
Inferring Energy Bounds via Static Program Analysis
and Evolutionary Modeling of Basic Blocks

Umer Liqat1,3[0000−0001−9104−8410], Zorana Banković1, Pedro
Lopez-Garcia1,2[0000−0002−1092−2071], and

Manuel V. Hermenegildo1,3[0000−0002−7583−323X]

1 IMDEA Software Institute, Madrid, Spain
2 Spanish Council for Scientific Research (CSIC), Madrid, Spain

3 Universidad Politécnica de Madrid, Spain
{umer.liqat,zorana.bankovic,pedro.lopez,manuel.hermenegildo}@imdea.org

Abstract. The ever increasing number and complexity of energy-bound devices
(such as the ones used in Internet of Things applications, smart phones, and mis-
sion critical systems) pose an important challenge on techniques to optimize their
energy consumption and to verify that they will perform their function within the
available energy budget. In this work we address this challenge from the software
point of view and propose a novel approach to estimating accurate parametric
bounds on the energy consumed by program executions that are practical for
their application to energy verification and optimization. Our approach divides
a program into basic (branchless) blocks and performs a best effort modeling to
estimate upper and lower bounds on the energy consumption for each block using
an evolutionary algorithm. Then it combines the obtained values according to the
program control flow, using a safe static analysis, to infer functions that give both
upper and lower bounds on the energy consumption of the whole program and its
procedures as functions on input data sizes. We have tested our approach on (C-
like) embedded programs running on the XMOS hardware platform. However,
our method is general enough to be applied to other microprocessor architectures
and programming languages. The bounds obtained by our prototype implemen-
tation on a set of benchmarks were always safe and quite accurate. This supports
our hypothesis that our approach offers a good compromise between safety and
accuracy, and can be applied in practice for energy verification and optimization.

Keywords: Energy Modeling, Evolutionary Algorithms, Static Analysis, Energy Con-
sumption Analysis and Verification, Resource Analysis and Verification.

1 Introduction
Reducing and controlling the energy consumption and the environmental impact of
computing technologies has become a challenging problem worldwide. It is a signifi-
cant issue in systems ranging from large data centers and high-performance computing
systems down to small Internet of Things (IoT) devices, sensors, smart watches, smart
phones, portable/implantable medical devices, wearables, etc. Such devices often rely
on small batteries or energy harvested from the environment, and may have to operate
and intercommunicate continuously for long periods of time, which implies that their

energy consumption should be very low. Although there have been improvements in
battery and energy harvesting technology, they alone are often not enough to achieve
the required level of energy consumption to fully support IoT and other energy-bound
applications. In addition, for many of these IoT applications (as well as others, such as,
e.g., space systems or implantable/portable medical devices), beyond optimizing energy
consumption, it is actually crucial to guarantee that execution will complete within a
specified energy budget, i.e., before the available system energy runs out, or that the
system will function for a given period of time.

In spite of the recent rapid advances in energy-efficient hardware, it is software that
controls the hardware, so that far more energy savings remain to be tapped by improving
the software that runs on these devices. In this work we address these challenges from
the software point of view, focusing on the static estimation of the energy consumed by
program executions (i.e., at compile time, without actually running the programs with
concrete data), as a basis for energy optimization and verification. Such estimations are
given as functions on input data sizes, since data sizes typically influence the energy
consumed by a program, but are not known at compile time. This approach allows ab-
stracting away such sizes and inferring energy consumption in a way that is parametric
on them.

Different types of resource usage estimations are possible, such as, e.g., probabilis-
tic, average, or safe bounds. However, not all types of estimations are valid or useful for
a given application. For example, in order to verify/certify energy budgets, safe upper
and lower bounds on energy consumption are required [15, 14]. Unfortunately, current
approaches that guarantee that the bounds are always safe tend to compromise their ac-
curacy with overly conservative bounds, which may not be useful in practice. With this
safety/accuracy trade-off in mind, we propose an approach that combines a best effort
modeling with a safe static analysis, to infer accurate bounds that are on the safe side
in most cases, in order to be practical for verification applications, in addition to energy
optimization.

Describing how energy verification is performed is out of the scope of this paper,
and we refer the reader to [13, 14] for a description on how upper and lower bounds
on resource usage in general can be used for verification within the CiaoPP system [6],
and to [15] for a specialization to energy consumption verification. Herein we focus
instead on the inference of energy bounds. Nevertheless, in the following we provide the
intuition on how these bounds are used in our system for verification and certification:
assume that El and Eu are (strict) safe lower and upper bounds (respectively) on the
energy consumption of a program, and that Eb is an energy budget expressed by a
program specification, e.g., defined by the capacity of the battery. Then:

1. If Eu≤Eb, then the given program can be safely executed within the existing energy
budget.

2. If El ≤ Eb ≤ Eu, it might be possible to complete the execution of the program, but
we cannot claim it for certain.

3. If Eb < El , then it is not possible to execute the program (the system will run out of
batteries before program execution is completed).

2

Of the small number of static energy analyses proposed to date, only a few [20, 12,
11] use resource analysis frameworks that are aimed at inferring safe upper and lower
bounds on the resources used by program executions. A crucial component in order for
such frameworks to infer information regarding hardware-dependent resources, and,
in particular, energy, is a low-level resource usage model, such as, e.g., a model of
the energy consumption of individual instructions. Examples of such instruction-level
models are [10], at the Java bytecode level, or [9], at the Instruction Set Architecture
(ISA) level.

Clearly, the safety of the bounds inferred by analysis depends on the safety of the
low-level models. Unfortunately, instruction-level models such as [10, 9] provide av-
erage energy consumption values or functions, which are not really suitable for safe
upper- or lower-bounds analysis. Furthermore, trying to obtain instruction-level mod-
els that provide strict safe energy bounds would result in very conservative bounds.
Although when supplied with such models the static analysis would infer high-level en-
ergy consumption functions providing strictly safe bounds, these bounds would not be
useful in general because of their large inaccuracy. For this reason, the analyses in [20,
12, 11] used instead the already mentioned instruction level average energy models [10,
9]. However, this meant that the energy functions inferred for the whole program were
not strict bounds, but rather approximations of the actual bounds, and could possibly
be below or above. This trade-off between safety and accuracy is a major challenge in
energy analysis. In this paper we address this challenge by finding a good compromise
and providing a best effort technique for the generation of lower-level energy models
which are useful and effective in practice for verification-type applications.

The main source of inaccuracy in current instruction-level energy models is inter-
instruction dependence (including also data dependence), which is not captured by most
models. On the other hand, the concrete sequences of instructions that appear in pro-
grams exhibit worst cases that are not as pessimistic as considering the worst case for
each of the individual intervening instructions. Based on this, we decided to use branch-
less blocks of ISA instructions as the modeling unit instead of individual instructions.
We divide the (ISA) program into such basic blocks, each a straight-line code sequence
with exactly one entry to the block (the first instruction) and one exit from the block
(the last instruction). We then measure the energy consumption of these basic blocks,
and determine an upper (resp. lower) bound on the energy consumption of each block.
In this way the inter-instruction data dependence discussed above and other factors are
accounted for within each block. The inter-instruction dependencies between blocks are
still modeled in a conservative way, and hence can be one of the sources of inaccuracy.
However, such modeling does not affect the safety of the energy bounds. The energy
values obtained for each block are supplied to our (safe) static resource analysis, which
combines them according to the program control flow and produces functions that give
both (practical) upper and lower bounds on the energy consumption of the whole pro-
gram and its procedures, as functions on input data sizes.

In order to find bounds on the energy consumption of each basic block we use an
evolutionary algorithm (EA), varying the basic block’s input values and taking energy
measurements directly from the hardware for each input combination. This way, we take
advantage of the fast search space exploration provided by EAs. The approach in [22]

3

also uses EAs for estimating worst case energy consumption. However, it is applied
to whole programs, rather than at the basic block level. A major disadvantage of such
an approach is that, if there are data-dependent branches in the programs, as is often
the case, the EA quickly loses accuracy, and does not converge since different input
combinations can trigger different sets of instructions [22]. This can make the problem
intractable. In contrast, our approach combines EAs and static analysis techniques in
order to get the best of both worlds. Our approach takes out the treatment of data-
dependent branches from the EA, so that the same sequence of instructions is always
executed in each basic block. This way, the EA converges and estimates the worst (resp.
best) case energy of the basic blocks with higher accuracy. We take care of the program
control flow dependencies by using static analysis instead.

For concreteness, in our experiments we focus on the energy analysis of programs
written in XC [25], running on the XS1-L architecture [17], designed by XMOS.4 How-
ever, our approach is general enough to be applied as well to the analysis of other ar-
chitectures and other programming languages and their associated lower-level program
representations. XC is a high-level, C-based programming language that includes exten-
sions for concurrency, communication, input/output operations, and real-time behavior.
Our experimental setup infers energy consumption information by processing the ISA
(Instruction Set Architecture) code compiled from XC, and reflects it up to the source
code level. Such information is provided in the form of functions on input data sizes,
and is expressed by means of assertions [7].

The results of our experiments suggest that our best effort approach is quite accu-
rate, in the sense that the inferred energy bounds are close to the actual upper and lower
bounds. Furthermore, the energy estimations produced by our approach were always
safe, in the sense that they over-approximated the actual bounds (i.e., the inferred up-
per bounds were above the actual highest energy consumptions and the inferred lower
bounds below the actual lowest energy consumptions). We argue thus that our analysis
provides a good practical compromise.

In summary, the main contributions of this paper are:

– A novel approach that combines dynamic and static analysis techniques for infer-
ring more accurate upper and lower bounds on the energy consumption of program
executions as functions of input data sizes. The dynamic part is based on EAs, and
produces low-level energy models that contain (best effort) upper and lower bounds
on the cost of the elementary operations, as opposed to just average values.

– The proposal of a new abstraction level at which to perform the energy modeling
of program components, namely at the level of basic (branchless) blocks of ISA
instructions, and a method based on EAs to dynamically obtain upper and lower
bounds on the energy of such basic blocks with a good safety/accuracy compro-
mise.

– A prototype implementation and experimental study that supports our claims.

In the rest of the paper, Section 2 explains our best effort technique for energy
modeling of program basic blocks. Section 3 shows how these models are used by the
safe static analysis to infer (practical) upper and lower bounds on the energy consumed

4 http://www.xmos.com/

4

by programs as functions of their input data sizes. Section 4 reports on an experimental
evaluation of our approach. Related work is discussed in Section 5, and finally Section 6
summarizes our conclusions.

2 Modeling the Energy Consumption of Blocks
As mentioned before, the first step of our energy bounds analysis is to determine upper
and lower bounds on the energy consumption of each basic (branchless) program block.
We perform the modeling at this level rather than at the instruction level in order to cater
for inter-instruction dependencies. We first identify all the basic blocks of the program,
and then perform a best effort profiling of the energy consumption of each basic block
for different input data using an EA. These steps are explained in the following sections.

2.1 Identifying the Basic Blocks to be Modeled

A basic block over an inter-procedural control flow graph (CFG) is a maximal sequence
of distinct instructions, S1 through Sn, such that all instructions Sk,1 < k < n have ex-
actly one in-edge and one out-edge (excluding call/return edges), S1 has one out-edge,
and Sn has one in-edge. A basic block therefore has exactly one entry point at S1 and
one exit point at Sn.

In order to divide a program into such basic blocks, the program is first compiled to
a lower-level representation, ISA in our case. A dataflow analysis of the ISA represen-
tation yields an inter-procedural control flow graph (CFG). A final control flow analysis
is carried out to infer basic blocks from the CFG. These basic blocks are further mod-
ified so that they can be run and their energy consumption measured independently by
the EA. Modifications for each basic block include:

1. A basic block with k function call instructions is divided into k + 1 basic blocks
without the function call instructions.

2. A number of special ISA instructions (e.g., return, call, entsp) are omitted from the
block. The cost of such instructions is measured separately and added to the cost of
the block or the function.

3. The harness function that runs the blocks in isolation provides the context to each
block needed for the results to be applicable to the original program. For example
the memory accesses in each block are transformed into accesses to a fixed address
in the local memory of the harness function. The initial values placed in this local
memory are the inputs to the block that the EA explores.

An example of modifications 1 and 2 above is shown in Figure 1. Listing 1.2
shows an ISA representation of a recursive factorial program where the instructions
are grouped together into 3 basic blocks B1, B2, and B3. Consider basic block B2.
Since it has a (recursive) function call to fact at address 12, it is divided further into two
blocks in Listing 1.3, such that the instructions before and after the function call form
two blocks B21 and B22 respectively, and the call instruction (bl) is omitted. The energy
consumption of these two blocks is maximized (minimized) by providing values to the
input arguments to the block (see below) using the EA. The energy consumption of B2
can then be characterized as:

B2A
e = B2A

1e +B2A
2e +blA

e

5

Listing 1.1: Factorial function.

int fact(int N)
{
if (N <= 0)

return 1;

return N*fact(N - 1);
}

Listing 1.2: Basic blocks.

<fact >:
01: entsp 0x2
02: stw r0, sp[0x1]
03: ldw r1, sp[0x1]
04: ldc r0, 0x0
05: lss r0, r0, r1
06: bf r0, <08>

07: bu <010>
10: ldw r0, sp[0x1]
11: sub r0, r0, 0x1
12: bl <fact >
13: ldw r1, sp[0x1]
14: mul r0, r1, r0
15: retsp 0x2

08: mkmsk r0, 0x1
09: retsp 0x2

Listing 1.3: Modified basic blocks.

<fact >:
01: entsp 0x2
02: stw r0, sp[0x1]
03: ldw r1, sp[0x1]
04: ldc r0, 0x0
05: lss r0, r0, r1
06: bf r0, <08_NEW >
08_NEW:

07: bu <010>
10: ldw r0, sp[0x1]
11: sub r0, r0, 0x1

12: bl <fact>

13: ldw r1, sp[0x1]
14: mul r0, r1, r0
15: retsp 0x2

08: mkmsk r0, 0x1
09: retsp 0x2

before call

after call

B1

B21

B22

B3

B1

B2

B3

Fig. 1: Example: Basic block modifications

where B2A
1e, B2A

2e, and blA
e denote the energy consumption of the B21, and B22 blocks,

and the bl ISA instruction respectively, with approximation A (where A=upper or A=lower).
For each modified basic block, a set of input arguments is inferred. This set is used

for an individual representation to drive the EA algorithm to maximize (minimize) the
energy consumption of the block. For the entry block, the input arguments are derived
from the signature of the function. The set gen(B) characterizes the set of variables read
without being previously defined in block B. It is defined as:

gen(b) =
n⋃

k=1
{v | v ∈ ref (k)∧∀(j < k).v /∈ def (j)}

where ref (n) and def (n) denote the variables referred to and defined/updated at a node n
in block b, respectively. For the basic blocks in Listing 1.2 (Fig. 1), the input arguments
are gen(B1)={r0}, gen(B21)={sp[0x1]}, gen(B22)={sp[0x1],r0}, and gen(B3) = /0.

2.2 Evolutionary Algorithm for finding Energy Bounds for Basic Blocks
We now detail the main aspects of the EA used for approximating the upper-bound
(i.e., worst case) and lower-bound (i.e., best case) energy consumption of a basic block.
The only difference between the two algorithms is the way we interpret the objective
function: in the first case we want to maximize it, while in the second one we want to
minimize it.

Fig. 2: Crossover

Individual. The search space dimensions are the different in-
put variables to the blocks. Our goal is to find the combination
of input values which maximizes (minimizes) the energy con-
sumption of each block. The set of input variables to a block is
inferred using a dataflow analysis (as explained in the previous
section). Thus, an individual is simply an array of input values
given in the order of their appearance in the block. In the ini-
tial population, the input values to an individual are randomly
assigned to 32-bit numbers. In addition, some corner cases that
are known to cause high or low energy consumption for partic-
ular instructions are included.5

5 For example, all 1s for high energy consumption, or all 0s for low energy consumption as
operands to a multiply ISA instruction.

6

Fig. 3: Mutation

Crossover. The crossover operation is imple-
mented as an even-odd crossover, since it provides
more variability than a standard n-point crossover.
The process is depicted in Figure 2, where P1 and
P2 are the parents, and C1 and C2 are their chil-
dren created by the crossover operation.

Mutation. For the purpose of this work we have
created a custom mutation operator. Since the energy consumption in digital circuits is
mainly the result of bit flipping, we believe that the best way to explore the search space
is by performing some bit flipping in the mutation operation. This is implemented as
follows. For each gene component (i.e., for each input value to the basic block):

1. We create a random 32-bit integer (a random mask).
2. Then we perform the XOR operation of that integer and the corresponding gene.

This results in a random flipping of the bits of each gene: only the bits of the gene
at positions where the value of the random mask is 1 are flipped.

The process is depicted in Figure 3, where the input values are given as binary numbers.

In the ISA representation of the program, the type structure is implicit and each
operand (e.g., register) of an ISA instruction is a 32-bit value that either represents
data or a memory address holding data. Since the input variables to a block holds data
(memory accesses are transformed as described in the previous section), the mutation
and crossover operators could generate data that such input variables would never take
if the block were to run as part of the whole program. Thus, this conservative modeling
of inter-block data dependencies could be one source of inaccuracy.

Objective function. The objective function that we want to maximize/minimize is the
energy of a basic block, which is measured directly from the chip. The concrete mea-
surement setting will be explained in Section 4

The XMOS XS1 architecture used in our experiments is a cache-less, by design-
predictable architecture, and it does not exhibit pipeline effects such as stalls (to re-
solve pipeline hazards), since exactly one instruction per thread is executed in a 4-stage
pipeline. However, in general, pipeline effects, which depend on the state of the pro-
cessor at the start of the execution of a basic block, can affect the upper/lower bound
estimated on the energy consumption of such a block, and have to be taken into account.
Intra-block pipeline effects are accounted for by our approach just because the depen-
dencies among the instructions within a block are captured. The inter-block pipeline
effects could be modeled in a conservative way by assuming a maximum stall penalty
for the upper bound estimation of each block (e.g., by adding a stall penalty to the exe-
cution time of the block). Similarly, for the lower bound estimation a zero stall penalty
could be used. To approximate these effects, in [2], the authors characterize each block
through pairwise executions with all of its possible predecessors. Each basic block pair
is characterized by executing it on an Instruction Set Simulation (ISS) to collect cycle
counts. A similar reasoning would apply to cache effects due to module boundaries.
These effects could also be bounded using cache and pipeline analysis techniques [16].

7

3 Static Analysis of the Program Energy Consumption
Once (best effort) energy models are obtained for each basic block of the program, the
energy consumption of the whole program is bounded by a (safe) static analyzer that
takes into account the control flow of the program and infers (practical) upper/lower
bounds on its energy consumption. We have implemented such an analyzer by special-
izing the generic resource analysis framework provided by CiaoPP [23, 21, 4, 3], for
programs written in the XC programming language [25] and running on the XMOS
XS1-L architecture. This includes the use of a transformation [12, 11] of the ISA code
into an intermediate representation for analysis which is a series of connected code
blocks, represented as Horn Clauses (HC IR). Such a transformation is shown in Fig. 4
where the ISA representation of the factorial function from Listing 1.2 (Fig. 1) is shown.
It transforms the blocks into clauses and instructions into clause literals. Conditional
branching is modeled by predicates with two clauses, one with the condition true and
the other false. The input/output arguments of each block are inferred via a dataflow
analysis. The final step transforms the blocks into Static Single Assignment (SSA) form
where each variable is assigned exactly once. The analyzer deals with this HC IR al-
ways in the same way, independently of where it originates from. We have also written
the necessary code (i.e., assertions [7]) to feed such analyzer with the block-level up-
per/lower bound energy model obtained by using the technique explained in Section 2.
The analyzer enables a programmer to symbolically bound the energy consumption of
a program P on input data x̄ without actually running P(x̄). It automatically sets up a
system of recurrence (cost) equations that capture the cost (energy consumption) of P
as a function of the sizes of its input arguments x̄. Typical metrics used for data sizes in
this context are the actual value of a number, the length of a list or array, etc. [23, 21]

1 <fact >:
2 01: entsp 0x2
3 02: stw r0, sp[0x1]
4 03: ldw r1, sp[0x1]
5 04: ldc r0, 0x0
6 05: lss r0, r0, r1
7 06: bf r0, <008>

11 07: bu <010>
12 10: ldw r0, sp[0x1]
13 11: sub r0, r0, 0x1
14 12: bl <fact >

16 13: ldw r1, sp[0x1]
17 14: mul r0, r1, r0
18 15: retsp 0x2

21 08: mkmsk r0, 0x1
22 09: retsp 0x2

1 fact(R0,R0_3):-
2 entsp(0x2),
3 stw(R0,Sp0x1),
4 ldw(R1,Sp0x1),
5 ldc(R0_1 ,0x0),
6 lss(R0_2 ,R0_1 ,R1),

7a bf(R0_2 ,0x8),
7b fact_aux(R0_2 ,Sp0x1 ,R0_3 ,R1_1).

10 fact_aux(1,Sp0x1 ,R0_4 ,R1):-
11 bu(0x0A),
12 ldw(R0_1 ,Sp0x1),
13 sub(R0_2 ,R0_1 ,0x1),

14a bl(fact),
14b fact(R0_2 ,R0_3),
16 ldw(R1,Sp0x1),
17 mul(R0_4 ,R1,R0_3),
18 retsp(0x2).

20 fact_aux(0,Sp0x1 ,R0,R1):-
21 mkmsk(R0,0x1),
22 retsp(0x2).

Fig. 4: An ISA (factorial) program (left) and its Horn-clause representation (right)

Consider the example in Fig. 4 (right). The following cost equations are set up over
the function fact that characterize the energy consumption of the whole function using
the approximation A (e.g., upper/lower) of each block inferred by the EA, as a function
of its input data size R0 (in this case the metric is the actual value of R0):

f actA
e (R0) = B1A

e + f act auxA
e (0≤ R0,R0)

8

f act auxA
e (B,R0) =

{
B2A

e + f actA
e (R0−1) if B is true

B3A
e if B is false

These inferred recurrence relations/equations are then passed on to a computer al-
gebra system (e.g., CiaoPPs internal solver or an external solver such as Mathematica,
both used for the results presented in this paper) in order to obtain a closed form func-
tion for them. If we assume (for simplicity of exposition) that each basic block has
unitary cost in terms of energy consumption, i.e., Bie = 1 for all i, we obtain the energy
consumed by fact as a function of its input data size R0 as: f acte(R0) = R0+1.

The functions inferred by the static analysis are arithmetic (including polynomial,
exponential, logarithmic, etc.), and their arguments (the input data sizes) are natural
numbers. The generic resource analyzer ensures that the inferred bounds are strict/safe
if it is supplied with energy models which provide safe bounds.

4 Experimental Assessment
The main goal of our experimental assessment is to perform a first comparison of the ac-
tual upper and lower bounds on energy consumption measured on the hardware against
the respective bounds obtained by evaluating the functions inferred by our proposed ap-
proach (which depend on input data sizes), for each program considered and for a range
of input data sizes. As mentioned before, the experiments have been performed with XC
programs running on the XMOS XS1-L architecture [17]. The particular (development)
hardware for which we derive the branchless-block-level model is a dual-tile board that
contains an XS1-A16-128-FB217 processor.

In order to take power measurements during execution on real hardware, record
and/or display them in real time, we use the hardware and software harness designed
by XMOS, as an extension of the XMOS toolchain, which includes:

– A (hardware) debug adapter (xTAG v3.0) that enables power to be measured.6 The
basic principle consists in placing a small shunt resistor of Rshunt ohm in series
within the supply line. By measuring the voltage drop on the shunt Vshunt , the
current is calculated as Ishunt = Vshunt/Rshunt (Ohm’s law), which is also the cur-
rent of the power supply Isup = Ishunt . Then the power consumption is estimated as
Vsup× Isup, where Vsup is the voltage of the power supply. The xTAG v3.0 adapter
has an extra connector that carries the analog signals required to estimate the power
consumption, as explained above. The measurements regarding these signals are
transported to the host computer over USB using the xSCOPE interface.7

– A (software) tool (xgdb, the debugger), which collects data from the xTAG to be
used by the analysis, by connecting to it over a USB interface (using libusb), and
reading both ordinary xSCOPE traffic and voltage/current measurements.

The selected benchmarks, shown in Table 1, are either iterative or recursive. For
conciseness, the first column only shows the names of the programs and the arguments
that are relevant for their energy-bound functions. The first two benchmarks are small
arithmetic programs, and the third one reverses elements of an input array A of size N
(reverse(A)). A sorting algorithm (selectionsort) and a simple program for finding the

6 https://www.xmos.com/download/private/xTAG-3-Hardware-Manual.pdf
7 https://www.xmos.com/download/private/Trace-data-with-XScope(X9923H).pdf

9

Table 1: Accuracy of upper- and lower-bound estimations
Program DDBr Upper/Lower Bounds (nJ)×103 vs. HW
f act(N)

n
ub = 5.1 N +4.2 +7%
lb = 4.1 N +3.8 −11.7%

f ibonacci(N)
n

ub8= 5.2 lucas(N) +6 f ib(N)−6.6 +8.71%
lb = 4.5 lucas(N)+5 f ib(N)−4.2 −4.69%

reverse(A)
n

ub = 3.7 N +13.3 (N = length of array A) +8%
lb = 3 N +12.5 −8.8%

f indMax(A)
y

ub = 5 N +6.9 (N = length of array A) +8.7%
lb = 3.3 N +5.6 −9.1%

selectionSort(A)
y

ub = 30 N2 +41.4 N +10 (N = length of array A) +8.7%
lb = 16.8 N2 +28.5 N +8 −9.1%

f ir(N)
y

ub = 6 N +26.4 +8.9%
lb = 4.8 N +22.9 −9.7%

biquad(N)
y

ub = 29.6 N +10 +9.8%
lb = 23.5 N +9 −11.9%

maximum number in an array (f indMax) are also included. The latter, which is also
part of the former, is a program where data-dependent branching can bring significant
variations in the worst- and best-case energy consumption for a given input data size.
We have also studied two audio signal processing benchmarks, biquad and f ir (Fi-
nite Impulse Response), provided by XMOS as representatives of XS1 application ker-
nels. Both programs perform filtering tasks that attenuate or amplify specific frequency
ranges of a given input signal. The DDBr column expresses whether a benchmark has
data-dependent branching or not (y/n). The third column shows the upper- and lower-
bound energy functions (on input data sizes) estimated by our approach, as well as the
size metric used. When an input argument (in the first column) is numeric, its size met-
ric is its actual value (and is omitted in the third column). Column vs. HW shows the
average deviation of the energy estimations obtained by evaluating such functions, with
respect to the actual bounds measured on the hardware as explained above. A deviation
is positive (resp. negative) if the estimated value is over (resp. under) the actual mea-
surement. For a given input data size n the actual upper and lower bounds measured on
the hardware are obtained by using data of size n that exhibit the worst and best cases
respectively.

Figure 5(a) depicts the upper- and lower-bound energy functions estimated by the
analysis, as well as the actual bounds measured on the hardware for the f act(N) pro-
gram (taking different values of N). In this case, both the actual upper- and lower-
bounds coincide, as shown by the middle curve (in red), which plots the actual measure-
ments on the hardware. It can be observed that the values of the upper-bound function
estimated by the static analysis supplied with the model obtained by the EA always
over-approximate the actual hardware measurements (by 7%, as given by Table 1),
whereas the lower-bound values under-approximate them (by 11.7%).

Similarly, the f indMax benchmark is shown in Figure 5(b). Unlike f act, the actual
upper- and lower-bound functions of f indMax, depending on input arrays of length N,

8 The mathematical function lucas(n) satisfies the recurrence relation lucas(n) = lucas(n−1)+
lucas(n−2) with lucas(1) = 1 and lucas(2) = 3.

10

2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7
·104

N

E
ne

rg
y(

nJ
)

upper
actual
lower

(a) f act

6 8 10 12 14 16 18 20 22 24 26

0.2

0.4

0.6

0.8

1

1.2

1.4
·105

N

upper
actual-upper
actual-lower

lower

(b) f indMax

6 8 10 12 14 16 18 20 22 24 26

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

·107

N

upper
actual-upper
actual-lower

lower

(c) selectionsort

Fig. 5: Estimated energy upper/lower bounds vs. actual measurements
do not coincide, due to the data-dependent branching. The actual energy consumption of
f indMax not only depends on the length of the input array, but also on its contents, and
thus cannot be captured exactly by a function that depends on data sizes only (i.e., by
abstracting the data by their sizes). A call to f indMax with a sorted array in ascending
order (of a given length N) will discover a new max element in each iteration, and hence
update the current max variable, resulting in the actual upper bound (i.e., worst case of
the algorithm). In contrast, if the array is sorted in descending order, the algorithm will
find the max element in the first iteration, and the rest of the iterations will never update
the current max variable, resulting in the actual lower bound (i.e., best case). Thus,
Figure 5(b) depicts four curves: the upper- and lower-bound energy functions estimated
by our approach for f indMax, as well as the two actual energy bound curves measured
on the hardware. The former are obtained by evaluating the energy functions in Table 1
for different array-lengths N, as before. The latter are obtained with actual arrays of
length N that give the worst and best cases, as explained above. Note that it is not
always trivial to find data that exhibit program worst and best case behaviors. Table 1
shows that the estimated upper- (resp. lower-) bounds over- (resp. under-) approximate
the actual upper- (resp. lower-) bounds measured on the hardware by 8.7% (resp. 9.1%).
Figure 5(c) for selectionsort shows a similar behavior but with quadratic bounds.

The inaccuracies in the energy estimations of our technique come mainly from two
sources: the modeling, which assigns an energy value to each basic block as described
in Section 2, and the static analysis, described in Section 3, which estimates the num-

11

ber of times that the basic blocks are executed depending on the input data sizes, and
hence, the energy consumption of the whole program. Table 2 shows part of the results
of our study in order to quantify the inaccuracy originating from those sources. Dif-
ferent executions of the f indMax benchmark are shown for different input arrays of
length N (Column N). The table is divided into two parts. The first part uses randomly
generated input arrays of length N, while the second part (three lower rows) uses input
arrays that cause the worst- and best-case energy consumption. Column Cost App in-
dicates the type of approximation of the automatically inferred energy functions: upper
bound (ub) and lower bound (lb). Such energy functions are shown in Table 1. We have
then compared the energy consumption estimations obtained by evaluating the energy
function (Column Est) with the observed energy consumption of the hardware measure-
ments (Column Obs). Column D% shows the relative harmonic difference between the
estimated and the observed energy consumption, given by the formula:

rel harmonic di f f (Est,Obs) =
(Est−Obs)× (1

Est +
1

Obs)

2

Table 2: Source of inaccuracies in
f indMax: analysis vs. modeling

N Cost Energy(nJ)×103
D% PrD%App Est Prof Obs

Random array data

5
lb 22.3 24.9 27.3 -20.1 -9.2
ub 31.9 30.2 15.6 10

15
lb 55.9 61.8 69.1 -17 -11
ub 82.1 75.1 21 8.3

25
lb 89.4 99.6 110.9 -17.6 -10.7
ub 132.2 120.8 21.7 8.5

Actual worst- and best-case array data

5
lb 22.3 22.3 25.2 -12.2 -12.2
ub 31.9 31.9 29.4 8.1 8.1

15
lb 55.9 55.9 62.6 -11.3 -11.3
ub 82.1 82.1 75.5 8.3 8.3

25
lb 89.4 89.4 100.2 -11.4 -11.4
ub 132.2 132.2 121.5 8.4 8.4

Column Prof shows the result of es-
timating the energy consumption using
the energy model and assuming that the
static analysis was perfect and estimated
the exact number of times that the basic
blocks were executed. This obviously rep-
resents the case in which all loss of ac-
curacy must be attributed to the energy
model. The values in Column Prof have
been obtained by profiling actual execu-
tions of the program with the concrete in-
put arrays, where the profiler has been in-
strumented to record the number of times
each basic block is executed. The energy
consumption of the program is then ob-
tained by multiplying such numbers by
the values provided by the energy model
for each basic block, and adding all of
them. Column PrD% represents the inac-
curacy due to the energy modeling of ba-
sic blocks using the EA, which has been
quantified as the relative harmonic difference between Prof and the observed energy
consumption Obs. The difference between D% and PrD% represents the inaccuracy
due to the static analysis.

Although the first part of the table, using random data, may give the impression
that both the static analysis and the energy modeling contribute to the inaccuracy of the
energy estimation of the whole program, the second (lower) part of the table indicates
that the inaccuracy only comes from the energy modeling. This is because in the lower
part the comparison was performed with input arrays that make f indMax exhibit its
actual upper- and lower-bounds (depending on the length of the array). In this case,

12

Columns Est and Prof show the same values, which means that there was no inaccuracy
due to the static analysis (regarding the inference of the actual upper- and lower-bound
functions), and that the overall inaccuracy is due to the over- and under-approximation
in the EA to model energy consumption of each basic block.

Table 3 shows a similar experiment for the reverse program, which has no data-
dependent branching. Since the number of operations performed by reverse is actually
a function of the length of its input array (not of its contents), Columns Est and Prof
show the same values for random data (unlike for f indMax), which means that no
inaccuracy comes from the static analysis part.

Table 3: Source of inaccuracies in
reverse: analysis vs. modeling

N Cost Energy(nJ)×103
D% PrD%App Est Prof Obs

Random array data

5
lb 28 28 29 -3.5 -3.5
ub 31.8 31.8 9.2 9.2

15
lb 59 59 64 -8.1 -8.1
ub 68.8 68.8 7.2 7.2

25
lb 90 90 98 -8.5 -8.5
ub 105.8 105.8 7.7 7.7

Regarding the time taken by the EA, it
can vary depending on the parameters it is
initialized with, as well as the initial pop-
ulation. This population is different ev-
ery time the EA is initiated, except for a
fixed number of individuals that represent
corner cases. In the experiments, the EA
is run for up to a maximum of 20 gen-
erations, and is stopped when the fitness
value does not improve for four consecu-
tive generations. In all the experiments the
biquad benchmark took the most time (a
maximum time of 230 minutes) for max-
imizing the energy consumption. In con-
trast, the fact benchmark took the least
time (a maximum time of 121 minutes).
The times remained within the 150-200 minutes range on average. Time speed-ups
were also achieved by reusing the EA results for sequences of instructions that were al-
ready processed in a previous benchmark (e.g., return blocks, loop header blocks, etc.).
This makes us believe that our approach could be used in practice in an iterative de-
velopment process, where the developer gets feedback from our tool and modifies the
program in order to reduce its energy consumption. The first time the EA is run would
take the highest time, since it would have to determine the energy consumption of all
the program blocks. After a focused modification of the program that only affects a
small number of blocks, most of the results from the previous run could be reused, so
that the EA would run much faster during this development process. In other words, the
EA processing can easily be made incremental.

The static analysis, on the other hand, is quite efficient, with analysis times of about
4 to 5 seconds on average, despite the naive implementation of the interface with exter-
nal recurrence equation solvers, which can be improved significantly.

5 Related Work

Static analysis of the energy consumed by program executions has received relatively
little attention until recently. An analysis of Java bytecode programs that estimated
upper-bounds on energy consumption as functions on input data sizes was proposed
in [20], where the Jimple (a typed three-address code) representation of Java bytecode

13

was transformed into Horn Clauses [18], and a simple energy model at the Java byte-
code level [10] was used. However the energy model for the Java opcodes used average
estimations, which are not suitable for verification applications. Also, the results were
not compared with actual, measured energy consumption. A similar approach was pro-
posed in [12] for XC programs, using an ISA-level model. This work did compare to
actual energy consumptions, obtaining promising results, but the ISA-level model also
provided average energy values, which implied the same problem for verification. Other
approaches to static analysis based on the transformation of the analyzed code into an-
other representation have been proposed for analyzing low-level languages [5] and Java
bytecode [1]. In [1], cost relations are inferred directly for these bytecode programs,
whereas in [20] the bytecode is first transformed into Horn Clauses [18].

Other work is based on techniques referred to generally as WCET (Worst Case Ex-
ecution Time Analyses), which have been applied, usually for imperative languages,
in different application domains (see e.g., [26] and its references). These techniques
generally require the programmer to bound the number of iterations of loops, and then
apply an Implicit Path Enumeration technique to identify the path of maximal con-
sumption in the control flow graph of the resulting loop-less program. This approach
has inspired some worst case energy analyses, such as [8]. It distinguishes instruction-
specific (proportional to data) from pipeline-specific (proportional to time) energy con-
sumption, and also takes into account branch prediction and cache misses. However,
it requires the user to identify the input which will trigger the maximal energy con-
sumption. In [24] the approach is refined for estimating hard (i.e., over-approximated)
energy bounds using relative energy models (at the LLVM level), where the energy of
instructions is given in relation to each other (e.g., if all instructions have relative en-
ergy 1, then they all consume the same absolute energy), which does not depend on the
specific hardware, but can be applied if a mapping between LLVM and low-level ISA
instructions exists. If the energy bounds are not hard (i.e., the application allows their
violation) a genetic algorithm is used to obtain an under-approximation of the energy
bounds. However, this approach loses accuracy when there are data-dependent branches
present in the program, since different inputs can lead to the execution of different sets
of instructions. A similar approach is used in [22] to find the worst-case energy con-
sumption of two benchmarks using a genetic algorithm. In contrast to our approach, the
evolutionary algorithm is applied to whole programs, which are required to not have
any data-dependent branching. The authors further introduce probability distributions
for the transition costs among pairs of independent instructions, which can then be con-
volved to give a probability distribution of the energy for a sequence of instructions.

In contrast to the work presented here and in [19], all these WCET-style methods
(either for execution time or energy) do not infer cost functions on input data sizes but
rather absolute maximum values, and, as mentioned before, they generally require the
manual annotation of all loops to express an upper bound on the number of iterations,
which can be tedious (or impossible). Loop bound inference techniques can also be
applied but require that all loop counts can be resolved. All of this essentially reduces
the case to that of programs with no loops.

14

6 Conclusions
We have proposed a combined static/dynamic approach for estimating parametric up-
per and lower bounds on the energy consumption of a program. The dynamic part,
based on an evolutionary algorithm, is a best effort approach to approximating the max-
imum/minimum energy consumption of the basic blocks in the program. Such blocks
contain multiple instructions, which allows this phase to capture inter-instruction de-
pendencies. Moreover, the basic blocks are branchless, which makes the evolutionary
algorithm approach quite practical and efficient, and the energy values inferred by it are
accurate, since no control flow-related variations occur. A safe static analysis is then
used to combine the energy values obtained for the blocks according to the program
control flow, and estimate energy consumption bounds of the whole program that de-
pend on input data sizes. In the experiments we performed on a set of benchmarks,
the upper and lower bounds obtained were always safe and quite accurate. Such results
suggest that our approach offers a good safety/accuracy compromise, estimating bounds
that are practical for its application to energy verification and optimization.

Acknowledgments. This research has received funding from the European Union 7th
Framework Program agreement no 318337, ENTRA, Spanish MINECO TIN2015-67522-
C3-1-R TRACES project, and the Madrid M141047003 N-GREENS program. We also
thank Henk Muller, Principal Technologist, XMOS, for his help with the measurement
boards, evaluation platform, benchmarks, and overall support.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of Java Bytecode.
In: Proc. of ESOP’07. LNCS, vol. 4421. Springer (2007)

2. Chakravarty, S., Zhao, Z., Gerstlauer, A.: Automated, Retargetable Back-annotation for
Host Compiled Performance and Power Modeling. In: Proc. of CODES+ISSS ’13. pp.
36:1–36:10. IEEE Press, USA (2013), http://dl.acm.org/citation.cfm?id=2555692.
2555728

3. Debray, S.K., Lin, N.W., Hermenegildo, M.V.: Task Granularity Analysis in Logic Programs.
In: Proc. PLDI’90. pp. 174–188. ACM (June 1990)

4. Debray, S.K., López-Garcı́a, P., Hermenegildo, M.V., Lin, N.W.: Lower Bound Cost Estima-
tion for Logic Programs. In: ILPS’97. pp. 291–305. MIT Press (1997)

5. Henriksen, K.S., Gallagher, J.P.: Abstract Interpretation of PIC Programs through Logic Pro-
gramming. In: Proc. of SCAM’06. pp. 184–196. IEEE Computer Society (2006)

6. Hermenegildo, M., Puebla, G., Bueno, F., Garcı́a, P.L.: Integrated Program Debugging, Ver-
ification, and Optimization Using Abstract Interpretation (and The Ciao System Preproces-
sor). Science of Computer Programming 58(1–2), 115–140 (2005)

7. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J., Puebla,
G.: An Overview of Ciao and its Design Philosophy. TPLP 12(1–2), 219–252 (2012),
http://arxiv.org/abs/1102.5497

8. Jayaseelan, R., Mitra, T., Li, X.: Estimating the Worst-Case Energy Consumption of Em-
bedded Software. In: Proc. of IEEE RTAS. pp. 81–90. IEEE Computer Society (2006),
http://dx.doi.org/10.1109/RTAS.2006.17

9. Kerrison, S., Eder, K.: Energy Modeling of Software for a Hardware Multithreaded Em-
bedded Microprocessor. ACM TECS 14(3), 1–25 (April 2015), http://doi.acm.org/10.
1145/2700104

15

10. Lafond, S., Lilius, J.: Energy consumption analysis for two embedded java virtual machines.
J. Syst. Archit. 53(5-6), 328–337 (2007)

11. Liqat, U., Georgiou, K., Kerrison, S., Lopez-Garcia, P., Hermenegildo, M.V., Gallagher, J.P.,
Eder, K.: Inferring Parametric Energy Consumption Functions at Different Software Levels:
ISA vs. LLVM IR. In: Proc. of FOPARA. LNCS, vol. 9964, pp. 81–100. Springer (2016)

12. Liqat, U., Kerrison, S., Serrano, A., Georgiou, K., Lopez-Garcia, P., Grech, N.,
Hermenegildo, M.V., Eder, K.: Energy Consumption Analysis of Programs based on XMOS
ISA-level Models. In: Proceedings of LOPSTR’13. LNCS, vol. 8901, pp. 72–90. Springer
(2014)

13. López-Garcı́a, P., Darmawan, L., Bueno, F.: A Framework for Verification and Debugging
of Resource Usage Properties. In: Technical Communications of ICLP. LIPIcs, vol. 7, pp.
104–113. Schloss Dagstuhl (July 2010)

14. Lopez-Garcia, P., Darmawan, L., Bueno, F., Hermenegildo, M.V.: Interval-Based Resource
Usage Verification: Formalization and Prototype. In: Proc. of FOPARA, LNCS, vol. 7177,
pp. 54–71. Springer-Verlag (2012)

15. Lopez-Garcia, P., Haemmerlé, R., Klemen, M., Liqat, U., Hermenegildo, M.V.: Towards
Energy Consumption Verification via Static Analysis. In: WS on High Perf. Energy Efficient
Embedded Sys. (HIP3ES) (2015)

16. Lv, M., N.Guan, Reineke, J., Wilhelm, R., Yi, W.: A survey on static cache analysis for
real-time systems. LITES 3(1), 05:1–05:48 (2016)

17. May, D.: The XMOS XS1 architecture. available online:
http://www.xmos.com/published/xmos-xs1-architecture (2013)

18. Méndez-Lojo, M., Navas, J., Hermenegildo, M.: A Flexible (C)LP-Based Approach to the
Analysis of Object-Oriented Programs. In: LOPSTR. LNCS, vol. 4915 (2007)

19. Mera, E., López-Garcı́a, P., Carro, M., Hermenegildo, M.V.: Towards Execution Time Esti-
mation in Abstract Machine-Based Languages. In: PPDP’08. pp. 174–184. ACM Press (July
2008)

20. Navas, J., Méndez-Lojo, M., Hermenegildo, M.: Safe Upper-bounds Inference of Energy
Consumption for Java Bytecode Applications. In: NASA LFM’08. pp. 29–32 (April 2008)

21. Navas, J., Mera, E., López-Garcı́a, P., Hermenegildo, M.: User-Definable Resource Bounds
Analysis for Logic Programs. In: Proc. of ICLP’07. LNCS, vol. 4670, pp. 348–363. Springer
(2007)

22. Pallister, J., Kerrison, S., Morse, J., Eder, K.: Data dependent energy modeling for worst
case energy consumption analysis. Tech. rep. (May 2015), http://arxiv.org/abs/1505.
03374

23. Serrano, A., Lopez-Garcia, P., Hermenegildo, M.V.: Resource Usage Analysis of Logic Pro-
grams via Abstract Interpretation Using Sized Types. TPLP, ICLP’14 Special Issue 14(4-5),
739–754 (2014)

24. Wagemann, P., Distler, T., Honig, T., Janker, H., Kapitza, R., Schroder-Preikschat, W.: Worst-
case energy consumption analysis for energy-constrained embedded systems. In: Real-Time
Systems (ECRTS), 2015 27th Euromicro Conference on. pp. 105–114 (July 2015)

25. Watt, D.: Programming XC on XMOS Devices. XMOS Limited (2009), http://books.
google.co.uk/books?id=81klKQEACAAJ

26. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,
Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J.,
Stenström, P.: The worst-case execution-time problem - Overview of methods and survey of
tools. ACM Trans. Embedded Comput. Syst. 7(3) (2008)

16

