (re-
)Janalyzing the module from scratch. Integrating this feature into exfilter could be
very useful specially when a modification is made in an example or exercise.

Semantic code search. When using the equal filter, exfilter compares syntacti-
cally the user’s answer with the solution of the exercise. Even though it avoids textual
differences such as variable names it still is not the ideal way to do this comparison.
The solution would be to not rely in the syntaxis and instead use semantic char-
acteristics of the program, i.e., use a technique for code search based on abstract
interpretation. The process consists of taking the answer of the user and the solution
and using assertions to see if the answer of the user meets the same specifications as
the solution. This is done by checking the assertions statically against the preanaly-
sis results.

Other applications. We would like to explore other applications such as using
exfilter as an oracle to correct individual programming assignments. Custom inter-
active proof tools can generate a positive effect on student engagement [33, 34, 42].
This would enable students to verify immediatly their solutions against hidden “or-
acle” specifications. For example, an assignment can ask the student to write a
linear algorithm, if it is not linear then exfilter gives sufficient information to de-
bug it. Since CiaoPP allows stating assertions about the efficiency and complexity of
the program [15, 16], adding the following computational property to the assertion:
+ steps_o(length(A)) could check if the user’s solutions comply the specification.

Finally, although the framework has been presented in the context of Ciao programs,
the same architecture will work directly in other programming languages. As we
have mentioned CiaoPP has been applied to the analysis and verification of a number
of languages (e.g Java, java bytecode, ISA, Michelson, etc) and it would be interest-
ing also to apply exfilter to develop tutorials for the application of CiaoPP to these
languages.
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