
Universidad Politécnica
de Madrid

Escuela Técnica Superior de
Ingenieros Informáticos

Grado en Matemáticas e Informática

Trabajo Fin de Grado

Análisis Automático de Ejemplos de
Código

Autor: Daniela Ferreiro de Aguiar
Tutor: Manuel Hermenegildo Salinas

Madrid, Julio 2021

Este Trabajo Fin de Grado se ha depositado en la ETSI Informáticos de la
Universidad Politécnica de Madrid para su defensa.

Trabajo Fin de Grado
Grado en Matemáticas e Informática

Título: Análisis Automático de Ejemplos de Código

Julio 2021

Autor: Daniela Ferreiro de Aguiar
Tutor: Manuel Hermenegildo Salinas

Inteligencia Artificial
ETSI Informáticos
Universidad Politécnica de Madrid

Resumen

Los cuadernos computacionales son unas de las herramientas más utilizadas en
el ámbito de la investigación para documentar resultados, hallazgos o software.
Esto es debido a que admite, en un mismo documento, combinar texto, imáge-
nes, código, etc., permitiendo así generar tutoriales u otros materiales didácticos
con diferentes ejemplos y mantenerlos actualizados.

Siguiendo esta linea, en el presente documento presentamos un método con
características similares a los cuadernos computacionales, con el propósito de
mantener los tutoriales del lenguaje de programación Ciao Prolog actualizados y
sin elementos obsoletos. Para ello se ha implementado la herramienta Exfilter.
Esta herramienta es capaz de analizar un determinado código con CiaoPP, el
prepocesador de Ciao, y aplicarle uno o varios filtros con el fin de obtener el
resultado deseado. Además, para facilitar la inclusión de estos resultados en los
tutoriales hemos implementado un plugin para LPdoc.

Para comprobar su funcionamiento y eficacia presentaremos resultados expe-
rimentales del uso de la herramienta en tutoriales reales, así como diferentes
ejemplos para explicar su uso. Además, al final de este documento se adjuntará
el manual de la herramienta.

i

Abstract

Computer notebooks are one of the most widely used tools in the field of research
to document results, discoveries or software. This is because they can combine
text, images, code, etc. in the same document. This allows users to generate
tutorials or other didactic materials with different examples and to keep them
updated.

Following this line, in the present document we present a method with similar
features to computer notebooks, with the aim of keeping the tutorials of the Ciao
Prolog programming language updated and without obsolete elements. For this
purpose, the tool Exfilter has been implemented. This tool is able to analyse a
given code with CiaoPP, the Ciao preprocessor, and apply one or more filters to
it in order to obtain the desired result. In addition, to facilitate the inclusion of
these results in the tutorials, we have implemented a plugin for LPdoc.

In order to demonstrate its effectiveness and efficiency, we will present experi-
mental results of the use of the tool in real tutorials as well as different examples
to explain its use. At the end of this document we will attach the manual of the
tool.

iii

Contents

1 Introduction 1

2 Background and State of the Art 3
2.1 Computational notebook . 3

2.1.1 Jupyter Notebook . 4
2.1.2 Emacs Org-Babel mode . 5

2.2 Exfilter Tool . 6
2.3 Ciao Assertions . 7

3 The Exfilter tool and plugin 11
3.1 Exfilter . 11

3.1.1 All module results . 12
3.1.2 Find module result . 18

3.2 LPdoc plugin . 19

4 Experimental evaluation 21
4.1 Static Analysis Basics . 21
4.2 Non-failure and Determinacy Analysis 22
4.3 Size, Resources, and Termination Analysis 24
4.4 Assertion Checking . 26
4.5 Execution times . 27

5 Conclusions and Future Work 29

6 Impact Analysis 31

Bibliography 31

36

A Example extraction, execution, and filter tool for Ciao/CiaoPP 37

B LPdoc plugin for exfilter 49

v

Chapter 1

Introduction

It is vital that manuals and tutorials provide readers with sources and descrip-
tions as well as feature examples, allowing users to have a better understanding
of the concepts explained. However, it is often the case that these examples
are not up to date. For this reason, tutorials and manuals need to be updated,
incorporating the latest modifications, while eliminating obsolete items.

One way to deal with this is maintaining the documentation and the tutorials
manually. However, the biggest issue with this is that every change in the system
can end up with obsolete documentation due to the large number of updates.
Moreover, it is a time-consuming process.

In this thesis we propose to automate the aforementioned process as much as
possible. The main goal is to design a system capable of automating the dif-
ferent actions necessary for the maintenance of documents and tutorials of the
Ciao [10] language analysis and, at the same time, design a method to incorpo-
rate the analized results (or projections of them) in documentation.

To achieve these goals, we have developed a tool that can be divided into the
following three stages:

1. Collection of codes: The examples we want to show in the manuals and
tutorials. The examples will be written in Ciao Prolog using its assertions
library.

2. Analyze: run CiaoPP on the collection of codes and extract and filter the
results. CiaoPP [13, 11, 14, 3] is the abstract interpretation-based pre-
processor of the Ciao multi-paradigm program development environment.
CiaoPP can perform a number of program debugging, analysis, and source-
to-source transformation tasks on (Ciao) Prolog programs.

3. Generate manuals and tutorials with the extracted fragments of the output:
the analysis results wil be added in documentation.

Additionally, we aim to test this tool on real tutorials and prove that it works
properly.

1

The rest of the document is structured as follows: Section 2.1 presents some
similar tools to undestand the purpose of our work and Section 2.3 introduces
briefly the assertion language. Section 3 describes our tool, as well as the steps
followed for its development and design. Section 4 evaluates the suitability by
showing examples from real tutorials. Moreover, we will discuss and compare
the results. Section 5 summarizes the conclusions and suggests some possible
new lines of study. Finally, Section 6 analyses the impact of our work.

2

Chapter 2

Background and State of the Art

A few modifications or improvements in code can lead to vastly different results.
For this reason, some tools are created to provide an oppotunity for researchers
to generate and keep up to date tutorials, manuals or other teaching aids for
their software. One of the most commonly used tools are computational note-
books. We have been inspired by them to develop a method with similiar fea-
tures.

In this chapter, we will show some examples of computational notebooks, as well
as the similarities they have with the tool we have developed. On the other hand,
examples from the manuals will be written in Ciao Prolog using its assertions
library. Section 2.3 introduces briefly the assertion language.

2.1 Computational notebook

A computational notebook or notebook interface is a computer file which com-
bines executable code, images, and text in a single document, yielding what
Stephen Wolfram has called a ”computational essay” [23].

Notebooks are useful for the ease of including code, as well as generating and
recording results. In addition, they are version control tools. Software bugs
are an inevitable part of any programmer’s development process. This situation
enables computational notebooks to determinate when a bug was discovered or
when it was fixed.

Nowadays there are a lot of different kinds of computational notebooks for many
different programming languages with their own elements but with some com-
mon general features.

Although the idea of computational notebook is not new, MathCAD and Wol-
fram Mathematica were the first to introduce this concept in 1987 and 1988
respectively, it was popularized by other open sources varieties such as Jupyter
Notebook or Emacs Org-Babel mode.

3

2.1. Computational notebook

2.1.1 Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows creating
and sharing documents that contain live code, equations, visualizations and
explanatory text. Uses include: data cleaning and transformation, numerical
simulation, statistical modeling, machine learning and much more.

The Jupyter Notebook was heavily inspired by the Mathematica notebooks just
like some other tools that followed. Despite its similarities, in the case of Math-
ematica [22], its main focus is computational mathematics. On the other hand,
Jupyter is more flexible and it can be used for a wide variety of purposes as
supports more than 40 programming languages.

Figure 2.1: Example Jupyter Notebook

The Jupyter notebook [20] straddles these elements:

• A web application: a browser-based tool for interactive authoring of doc-
uments that allows creating and sharing documents that incluce code, vi-
sualizations and narrative text as seen in Figure 2.1, combining code cells
and intermediate results.

• Notebook documents: a representation of all content visible in the web
application.

Although the documents generated by Jupyter Notebook are easily accessible
through a browser, it is sometimes useful to have other formats available. That is
why it provides conversion to static documents, i.e. HTML, LaTeX or Markdown
formats, etc.

4

Background and State of the Art

2.1.2 Emacs Org-Babel mode

Babel [6] is Org-mode’s ability to execute source code within Org-mode docu-
ments and allowing many different languages work together.

Babel augments Org-mode [19] with support for code blocks by providing:

• Interactive and on-export execution of code blocks.

• Code blocks as functions that can be parameterised, refer to other code
blocks, and be called remotely.

• Export to files.

We can see these features in the following Figure 2.2, where a piece of code can
pass from an external data source to a Python code block, and then move on to
an R code block.

Figure 2.2: Active Org-mode document [18]

Finally, the document will be embedded into the exported document (HTML,
ASCII, LaTeX, or another Org-mode supported format).

5

2.2. Exfilter Tool

2.2 Exfilter Tool

Before Exfilter, tutorial examples, which were fragments of analysis results, were
manually inserted into the document. Motivated by this problem, we have im-
plemented a mechanism in order to insert the code fragments automatically
generated by running our tool. Except for the lack of interactivity, because the
example files are not automatically generated by LPdoc,1 it is very similiar to
notebook interfaces.

Figure 2.3 shows the scheme we have used to generate the tutorials (in our case,
all tutorials are generated with LPdoc using Ciao). We will explain the process
briefly below, as each part will be covereed in the following sections.

Source Code

:- module(app, [app/3], [assertions]).

:- entry app(A,B,C) : (list(A), list(B)).

app([],Y,Y).

app([X|Xs], Ys, [XL|Zs]) :- app(Xs,Ys,Zs).

CiaoPP

Exfilter
plugin

Filter

Exfilter

LPdoc

tutorial.lpdoc

:- doc(filetype, documentation).

:- doc(title, "Tutorial").

:- doc(module, "

Quick guide to using @apl{CiaoPP}.
@section{Analyzing}
Let us analyze this implementation of

the append predicate:

@includecode{code/app}
@exfilter{code/app.pl}{A,filter=tpred}

html

info

pdf

...

example resultsexample filter extraction

Export

Tutorial

Figure 2.3: Exfilter process

The process works as follows: While we are writing the tutorial, if we want to
show an example (e.g. the result of analysis of a given predicate), we will have to
use the LPdoc plugin for exfilter, as shown in the example above. This is done
by inserting the following command in the LPdoc document source:

@exfilter{code/app.pl}{A,filter=tpred}
This command is composed of, on the one hand, the predicate to which we want
to apply Exfilter (app/3) and on the other hand, the analysis and the filter options
that we want to apply (-A,filter=tpred). If this file has already been generated
before, the contents of this file are simply included in the documentation. But if
it does not exist, then LPdoc will create the file and we will have to run manually
Exfilter to fill it in. Once Exfilter has done the analysis and applied the filter
to the code (in the example above we want to analyse and filter the predicate

1Although this may change, it is currently a deliberate choice, aimed at allowing a clean
separation of the generation of examples from the generation of manuals.

6

Background and State of the Art

app/3), the result will be incorporated into the documentation. Finally, once we
have finished the tutorial, using LPdoc we will be able to generate the output of
the tutorial in HTML, PDF, etc.

Figure 2.4: Tutorial exported to HTML

2.3 Ciao Assertions

Assertions [8] are linguistic constructs which allow expressing properties of pro-
grams. Syntactically they appear as an extended set of declarations, and se-
mantically they allow talking about preconditions, (conditional-) postconditions,
whole executions, program points, etc.

Assertions are used for multiple purposes, including writing specifications, re-
porting static analysis and verification results to the programmer, describing
unknown code, generating test cases automatically, or producing documenta-
tion [14, 13, 17].

We will explain one of the most commonly-used components of the Ciao assertion
language: Pred assertions. A detailed description of the full language can be
found in [16, 1]. Pred assertions are of the form:

:- [Status] pred Pred [: Precond] [=> Postcond] [+ CompProps].

where Status is a qualifier of the meaning of the assertion, marked by prefixing
the assertion itself with the keywords: check, trust, true, checked, and false.
This specifies respectively whether the assertion is provided by the programmer
and is to be checked or to be trusted, or is the output of static analysis and
thus correct information, or the result of processing an input assertion and
proving it correct or false. The check status is assumed by default when no
explicit status keyword is present. Pred is a predicate descriptor that denotes
the predicate that the assertion applies to. There can be multiple pred assertions
for a predicate. Precond is the precondition under which the pred assertion is
applicable. Postcond states a conditional postcondition. It expresses that in any

7

2.3. Ciao Assertions

call to Pred if Precond holds in the calling state and the computation of the call
succeeds, then Postcond should also succeed in the success state. Both PreCond
and PostCond can be empty conjunctions (meaning true), and in that case they
can be omitted. For example, if the Precond is omitted, then the assertion is
expressed as:

:- [Status] pred Pred [: true] [=> Postcond] [+ CompProps].

This means that for any call to Pred that succeeds, then Postcond should also
succeed in the success state.
Finally, CompProps refers to a sequence of states and we refer to them as prop-
erties of computations.

For example, the assertion:

1 :- pred nrev (A,B) : list(A) = > list(B).

expresses that calls to predicate nrev/2 with the first argument bound to a list
are admissible, and that if such calls succeed then the second argument should
also be bound to a list.

In addition, entry assertions are identical to pred assertions, except that they
refer to external calls to the module (or predicate).

1 :- entry nrev/2 : {list,ground} * var.

This assertion is an example of an entry assertion: a pred assertion addressing
calls from outside the module. It informs the CiaoPP analyzers that in all exter-
nal calls to nrev/2, the first argument will be a ground list and the second one a
free variable.

The pred assertion schema is in fact syntactic sugar for combinations of atomic
assertions of the following three types:

:- calls Pred [: Precond].
:- success Pred [: Precond] [=> Postcond].
:- comp Pred [: Precond] [+ CompProps].

which describe all the admissible call states, the success states, and computa-
tional properties for each set of admissible call states (in this order).

For example, we may want to require that if qsort is called with a list in the first
argument position and the call succeeds, then on success the second argument
position should also be a list. This is declared as follows:

1 :- success qsort(A,B) : list(A) => list(B).

In addition, we may also require that in all calls to predicate qsort the first
argument should be a list. The following assertion will do:

1 :- calls qsort(A,B) : list(A).

We can also require for example that all calls to this predicate that have a list in
the first argument and a variable in the second argument do not fail, as follows:

8

Background and State of the Art

1 :- comp qsort(A,B) : (list(A) , var(B)) + not_fails.

9

Chapter 3

The Exfilter tool and plugin

As mentioned several times throughout the document, our main goal is to gener-
ate manuals and tutorials automatically in order to keep Ciao’s documentation
synchronized with the system and this avoid having to keep track of what docu-
mentation needs to be changed when an update is made. In order to accomplish
this goal we have created Exfilter.

This chapter covers the implementation process of Exfilter. We will see how the
tool works and what modifications have been made during the course of the
project, because as we started testing it with the tutorials, we realised the need
to add new features.

In addition, while implementing Exfilter, we started to develop a plugin for LP-
doc for the purpose of including the fragments analyzed in the tutorials and
manuals. We will explain this idea in more detail in Section 3.2.

3.1 Exfilter

Exfilter first runs CiaoPP on a collection of codes, i.e., it starts a CiaoPP pre-
processing session for each piece of code, annotated with assertions. These
assertions describe some properties which the programmer requires to hold of
the program. In addition, Exfilter then applies one or more filters to the analysis
results: the aim of this process is to extract fragments of the output (either mes-
sages or the final output) as desired for their inclusion in manuals and tutorials.

The command to launch Exfilter has the following format: ciao-exfilter [PATH].
The tool accepts a result path file name whose name encodes the input file plus
a list of actions, options, and filters. For the given parameters it runs CiaoPP
and extracts and filters the results into the given result path.

For example, the following call:

ciao-exfilter results/bugqsort�A�ftypes=eterms�fmodes=none�filter=tpred.txt

will execute CiaoPP with options ‘-A‘, ‘-ftypes=eterms‘, ‘-fmodes=none‘, gather

11

3.1. Exfilter

the output, take the true assertions, and leave the result in the specified result
path. This process will be described in greater detail in the next section.

3.1.1 All module results

The first version of the source was too large to handle in one piece, so we have
separated it into the following core parts:

• Decoding parameters: Firstly, we extract Name without the extension
from ResultPath. Secondly, we split the different elements separated by
’- -’. Once the elements have been extracted, we can proceed to identify the
source code’s file name, the filter, and the rest of the options. This will give
us the different parameters.

1 decode_params(ResultPath , File, Opts, Filter) :-
2 path_split(ResultPath , _, Name),
3 path_splitext(Name, NameNoext , ’.txt’),
4 atom_codes(NameNoext , Cs),
5 split_items(Cs, Items),
6 Items = [File0|Opts0],
7 atom_codes(File, File0),
8 (select("filter="||Filter0, Opts0, Opts1) ->
9 true

10 ; Filter0 = "tpred", % Default filter
11 Opts1 = Opts0
12),
13 as_options(Opts1, Opts),
14 atom_codes(Filter, Filter0).

• Source code: Once the parameters have been decoded and we have ob-
tained the source code, we proceed to run CiaoPP.

1 run1(ResultPath) :-
2 decode_params(ResultPath , File, Opts, Filter),
3 path_concat(’code’, File, SrcFile0),
4 atom_concat(SrcFile0 ,’.pl’,SrcFile),
5 run_and_filter(SrcFile,Opts,Filter,ResultPath).

• Run Ciaopp: CiaoPP [13, 11, 14, 3] allows analyzing the code, verifying
that programs comply with specifications, and performing many types of
program optimizations.

In this part, we run CiaoPP on the source code with the corresponding
action and options we obtained in the previous step and output the result
into a file. There are three different types of action:

1. ’-A’: Call the preprocessor to analyze your program, in order to infer
properties of the predicates and literals in your program.

2. ’-O’: Uses the preprocessor to perform optimizations (partial evalua-
tion, abstract specialization, parallelization, ...)

12

The Exfilter tool and plugin

3. ’-V’: To verify assertions (types, modes, determinacy, nonfailure, cost,
...) or others specifications.

1 run_and_filter(SrcFile,[Action|Opts],Filter,ResultPath) :-
2 (Action = ’-A’ -> OutputSource = out_file
3 ; Action = ’-O’ -> OutputSource = out_file
4 ; Action = ’-V’ -> OutputSource = out_std
5 ; throw(error(unrecognized_action , run_and_filter/4))
6),
7 (OutputSource = out_file -> RawExt = ’.raw.pl’
8 ; RawExt = ’.raw.out’
9),

10 atom_concat(ResultPath , RawExt, ResultPathRaw),
11 ciaopp_call(OutputSource , Action, SrcFile, Opts,

ResultPathRaw),
12 run_filter_on_file(Filter, ResultPathRaw , ResultPath).

• Filter: Once the output file produced by Ciao preprocessor is ready, we
can proceed to apply the filter. There are seven different filters:

1. Filter = all: this filter keeps all the data.

1 run_filter(all, InStr, OutStr) :- !, OutStr = InStr.

2. Filter = tpred: filter all "true pred" assertions.

1 run_filter(tpred, InStr, OutStr) :- !, tpred(OutStr,
InStr, []).

2

3 tpred([]) --> \+ [_], !.
4 tpred(Zs) --> truepred(Ys),!, tpred(Xs),

{append(Ys,Xs,Zs)}.
5 tpred(Xs) --> [_], tpred(Xs).
6

7 truepred(Ys) --> ":- true pred ", tpkeep(Xs),
{append(":- true pred ",Xs,XXs),
append(XXs,"\n\n",Ys)}.

8

9 tpkeep(".") --> ".", !.
10 tpkeep([X|Xs]) --> [X], {X \= 0’. }, tpkeep(Xs).

3. Filter = tpred_plus: filter all "true pred" assertions including comp
properties.

1 run_filter(tpred_plus , InStr, OutStr) :- !,
tpredp(OutStr, InStr, []).

2

3 tpredp([]) --> \+ [_], !.
4 tpredp(Zs) --> truepredp(Ys),!, tpredp(Xs),

{append(Ys,Xs,Zs)}.
5 tpredp(Xs) --> [_], tpredp(Xs).

13

3.1. Exfilter

6

7 truepredp(As) --> ":- true pred ", tpkeepp(Xs),
tpkeep(Ys),

8 { append(":- true pred ",Xs,XXs), append(XXs,Ys,Zs),
append(Zs,"\n\n",As) }.

9

10 tpkeepp("+") --> "+", !.
11 tpkeepp([X|Xs]) --> [X], {X \= 0’+}, {X \= 0’. },

tpkeepp(Xs).

4. Filter = tpred_regtype: filter all "true pred" assertions and all reg-
types.

1 run_filter(tpred_regtype , InStr, OutStr) :- !,
tpredreg(OutStr, InStr, []).

2

3 tpredreg([]) --> \+ [_], !.
4 tpredreg(Zs) --> truepred(Ys),!, tpredreg(Xs),

{append(Ys,Xs,Zs)}.
5 tpredreg(Zs) --> regpred(Ys),!, tpredreg(Xs),

{append(Ys,Xs,Zs)}.
6 tpredreg(Xs) --> [_], tpredreg(Xs).
7

8 regpred(As) --> ":- regtype ", tpkeep(Xs), tpkeep(Ys),
9 { append(":- regtype ",Xs,XXs), append(XXs,Ys,Zs),

append(Zs,"\n\n",As) }.

5. Filter = warnings: filter all WARNINGs.

1 run_filter(warnings, InStr, OutStr) :- !, warn(OutStr,
InStr, []).

2

3 warn([]) --> \+ [_], !.
4 warn(Zs) --> warn_(Ys),!, warn(Xs), {append(Ys,Xs,Zs)}.
5 warn(Xs) --> [_], warn(Xs).
6

7 warn_(As) --> "WARNING", warnkeep(Xs),
8 { append("WARNING",Xs,XXs), append(XXs,"\n\n",As) }.
9

10 warnkeep([]) --> "}", !.
11 warnkeep([X|Xs]) --> [X], {X \= 0’} }, warnkeep(Xs).

6. Filter = errors: filter all ERRORs.

1 run_filter(errors, InStr, OutStr) :- !, err(OutStr,
InStr, []).

2

3 err([]) --> \+ [_], !.
4 err(Zs) --> err_(Ys),!, err(Xs), {append(Ys,Xs,Zs)}.
5 err(Xs) --> [_], err(Xs).

14

The Exfilter tool and plugin

6

7 err_(As) --> "ERROR", errkeep(Xs),
8 { append("ERROR",Xs,XXs), append(XXs,"\n\n",As) }.
9

10 errkeep([]) --> "}", !.
11 errkeep([X|Xs]) --> [X], {X \= 0’} }, errkeep(Xs).

7. Filter = none: no output.

1 run_filter(none, _, OutStr) :- !, OutStr = "".

• Result in the result path: Finally, the result obtained after applying the
filter will be printed on the ResultPath file.

1 :- pred run_filter_on_file(File, NameFilter , InFile,
OutFile)

2 #"Load @var(InFile), apply filter @var(Filter) and save
@var(OutFile)".

3

4 run_filter_on_file(Filter, InFile, OutFile) :-
5 file_to_string(InFile, InStr),
6 run_filter(Filter, InStr, OutStr),
7 string_to_file(OutStr, OutFile).

To better understand this process, we will show the functioning of Exfilter using
the following example. If we call:

ciao-exfilter results/qsort2--A--fana_nf=nf--fana_cost=resources--filter=tpred_plust.txt

• Decoding parameters: Exfilter extracts from

results/qsort2�A�fana_nf=nf�fana_cost=resources�filter=tpred_plus.txt

these elements:

– The source file: qsort2.pl.

– The filter: tpred_plus.

– The options: A, fana_nf=nf and fana_cost=resources.

• Source Code: As we mentioned before, the source code in our example will
be qsort2.pl

1 :- module(qsort2, [qsort/2],
[assertions ,predefres(res_steps)]).

2 :- entry qsort(A,B) : (list(num,A), var(B)).
3

4 qsort([X|L],R) :-
5 partition(L,X,L1,L2),
6 qsort(L2,R2), qsort(L1,R1),
7 append(R2,[X|R1],R).
8 qsort([],[]).
9

15

3.1. Exfilter

10 partition([],_B,[],[]).
11 partition([E|R],C,[E|Left1],Right):-
12 E < C, !, partition(R,C,Left1,Right).
13 partition([E|R],C,Left,[E|Right1]):-
14 E >= C, partition(R,C,Left,Right1).
15

16 append([],X,X).
17 append([H|X],Y,[H|Z]):- append(X,Y,Z).

• Run Ciaopp: CiaoPP will be execute with the flags A, fana_nf=nf and fana_cost=resources.

• Filter: Once we have the analysis result, the filter will be applied. In our
example filter=tpred_plus, therefore, we will keep the "true pred" asser-
tions including comp properties.

• Result in the result path: The result will be written into a file which
name is qsort2�A�fana_nf=nf�fana_cost=resources�filter=tpred_plus. The
result is shown below:

1 :- true pred qsort(A,B)
2 : (mshare([[B]]),
3 var(B), ground([A]), list(num,A), term(B))
4 => (ground([A,B]), list(num,A), list(num,B))
5 + (not_fails , covered).
6

7 :- true pred qsort(A,B)
8 : (mshare([[B]]),
9 var(B), ground([A]), list(num,A), term(B))

10 => (ground([A,B]), list(num,A), list(num,B))
11 + (not_fails , covered).
12

13 :- true pred qsort(A,B)
14 : (list(num,A), var(B))
15 => (list(num,A), list(num,B),
16 size(lb,length,B,1))
17 + cost(lb,steps,length(A)+5).
18

19 :- true pred qsort(A,B)
20 : (list(num,A), var(B))
21 => (list(num,A), list(num,B),
22 size(ub,length,B,2**length(A)-1.0))
23 + cost(ub,steps,sum($(j),1,length(A),$(j)*2**(length(A)-

$(j)))+2.0*2**length(A)+length(A)*2**(length(A)-1)-1.0).
24

25 :- true pred partition(_A,_B,Left,Right)
26 : (mshare([[Left],[Right]]),
27 var(Left), var(Right), ground([_A,_B]),

list(num,_A), num(_B), term(Left), term(Right))
28 => (ground([_A,_B,Left,Right]), list(num,_A), num(_B),

16

The Exfilter tool and plugin

list(num,Left), list(num,Right))
29 + (not_fails , covered).
30

31 :- true pred partition(_A,_B,Left,Right)
32 : (list(num,_A), num(_B), var(Left), var(Right))
33 => (list(num,_A), num(_B), list(num,Left),

list(num,Right),
34 size(lb,length,Left,0),
35 size(lb,length,Right ,0))
36 + cost(lb,steps,length(_A)+1).
37

38 :- true pred partition(_A,_B,Left,Right)
39 : (list(num,_A), num(_B), var(Left), var(Right))
40 => (list(num,_A), num(_B), list(num,Left),

list(num,Right),
41 size(ub,length,Left,length(_A)),
42 size(ub,length,Right,length(_A)))
43 + cost(ub,steps,length(_A)+1).
44

45 :- true pred append(_A,X,_B)
46 : (X=[_C|_D],
47 mshare([[_B]]),
48 var(_B), ground([_A,_C,_D]), list(num,_A), term(_B),

num(_C), list(num,_D))
49 => (ground([_A,_B,_C,_D]), list(num,_A), list1(num,_B),

num(_C), list(num,_D))
50 + (not_fails , covered).
51

52 :- true pred append(_A,X,_B)
53 : (mshare([[_B]]),
54 var(_B), ground([_A,X]), list(num,_A), list1(num,X),

term(_B))
55 => (ground([_A,X,_B]), list(num,_A), list1(num,X),

list1(num,_B))
56 + (not_fails , covered).
57

58 :- true pred append(_A,X,_B)
59 : (X=[_C|_D],
60 mshare([[_B]]),
61 var(_B), ground([_A,_C,_D]), list(unifier_elem ,_A),

term(_B), num(_C), list(unifier_elem ,_D))
62 => (ground([_A,_B,_C,_D]), list(unifier_elem ,_A),

rt5(_B), num(_C), list(unifier_elem ,_D))
63 + (not_fails , covered).
64

65 :- true pred append(_A,X,_B)
66 : (list(num,_A), list1(num,X), var(_B))

17

3.1. Exfilter

67 => (list(num,_A), list1(num,X), list1(num,_B),
68 size(lb,length,_B,length(X)+length(_A)))
69 + cost(lb,steps,length(_A)+1).
70

71 :- true pred append(_A,X,_B)
72 : (list(num,_A), list1(num,X), var(_B))
73 => (list(num,_A), list1(num,X), list1(num,_B),
74 size(ub,length,_B,length(X)+length(_A)))
75 + cost(ub,steps,length(_A)+1).

The main problem in the first version of our implementation was that during the
experimental evaluation, we observed that sometimes we only want a particular
assertion instead of having all assertions. This will be explained in more detail
in the next section.

3.1.2 Find module result

As we stated above, in order to obtain one or more specific "true pred" assertion,
we had to add new options.

These options work as follows: Once we have already applied the filter, depend-
ing on what we want, another filter will be applied to achieve the desired re-
sult. So, if we only want the results of a specific predicate, we will add the
option name=Pred, with Pred being the predicate. On the other hand, if we only
want the assertions that contain a series of terms, we will add the option asser-
tion=[Terms] where Terms is the list of terms to be matched. For example, if we
need the assertions that contain the word cost and the word ub, then we need
to add the option assertion=[cost,ub].

Continuing with the example used before, if we now want to get the "true pred"
assertions and comp properties but only for a given predicate, in this case the
predicate partition, the command would be:

ciao-exfilter results/qsort2--A--fana_nf=nf--fana_cost=resources--name=partition--filter=tpred_plus.txt

The process is the same as the previous one, but once we have applied the
filter=tpred_plus (the result shown above), another filter will be applied. In
this case, only the assertions of the predicate partition will be kept.

The result will be written into a file whose name is

qsort2--A--fana_nf=nf--fana cost=resources--name=partition--filter=tpred_plus.txt

and the contents will be:

1 :- true pred partition(_A,_B,Left,Right)
2 : (mshare([[Left],[Right]]),
3 var(Left), var(Right), ground([_A,_B]), list(num,_A),

num(_B), term(Left), term(Right))
4 => (ground([_A,_B,Left,Right]), list(num,_A), num(_B),

list(num,Left), list(num,Right))
5 + (not_fails , covered).

18

The Exfilter tool and plugin

6

7 :- true pred partition(_A,_B,Left,Right)
8 : (list(num,_A), num(_B), var(Left), var(Right))
9 => (list(num,_A), num(_B), list(num,Left), list(num,Right),

10 size(lb,length,Left,0),
11 size(lb,length,Right ,0))
12 + cost(lb,steps,length(_A)+1).
13

14 :- true pred partition(_A,_B,Left,Right)
15 : (list(num,_A), num(_B), var(Left), var(Right))
16 => (list(num,_A), num(_B), list(num,Left), list(num,Right),
17 size(ub,length,Left,length(_A)),
18 size(ub,length,Right,length(_A)))
19 + cost(ub,steps,length(_A)+1).

If we now want only those assertions that contain the terms cost and ub, the
command will be:

ciao-exfilter results/qsort2--A--fana_nf=nf--fana_cost=resources--name=partition--assertion=[cost,ub]--filter=tpred_plus.txt

And the result will be:

1 :- true pred partition(_A,_B,Left,Right)
2 : (list(num,_A), num(_B), var(Left), var(Right))
3 => (list(num,_A), num(_B), list(num,Left), list(num,Right),
4 size(ub,length,Left,length(_A)),
5 size(ub,length,Right,length(_A)))
6 + cost(ub,steps,length(_A)+1).

As we can see, depending on what we want, several filters can be applied at the
same time.

3.2 LPdoc plugin

Lpdoc [12, 9] is a tool which generates documentation manuals automatically
from one or more logic program source files, written in ISO-Prolog, Ciao, and
other (C)LP languages. A fundamental advantage of using lpdoc to document
programs is that it is much easier to maintain a true correspondence between
the program and its documentation, and to identify precisely to what version of
the program a given printed manual corresponds.

In order to allow better formatting of on-line and printed manuals, in addition
to normal text, certain formatting commands can be used within these strings.
The syntax of all these commands is: @command or @command{body} where command
is the command name and body is the (possibly empty) command body.

We have supplemented a plugin for lpdoc that recognises a command with syn-
tax @exfilter{File}{Options} which concatenate File with Options, find the re-
sult file and ensure that this file exists, and incorporate it in the documentation.
For example:

19

3.2. LPdoc plugin

@exfilter{code/app.pl}{A,filter=tpred}

Moreover, LPdoc is specially relevant in our context because it includes a num-
ber of backends in order to generate the documentation in different formats such
as texinfo, pdf, html, ascii, etc.

20

Chapter 4

Experimental evaluation

In this chapter, we describe an experimental evaluation of the tool Exfilter which
we explained in the previous chapter. This experimental evaluation consists in:

• Recognizing the pieces of code that we want to analyze.

• Applying our tool.

• Comparing the outputs with the tutorial made manually.

We show some examples of the Advanced Tutorial on Program Development and
Optimization using the Ciao Preprocessor [21] and the CiaoPP Quick Tutorial [7].

4.1 Static Analysis Basics

Consider the program defining a module which exports the qsort predicate:

1 :- module(qsort, [qsort/2], [assertions]).
2 :- entry qsort(A,B) : (list(num,A), var(B)).
3

4 qsort([X|L],R) :-
5 partition(L,X,L1,L2),
6 qsort(L2,R2), qsort(L1,R1),
7 append(R2,[X|R1],R).
8 qsort([],[]).
9

10 partition([],_B,[],[]).
11 partition([E|R],C,[E|Left1],Right):-
12 E < C, !, partition(R,C,Left1,Right).
13 partition([E|R],C,Left,[E|Right1]):-
14 E >= C, partition(R,C,Left,Right1).
15

16 append([],X,X).
17 append([H|X],Y,[H|Z]):- append(X,Y,Z).

21

4.2. Non-failure and Determinacy Analysis

The sharing and freenes analysis abstract domain computes freeness, indepen-
dence, and grounding dependencies between program variables.

It is performed by selecting the menu option Aliasing-Mode:

The output of the analysis is performed via assertions. In this case three asser-
tions appear:

(a) Tutorial (b) Exfilter

Figure 4.1

4.2 Non-failure and Determinacy Analysis

CiaoPP includes a non-failure analysis, based on [4] and [2], which can detect
procedures and goals that can be guaranteed not to fail, i.e., to produce at least
one solution or not terminate. It also can detect predicates that are “covered”,

22

Experimental evaluation

i.e., such that for any input (included in the calling type of the predicate), there
is at least one clause whose “test” (head unification and body builtins) succeeds.
CiaoPP also includes a determinacy analysis based on [15], which can detect
predicates which produce at most one solution, or predicates whose clause tests
are mutually exclusive, even if they are not deterministic (because they call other
predicates that can produce more than one solution). Programs can be analyzed
with this kind of domains by selecting to perform Non-Failure Analysis with do-
main nf :

Analyzing qsort with the nf domain will produce (among others) the following
assertion:

(a) Tutorial (b) Exfilter

Figure 4.2

The + field in pred assertions can contain a conjunction of global properties of
the computation of the predicate. not_fails states that if the precondition is
met, the predicate will never fail.

23

4.3. Size, Resources, and Termination Analysis

4.3 Size, Resources, and Termination Analysis

CiaoPP can also infer lower and upper bounds on the sizes of terms and the
computational cost of predicates [5, 4]. The cost bounds are expressed as func-
tions on the sizes of the input arguments and yield the number of resolution
steps or other resources. Various measures are used for the “size” of an input,
such as list-length, term-size, term-depth, integer-value, etc. Note that obtain-
ing a non-infinite upper bound on cost also implies proving termination of the
predicate.

This resource analysis is parametric on the resources, therefore a package defin-
ing the resource to be used has to be imported in the module, in this case we
use the default package that infers information about computational steps. This
is done by replacing the first line by:

:- module(qsort, [qsort/2], [assertions,predefres(res_steps)]).

Also, to be able to infer lower bounds a non-failure and determinacy analysis
has to be performed:

As an example, the following assertions are part of the output of the upper
bounds analysis:

24

Experimental evaluation

Figure 4.3: (a) Tutorial

Figure 4.4: (b) Exfilter

For example, the second assertion is inferring on success size(ub,_B,length(X)+length(_A)),
which means that an (upper) bound on the size of the third argument of append/3
is the sum of the sizes of the first and second arguments. The inferred upper
bound on computational steps (+ cost(ub,steps,length(_A)+1)) is the length of
the first argument of append/3.

The following is the output of the lower-bounds analysis:

Figure 4.5: (a) Tutorial

Figure 4.6: (b) Exfilter

The lower-bounds analysis uses information from the non-failure analysis, with-
out which a trivial lower bound of 0 would be derived. In this case it is in-
ferred that on success the lower bound of the third argument of append is

25

4.4. Assertion Checking

size(lb,_B,length(X)+length(_A)) (the same as the upper bound!), and the up-
per bound on computational steps + cost(lb,steps,0), which represents the
case in which the first list to concatenate is empty.

4.4 Assertion Checking

Let us add an assertion with properties that we want to prove about the execu-
tion of the program.

1 :- module(_, [app/3], [assertions]).
2

3 :- entry app(A,B,C) : (list(A), list(B)).
4 :- pred app(A,B,C) : (list(A), list(B)) => var(C).
5 app([],Y,Y).
6 app([X|Xs], Ys, [X|Zs]) :-
7 app(Xs,Ys,Zs).

This assertion is stating that if the predicate is called with a A and B list, if it
succeeds C will be a free variable.

Figure 4.7: (a) Tutorial

Figure 4.8: (b) Exfilter

26

Experimental evaluation

Of course this assertion does not hold and we get a message saying so.

4.5 Execution times

In this section we will show some information in order to help us better under-
stand the scheme we have chosen to implement Exfilter. We will use the same
examples as in the previous section.

First of all, we will summarise the Exfilter scheme discussed at the beginning of
the document: first, we indicate in LPdoc the examples we want to show. When
we run LPdoc it creates the files and warns us that we need to run Exfilter to
fill them. After the files are created, Exfilter is run on the files and once it has
finished, LPdoc is run again, which will incorporate the content of the files into
the documentation.

In the following table we have calculated the times for each part of the process.
The second column shows the time LPdoc takes to generate the documentation
before Exfilter is applied. The third column represents the time it takes for
Exfilter to run the analysis and the last column indicates the time it takes LPdoc
to generate the documentation after Exfilter has been applied.

Table of results of the analysis
Example LPdoc (s) Analysis times (s) LPdoc (s)

1 0.3225 0.951 0.337
2 0.3225 1.1775 0.337
3 0.3225 1.178+1.158 0.337
4 0.1345 0.9725 0.178

As we can see in this table, the time it takes to run Exfilter on the files is longer
than the time it takes to generate the documentation with LPdoc. Therefore,
we decided to divide this process into these phases. When there is an error in
the analysis or if there is a complex example and it takes longer, it is easier to
control and identify which part of the process is causing the error or is taking
too long.

27

Chapter 5

Conclusions and Future Work

We have presented Exfilter, a tool which aims to keep the Ciao tutorials and
manuals up to date. Although we have only applied it to two tutorials: Ad-
vanced Tutorial on Program Development and Optimization using the CiaoPP Pro-
gram Processor and CiaoPP Quick Tutorial, the purpose of this tool is to apply it
to all manuals and tutorials. We also implemented an LPdoc plugin in order to
include Exfilter results in LPdoc.

After the experimental evaluation, we can observe the correct functioning of the
tool and seeing how all the filters are working properly. Furthermore, by com-
paring the results in the tutorial with once that Exfilter extracted, we can see the
improvements that have been made and how the tutorials were outdated. More-
over, during the experimental evaluation we could identified many inconsisten-
cies that helped correct errors in the system. Therefore, we can see that exfilter
fulfils its purpose: On the one hand, to automate the process of generating ex-
amples for tutorials and on the other hand, to find errors and inconsistencies in
the examples in order to fix and improve the errors in the system.

Regarding the modifications or changes that can be made to the tool, it will
depend on the needs that are created. For a specific example, there may be a
need to create a filter or a new option.

As mentioned above, the main idea is to apply it to all Ciao tutorials. But for
future use, this tool can be used for tutorials written in other languages, as
CiaoPP does not only analyse the Ciao language.

29

Chapter 6

Impact Analysis

While there have been substantial improvements in resource consumption from
the hardware point of view, significant progress can still be made in improving
the energy efficiency of software. Energy is a critical resource in embedded
software development and it is therefore necessary to be able to predict the
energy consumption of a program before running it.

Software development in embedded systems is of special importance due to the
large number of these devices involved in our daily life. Some of them may
be as obvious as a bank terminal, a smartphone or a smartwatch, and others
may go unnoticed like the router at home. Moreover, in a world dominated
by technology, the growing need to connect everything, better known as the
Internet of Things, opens up infinite opportunities to the emergence of new
embedded systems that add to the list.

The consumption is directly related to the characteristics of the hardware that
makes up a system, but it also depends on how and how much it is used, i.e.,
it depends on the software being efficient. CiaoPP helps in the the verification
and optimization of the resource usage of programs, thus reducing the energy
footprint of IT. Static analysis makes it possible to infer from the code informa-
tion about the resource consumption of a program without exercising it. In this
work, improving and facilitating the use of CiaoPP will lead to its more frequent
use.

This will make it possible to verify or certify a program’s energy specifications or
to classify program’s energy specifications or classify software based on energy
consumption. In addition, the ability to statically infer the energy consumption
of a program will allow the developer to optimize his code to make it more energy
efficient. The objectives of the project are thus directly related to the reduc-
tion of the energy footprint of information technology, and can thus contribute
significantly to the sustainable development objective.

31

Bibliography

[1] F. Bueno, M. Carro, M. V. Hermenegildo, P. Lopez-Garcia, and J.F. Morales
(Eds.). The Ciao System. Ref. Manual (v1.20). Technical report, April 2021.
Available at http://ciao-lang.org.

[2] F. Bueno, P. Lopez-Garcia, and M. V. Hermenegildo. Multivariant Non-
Failure Analysis via Standard Abstract Interpretation. In FLOPS’04, num-
ber 2998 in LNCS, pages 100–116. Springer-Verlag, 2004.

[3] F. Bueno, P. Lopez-Garcia, G. Puebla, and M. V. Hermenegildo. The Ciao
Prolog Preprocessor. Technical Report CLIP1/04, Technical University of
Madrid (UPM), Facultad de Informática, 28660 Boadilla del Monte, Madrid,
Spain, January 2004.

[4] S. K. Debray, P. Lopez-Garcia, M. V. Hermenegildo, and N.-W. Lin. Lower
Bound Cost Estimation for Logic Programs. In 1997 International Logic Pro-
gramming Symposium, pages 291–305. MIT Press, Cambridge, MA, October
1997.

[5] S.K. Debray, P. Lopez-Garcia, M. V. Hermenegildo, and N.-W. Lin. Esti-
mating the Computational Cost of Logic Programs. In Static Analysis Sym-
posium, SAS’94, number 864 in LNCS, pages 255–265, Namur, Belgium,
September 1994. Springer-Verlag.

[6] Tom Dye Eric Schulte, Dan Davison. Babel: Introduction.

[7] Isabel Garcia-Contreras. Ciaopp quick tutorial. Available at https://
ciao-lang.org/ciao/build/doc/ciaopp.html/tut_quick_start.html.

[8] M. Hermenegildo and The Ciao Development Team. Why Ciao? –An
Overview of the Ciao System’s Design Philosophy. Technical Report
CLIP7/2006.0, Technical University of Madrid (UPM), School of Computer
Science, UPM, December 2006. Available from: http://cliplab.org/papers/
ciao-philosophy-note-tr.pdf.

[9] M. V. Hermenegildo. A Documentation Generator for (C)LP Systems. In
International Conference on Computational Logic, CL2000, number 1861 in
LNAI, pages 1345–1361. Springer-Verlag, July 2000.

[10] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, R. Haemmerlé,
E. Mera, J. F. Morales, and G. Puebla. An Overview of the Ciao System. In

33

https://ciao-lang.org/ciao/build/doc/ciaopp.html/tut_quick_start.html
https://ciao-lang.org/ciao/build/doc/ciaopp.html/tut_quick_start.html
http://cliplab.org/papers/ciao-philosophy-note-tr.pdf
http://cliplab.org/papers/ciao-philosophy-note-tr.pdf

BIBLIOGRAPHY

N. Bassiliades et al., editor, Proc. of RuleML-Europe 2011, volume 6826 of
LNCS, pages 2–3. Springer-Verlag, July 2011. (abstract of invited talk).

[11] M. V. Hermenegildo, F. Bueno, G. Puebla, and P. Lopez-Garcia. Program
Analysis, Debugging and Optimization Using the Ciao System Preprocessor.
In 1999 Int’l. Conference on Logic Programming, pages 52–66, Cambridge,
MA, November 1999. MIT Press.

[12] M. V. Hermenegildo and J.F. Morales. The LPdoc Documentation Gen-
erator. Ref. Manual (v3.0). Technical report, July 2011. Available at
http://ciao-lang.org.

[13] M. V. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Par-
tial Specifications, and an Extensible Assertion Language for Program Vali-
dation and Debugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S.
Warren, editors, The Logic Programming Paradigm: a 25–Year Perspective,
pages 161–192. Springer-Verlag, July 1999.

[14] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated
Program Debugging, Verification, and Optimization Using Abstract Inter-
pretation (and The Ciao System Preprocessor). Science of Computer Pro-
gramming, 58(1–2):115–140, October 2005.

[15] P. Lopez-Garcia, F. Bueno, and M. V. Hermenegildo. Determinacy Analysis
for Logic Programs Using Mode and Type Information. In Pre-proceedings
of the 14th International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’04), pages 19–39. Springer-Verlag, August 2004.

[16] G. Puebla, F. Bueno, and M. V. Hermenegildo. An Assertion Language for
Constraint Logic Programs. In Analysis and Visualization Tools for Con-
straint Programming, number 1870 in LNCS, pages 23–61. Springer-Verlag,
2000.

[17] G. Puebla, F. Bueno, and M. V. Hermenegildo. Combined Static and Dy-
namic Assertion-Based Debugging of Constraint Logic Programs. In Logic-
based Program Synthesis and Transformation (LOPSTR’99), number 1817 in
LNCS, pages 273–292. Springer-Verlag, March 2000.

[18] Eric Schulte and Dan Davison. Active documents with org-mode. Computing
in Science and Engineering, 13:66–73, 05 2011.

[19] Eric Schulte, Dan Davison, Tom Dye, and Carsten Dominik. A multi-
language computiBng environment for literate programming and repro-
ducible research. Journal of Statistical Software, 46:1–24, 01 2012.

[20] Jupyter Team. Jupyter notebook documentation (release 6.5.0.dev0),
2021. Available at https://buildmedia.readthedocs.org/media/pdf/
jupyter-notebook/latest/jupyter-notebook.pdf.

[21] The Ciao Development Team. Advanced tutorial on program development
and optimization using the ciaopp program processor. Available at https:
//ciao-lang.org/ciao/build/doc/ciaopp.html/release_tutorial.html.

34

https://buildmedia.readthedocs.org/media/pdf/jupyter-notebook/latest/jupyter-notebook.pdf
https://buildmedia.readthedocs.org/media/pdf/jupyter-notebook/latest/jupyter-notebook.pdf
https://ciao-lang.org/ciao/build/doc/ciaopp.html/release_tutorial.html
https://ciao-lang.org/ciao/build/doc/ciaopp.html/release_tutorial.html

BIBLIOGRAPHY

[22] Wolfram. Wolfram notebooks: Environment for technical workflows, 2021.
Available at https://www.wolfram.com/notebooks/.

[23] S. Wolfram. What is a computational essay?, 2017. Available at https:
//writings.stephenwolfram.com/2017/11/what-is-a-computational-essay/.

35

https://www.wolfram.com/notebooks/
https://writings.stephenwolfram.com/2017/11/what-is-a-computational-essay/
https://writings.stephenwolfram.com/2017/11/what-is-a-computational-essay/

Appendix A

Example extraction, execution,
and filter tool for Ciao/CiaoPP

37

Exfilter
Example extraction, execution, and filter tool for Ciao/CiaoPP

The Ciao Development Team

i

Table of Contents

1 Summary . 1

exfilter . 3
Usage and interface . 4
Usage . 4
Documentation on exports . 4

decode params/6 (pred) . 4
run and filter/6 (pred) . 4
ciaopp call/5 (pred) . 5
run filter on file/5 (pred) . 5
run filter/5 (pred) . 5

Documentation on imports . 5

References. 7

Chapter 1: Summary 1

1 Summary

This manual describes Exfilter: A tool to run Ciao/CiaoPP on a collection of codes and
extract fragments of the output (either messages or the final output) suitable for inclusion in
manuals and tutorials. The tool can be divided into the following three stages:

1. Collection of codes: The examples we want to show in the manuals and tutorials. The
examples will be written in Ciao Prolog using its assertions library.

2. Analyze: The tool accepts a result path file name whose name encodes an input file, a list
of actions, options, and filters. For the given parameters it run CiaoPP and extract and
filter the results into the given result path.

3. Generate manuals and tutorials with the extracted fragments of the output: the analysis
results will be added in documentation.

2 Exfilter

exfilter 3

exfilter

Exfilter is a tool for Ciao/CiaoPP. Its main goal is automating the different actions nec-
essary for the maintenance of documents and tutorials of the Ciao language analysis. The
following figure shows the scheme we have used to generate the tutorials:

The process works as follows: While we are writing the tutorial, if we want to show an exam-
ple (e.g. the result analysis of a given predicate), we will have to use the LPdoc plugin for exfilter,
in the example above you can see how it is used: @exfilter{code/app.pl}{A,filter=tpred}.
This command is composed on the one hand, the predicate to which we want to apply Ex-
filter (app/3) and on the other hand, the analysis and the filter options we want to apply
(-A,filter=tpred). If this file has already been generated before, then what it does is to in-
clude the contents of the file into the documentation. But if it does not exist, then LPdoc will
create the file and we will have to run manually Exfilter to fill in it. Once Exfilter has done the
analysis and applied the filter to the code (in the example above we want to analyse and filter
the predicate app/3), the result will be incorporated into the documentation. Finally, once we
have finished the tutorial, using LPdoc we will be able to generate the output of the tutorial in
HTML, PDF, etc.

4 Exfilter

Usage and interface☛ ✟
• Library usage:

Usage

The command line to launch it has the following format: ciao-exfilter [PATH]. The tool
accepts a result path file name whose name encodes an input file, a list of actions, options,
and filters. For the given parameters it run CiaoPP and extract and filter the results into
the given result path.

• If we want to execute CiaoPP with options -A, -ftypes=eterms, -fmodes=none, filter
true assertions, and generate the result in the specified result path the command line
to use should be:

ciao-exfilter
results/bugqsort--A--ftypes=eterms--fmodes=none--filter=tpred.txt

• But, if we only want the results of a specific predicate, the command line to use should
be:

ciao-exfilter results/bugqsort--A--name=qsort--filter=tpred.txt

• If we need the assertions that contain the word cost and the word ub, then we need to
add the option assertion=[cost,ub]:

ciao-exfilter results/bugqsort--A--name=qsort--assertion=[cost,ub]--
filter=tpred_plus.txt

• The following call will look automatically in the results/ directory: ciao-exfilter

• Exports:

− Predicates:

decode_params/6, run_and_filter/6, ciaopp_call/5, run_filter_on_file/5,
run_filter/5.✡ ✠

Documentation on exports

PREDICATEdecode params/6:
Firstly, we extract Name without the extension from ResultPath. Secondly, we split the
different elements separated by ’- -’. Once the elements have been extracted, we can
proceed to identify the source code’s file name, the filter and the rest of the options. This
will give us the different parameters.

Usage: decode_params(ResulthPath,File,Opts,Filter,NameFilter,Include)

Extract the File, Opts, Filter and if there is a NameFilter or Include from the
ResultPath

PREDICATErun and filter/6:
In this part, we run CiaoPP on the source code with the corresponding action and options
we obtained in the previous step and output the result into a file.

Usage:
run_and_filter(SrcFile,ListOpts,Filter,NameFilter,Include,ResultPath)

Run CiaoPP with the flags ListOpts, apply the different filters Filter, NameFilter,
Include and output the result into ResultPath

exfilter 5

PREDICATEciaopp call/5:
Usage: ciaopp_call(OutputSource,Action,SrcFile,Opts,OutFile)

Call CiaoPP with the corresponding flags(Action and Opts) and output the result into
OutFile

PREDICATErun filter on file/5:
Once the output file produced by Ciao preprocessor is ready, we can proceed to apply
the filter. Finally, the result obtained after applying the filter will be printed on the
ResultPath file.

Usage: run_filter_on_file(File,NameFilter,Include,InFile,OutFile)

Load InFile, apply the filters and save OutFile

PREDICATErun filter/5:
run_filter(Filter, NameFilter, ListInclude, InStr, OutStr)

Filter: The possible values are:

• all: keep all data

• tpred: all true pred assertions

• tpred plus: all true pred assertions including comp properties

• tpred regtype: all true pred assertions and all regtypes

• warnings: all WARNINGs

• errors: all ERRORs

NameFilter: Is a predicate. Exfilter filter the assertions of a specific predicate.

ListInclude: Is a list of words. Exfilter filter the assertions that include this words.

OutStr: Output after applying the filters in InStr

Documentation on imports

This module has the following direct dependencies:

− Application modules:

stream_utils, streams, write, format, lists, process, process_channel, system,
pathnames, read_from_string, llists, regexp_code.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basiccontrol, exceptions, term_compare,
term_typing, debugger_support, basic_props.

− Packages:

prelude, initial, condcomp, assertions, assertions/assertions_basic, fsyntax,
dcg.

6 Exfilter

References 7

References

(this section is empty)

8 Exfilter

Appendix B

LPdoc plugin for exfilter

49

LPdoc plugin for exfilter

i

Table of Contents

1 Summary . 1

exfilter lpdoc . 3
Usage and interface . 3
Documentation on exports . 3

make file nofail/2 (pred) . 3
split file/2 (pred) . 3
concatenate items/3 (pred) . 3
concatenate opts/2 (pred) . 3
split opts/2 (pred) . 3

Documentation on multifiles . 4
doc cmd type/1 (pred) . 4
doc cmd rw/2 (pred) . 4

Documentation on imports . 4

References. 5

Chapter 1: Summary 1

1 Summary

This module defines the LPdoc exfilter command which incorporates the analized results
(or projections of them) in documentation.

2 LPdoc plugin for exfilter

exfilter lpdoc 3

exfilter lpdoc

LPdoc command @exfilter{File}{Opts} concatenates File with Options, find the result
file and ensure that this file exists, and incorporate it in the documentation.

Usage and interface☛ ✟
• Library usage:

@exfilter{code/app.pl}{A,filter=tpred}

will include the contents of the file results/app--A--filter=tpred.txt in the documen-
tation.

• Exports:

− Predicates:

make_file_nofail/2, split_file/2, concatenate_items/3, concatenate_opts/2,
split_opts/2.

− Multifiles:

doc_cmd_type/1, doc_cmd_rw/2.✡ ✠
Documentation on exports

PREDICATEmake file nofail/2:
Usage: make_file_nofail(F,String)

If F exists then reads all the characters from the F and returns them in String. If F does
not exist then writes a Warning message to F

PREDICATEsplit file/2:
Usage: split_file(File,Name)

Name is the File name

PREDICATEconcatenate items/3:
Usage: concatenate_items(File,Opts,Result)

Result is the concatenation of File and Opts

PREDICATEconcatenate opts/2:
Usage: concatenate_opts(Item,[ConItems])

Concatenate a list with ’–’

PREDICATEsplit opts/2:
Usage: split_opts(ConcList,SplitList)

Split a list separated by ’,’

4 LPdoc plugin for exfilter

Documentation on multifiles

PREDICATEdoc cmd type/1:
Usage: doc_cmd_type(exfilter(s,s))

{file}{opts}

The predicate is multifile.

PREDICATEdoc cmd rw/2:
Usage: doc_cmd_rw(exfilter(File,Opts),R)

Concatenates File with Opts, find the result file and ensure that this file exists.

The predicate is multifile.

Documentation on imports

This module has the following direct dependencies:

− Application modules:

lists, pathnames, system, stream_utils, system_extra, classic_predicates,
process.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basiccontrol, exceptions, term_compare,
term_typing, debugger_support, basic_props, io_basic.

− Packages:

prelude, initial, condcomp, assertions, assertions/assertions_basic, fsyntax,
doc_module.

References 5

References

(this section is empty)

6 LPdoc plugin for exfilter

	Introduction
	Background and State of the Art
	Computational notebook
	Jupyter Notebook
	Emacs Org-Babel mode

	Exfilter Tool
	Ciao Assertions

	The Exfilter tool and plugin
	Exfilter
	All module results
	Find module result

	LPdoc plugin

	Experimental evaluation
	Static Analysis Basics
	Non-failure and Determinacy Analysis
	Size, Resources, and Termination Analysis
	Assertion Checking
	Execution times

	Conclusions and Future Work
	Impact Analysis
	Bibliography
	
	Example extraction, execution, and filter tool for Ciao/CiaoPP
	LPdoc plugin for exfilter

