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Abstract
Higher-order constructs extend the expressiveness of first-
order (Constraint) Logic Programming ((C)LP) both syn-
tactically and semantically. At the same time assertions have
been in use for some time in (C)LP systems helping pro-
grammers detect errors and validate programs. However,
these assertion-based extensions to (C)LP have not been
integrated well with higher-order to date. This paper con-
tributes to filling this gap by extending the assertion-based
approach to error detection and program validation to the
higher-order context within (C)LP. We propose an exten-
sion of properties and assertions as used in (C)LP in order
to be able to fully describe arguments that are predicates.
The extension makes the full power of the assertion language
available when describing higher-order arguments. We pro-
vide syntax and semantics for (higher-order) properties and
assertions, as well as for programs which contain such asser-
tions, including the notions of error and partial correctness.
We also discuss several alternatives for performing run-time
checking of such programs.

Categories and Subject Descriptors D.1.6 [Program-
ming Techniques]: Logic Programming; D.2.4 [Software En-
gineering]: Software/Program Verification—assertion check-
ers, validation; D.3.3 [Programming Languages]: Language
Constructs and Features—constraints; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—assertions, pre- and post-conditions,
specification techniques; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—opera-
tional semantics.
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1. Introduction
Higher-order programming adds flexibility to the software
development process. Within the (Constraint) Logic Pro-
gramming ((C)LP) paradigm, Prolog has included higher-
order constructs since the early days, and there have many
other proposals for combining the first-order kernel of (C)LP
with different higher-order constructs (see, e.g., [5, 6, 8, 22,
23, 30]). Many of these proposals are currently in use in dif-
ferent (C)LP systems and have been found very useful in
programming practice, inheriting the well-known benefits of
code reuse (templates), elegance, clarity, and modulariza-
tion.

A number of extensions have also been proposed for
(C)LP in order to enhance the process of error detection and
program validation. In addition to the use of classical strong
typing [15, 27], a number of other approaches have been pro-
posed which are based on the dynamic and/or static check-
ing of user-provided, optional assertions [3, 4, 10, 13, 16, 21,
24, 26]. In practice, different aspects of the model of [13, 26]
have been incorporated in a number of widely-used (C)LP
systems, such as Ciao, SWI, and XSB [14, 20, 28]. A similar
evolution is represented by the soft/gradual typing-based
approaches in functional programming and the contracts-
based extensions in object-oriented programming [7, 17–
19, 29].

These two aspects, assertions and higher-order, are not
independent. When higher-order constructs are introduced
in the language it becomes necessary to describe proper-
ties of arguments of predicates that are themselves also
predicates. While the combination of contracts and higher-
order has received some attention in functional program-
ming [9, 11], within (C)LP the combination of higher-order
with the previously mentioned assertion-based approaches
has received comparatively little attention to date. Current
Prolog systems simply use basic atomic types (i.e., stating
simply that the argument is a pred, callable, etc.) to de-
scribe predicate-bearing variables. The approach of [2] is
oriented to meta programming. It allows describing meta-
types but there is no notion of directionality (modes), and
only a single pattern is allowed per predicate.

This paper contributes to filling the existing gap between
higher-order and assertions in (C)LP. Our starting point is
the Ciao assertion model [13, 26], since, as mentioned be-
fore, it has been adopted at least in part in a number of the
most popular (C)LP systems. After some preliminaries and
notation (Section 2) we start by extending the traditional
notion of programs and derivations in order to deal with
higher-order calls and recall and adapt the notions of first-



order conditional literals, assertions, program correctness,
and run-time checking to this type of derivations (Section 3).
This part allows us to revisit the traditional model in this
new, higher-order context, while introducing a different for-
malization than the original one of [26]. This formalization,
which will be used throughout the paper, is more compact
and gathers all assertion violations as opposed to just the
first one, among other differences. We then define an exten-
sion of the properties used in assertions and of the asser-
tions themselves to higher-order, and provide corresponding
semantics and results (Section 4).

2. Preliminaries and Notation
We recall some concepts and notation from standard (C)LP
theory. We denote by VS, FS, and PS the set of vari-
able, function, and predicate symbols, respectively. Vari-
ables start with a capital letter. Each p ∈ PS and f ∈ FS
is associated to a natural number called its arity, written
ar(p) or ar(f). The set of terms TS is inductivelly defined
as follows: VS ⊂ TS, if f ∈ FS and t1, . . . , tn ∈ TS then
f(t1, . . . , tn) ∈ TS where ar(f) = n. An atom has the form
p(t1, ..., tn) where p ∈ PS, ar(p) = n, and t1, ..., tn ∈ TS.
A constraint is essentially a conjunction of expressions built
from predefined predicates (such as term equations or in-
equalities over the reals) whose arguments are constructed
using predefined functions (such as real addition). A literal
is either an atom or a constraint. A goal is a finite sequence
of literals. A rule is of the form H:-B where H, the head, is
an atom and B, the body, is a possibly empty finite sequence
of literals. A constraint logic program, or program, is a finite
set of rules.

We use σ to represent a variable renaming and σ(X) to
represent the result of applying the renaming σ to some
syntactic object X (a term, atom, literal, goal, etc.). The
definition of an atom A in a program, defn(A), is the set
of variable renamings of the program rules such that each
renaming has A as a head and has distinct new local vari-
ables. We assume that all rule heads are normalized, i.e.,
H is of the form p(X1, ..., Xn) where the X1, ..., Xn are dis-
tinct free variables. This is not restrictive since programs
can always be normalized, and it facilitates the presentation.
However, for conciseness in the examples we sometimes use
non-normalized programs. Let ∃Lθ be the constraint θ re-
stricted to the variables of the syntactic object L. We denote
constraint entailment by |=, so that θ1 |= θ2 denotes that θ1
entails θ2. In such case we say that θ2 is weaker than θ1.

For brevity, we will assume in the rest of the paper that
we are dealing with a single program, so that all sets of rules,
etc. refer to that implicit program and it is not necessary to
refer to it explicitly in the notation.

2.1 Operational Semantics

The operational semantics of a program is given in terms of
its “derivations”, which are sequences of reductions between
“states”. A state 〈G | θ〉 consists of a goal G and a constraint
store (or store for short) θ. We use :: to denote concatenation
of sequences and we assume for simplicity that the underly-
ing constraint solver is complete. We use S  S′ to indicate
that a reduction can be applied to state S to obtain state S′.
Also, S  ∗ S′ indicates that there is a sequence of reduction
steps from state S to state S′. We denote by D[i] the i-th
state of the derivation. As a shorthand, given a non-empty
derivation D, D[−1] denotes the last state. A query is a pair
(L, θ), where L is a literal and θ a store, for which the (C)LP

system starts a computation from state 〈L | θ〉. The set of all
derivations from the query Q is denoted derivs(Q). The ob-
servational behavior of a program is given by its “answers”
to queries. A finite derivation from a query (L, θ) is finished
if the last state in the derivation cannot be reduced. Note
that derivs(Q) contains not only finished derivations but also
all intermediate derivations from a query. A finished deriva-
tion from a query (L, θ) is successful if the last state is of the
form 〈� | θ′〉, where � denotes the empty goal sequence. In
that case, the constraint ∃̄Lθ

′ is an answer to S. We denote
by answers(Q) the set of answers to a query Q. A finished
derivation is failed if the last state is not of the form 〈� | θ〉.
A query Q finitely fails if derivs(Q) is finite and contains no
successful derivation.

3. First-order Assertions on Higher-order
Derivations

3.1 Higher-order Programs and Derivations

We start by extending the definition of program, state re-
duction, and derivations in order to deal with the syntax
and semantics of higher-order calls.
Definition 1. Higher-order programs are a generalization
of constraint logic programs where:
• The set of literals LS is extended to include higher-order

literals X(t1, . . . , tn), where X ∈ VS and the ti ∈ TS.
• The set of terms TS is extended so that PS ⊂ TS (i.e.,

predicate symbols p can be used as constants).
In the following we assume a simple semantics where

when a call to a higher-order literal X(t1, . . . , tn) occurs,
X has to be constrained to a predicate symbol in the store:1

Definition 2. A state S = 〈L :: G | θ〉 where L is a literal
can be reduced to a state S′, denoted S  S′, as follows:
1. If L is a constraint and θ ∧ L is satisfiable, then S′ =
〈G | θ ∧ L〉.

2. If L is an atom of the form p(t1, . . . , tn), for some rule
(L:-B) ∈ defn(L), then S′ = 〈B :: G | θ〉.

3. If L is of the form X(t1, . . . , tn), then S′ = 〈G′ | θ〉
where either G′ = p(t1, . . . , tn) :: G if ∃p ∈ PS ∧ θ |=
(X = p) ∧ ar(p) = n, or G′ = εuninst call otherwise.
The concepts of answers and of finished and successful

derivations carry over without change to this notion of
higher-order derivations. The notion of (finitely) failed
derivation is extended as follows:
Definition 3. A finished derivation from a query (L, θ)
is failed iff its last state is not of the form 〈� | θ′〉 or
〈εuninst call | θ〉.

Finally, we introduce the concept of floundered deriva-
tions:
Definition 4. A finished derivation from a query (L, θ) is
floundered iff its last state is of the form 〈εuninst call | θ〉.

3.2 First-order Pred Assertions

Assertions are linguistic constructions for expressing prop-
erties of programs. They are used for detecting deviations of

1 This is also the most frequent semantics in current systems.
Other alternatives, such as residuation [1] (delays), predicate enu-
meration, etc. can also be used, requiring relatively straightfor-
ward adaptations of the model proposed.



the program behavior (symptoms) with respect to such as-
sertions, or to ensure that no such deviations exist (correct-
ness). Herein, we will use the pred assertions of [25], given
that they are the most frequently used assertions in prac-
tice, and they subsume the other assertion schemas in that
language. Thus, in the following we will use simply the term
assertion to refer to a pred assertion. Assertions allow spec-
ifying certain conditions on the constraint store that must
hold at certain points of program derivations. In particu-
lar, they allow stating sets of preconditions and conditional
postconditions for a given predicate. A set of assertions for
a predicate is of the form:

:- pred Head : P re1 => P ost1.
. . .
:- pred Head : P ren => P ostn.

where Head is a normalized atom that denotes the predicate
that the assertions apply to, and the Prei and Posti refer
to the variables of Head. We assume that variables in
assertions are renamed such that the Head atom is identical
for all assertions for a given predicate. A set of assertions as
above states that in any execution state 〈Head :: G | θ〉
at least one of the Prei conditions should hold, and that,
given the (Prei, Posti) pair(s) where Prei holds, then, if
Head succeeds, the corresponding Posti should hold upon
success. The following example illustrates the basic concepts
involved:
Example 1. The procedure qsort(A,B) is the usual one that
relates lists A and their sorted versions B. The following
assertions:

:- pred qsort(A,B) : list(A) => sorted(B), list(B).
:- pred qsort(A,B) : list(B) => permutation(B,A), list(A).

state that (restrict the meaning of qsort to):
• qsort(A,B) should be called either with A constrained to a

list or with B constrained to a list;
• if qsort(A,B) succeeds when called with A constrained to

a list then on success B should be a sorted list; and
• if qsort(A,B) succeeds when called with B constrained

to a list then on success A should be a list which is a
permutation of B.

3.3 Conditions on the Constraint Store

The conditions on the constraint store used in assertions
are specified by means of special literals (e.g., list(A),
sorted(B), list(B), and permutation(B,A) in the previous ex-
ample) that we will herein call prop literals. More concretely,
we assume the Prei and Posti to be DNF formulas of such
literals.

We also assume that for each prop literal Lp used in some
assertion there exists a corresponding predicate p defining it.
Then, we can define the meaning of prop literals as follows:
Definition 5. The meaning of a prop literal Lp defined by
predicate p, denoted |Lp|, is the set of constraints given by
answers((Lp, true)).

Intuitively, the meaning of prop literals is the set of
“weakest” constraints for which the literal holds:
Example 2. Prop literals list/1 and sorted/1 can be de-
fined by:
list([]). list([_|L]) :- list(L). sorted([]).
sorted([_]). sorted([X,Y|L]) :- X =< Y, sorted([Y|L]).

Then, their meaning is given by |list(A)| = {A = [], A =
[B|C] ∧ list(C)} and |sorted(A)| = {A = [], A = [B], A =
[B,C|D] ∧B ≤ C ∧ E = [C|D] ∧ sorted(E)}.

The following definition from [26] defines when the con-
dition represented by a prop literal (defined by a program
predicate) holds for a given store:

Definition 6. A prop literal L succeeds trivially for θ,
denoted θ ⇒P L, iff ∃θ′ ∈ answers((L, θ)) such that θ |= θ′.
A DNF formula of prop literals succeeds trivially for θ if all
of the prop literals of at least one conjunct of the formula
succeeds trivially.

Intuitively, a prop literal L succeeds trivially if L succeeds
for θ without adding new “relevant” constraints to θ:

Example 3. Consider prop literals list(A) and sorted(B)
and the predicate definitions of Example 2

• Assume that θ = (A = f). Since ∀θ′ ∈ |list(A)| : θ 6|= θ′,
as we would expect, θ 6⇒P list(A).

• Assume now that θ = (A = [ |Xs]). Though A is
compatible with a list, it is not actually a (nil terminated)
list. Again in this case ∀θ′ ∈ |list(A)| : θ 6|= θ′ and thus
again θ 6⇒P list(A). The intuition behind this is that we
cannot guarantee that A is actually a list given θ, since a
possible instance of A in θ is A = [ |f ], which is clearly
not a list.

• Finally, assume that θ = (A = [B] ∧ B = 1). In such
case ∃θ′ = (A = [B|C] ∧ C = []) such that θ |= θ′ and
∃c = (B = 1) such that (c ∧ θ′ 6|= false) ∧ (θ′ ∧ c |= θ).
Thus, in this last case θ ⇒P list(A).

This means that we are considering prop literals as in-
stantiation checks [12, 25]: they are true iff the variables
they check for are at least as constrained as their predicate
definition requires.

Definition 7. A prop literal L is a test iff ∀θ either θ ⇒P L
or (L, θ) finitely fails.

3.4 First-order Assertion Conditions and their
Semantics

We represent the different checks on the constraint store
imposed by a set of assertions as a set of assertion conditions
as follows.

Definition 8. Given a predicate represented by a normal-
ized atom Head, if the corresponding set of assertions is A =
{A1 . . . An}, with Ai = “:- pred Head : Prei => Posti.”
the set of assertion conditions for Head is {C0, C1, . . . , Cn},
with:

Ci =
{

calls(Head,
∨n

j=1 Prej) i = 0
success(Head, Prei, Posti) i = 1..n

If there are no assertions associated with Head then the
corresponding set of conditions is empty. The set of asser-
tion conditions for a program is the union of the assertion
conditions for each of the predicates in the program. Also,
given a single assertion Ai we define its corresponding set
of assertion conditions as {C0, Ci} (this will be useful in
defining the status of an assertion).

The calls(Head, . . .) conditions encode the checks that
the calls to the predicate represented by Head are within
those admissible by the set of assertions, and we thus call
them the calls assertion conditions. The success(Headi, P rei, Posti)
conditions encode the checks for compliance of the successes
for particular sets of calls, and we thus call them the success
assertion conditions.



Example 4. The assertion conditions corresponding to the
predicate assertions for qsort in Example 1 are as follows:

calls(qsort(A, B), (list(A), list(B)))
success(qsort(A, B), list(A), (sorted(B), list(B)))
success(qsort(A, B), list(B), (permutation(B, A), list(A)))

In order to define the semantics of assertion conditions,
we introduce the auxiliary partial functions prestep and step
as follows:

prestep(La, D) = (θ, σ) ≡ D[−1] = 〈L :: G | θ〉 ∧ ∃σ L = σ(La)
step(La, D) = (θ, σ, θ′) ≡ D[−1] = 〈G | θ′〉 ∧ ∃σ L = σ(La)

∧ ∃i D[i] = 〈L :: G | θ〉

Given a derivation whose current state is a call to La

(normalized atom), the prestep function returns the substi-
tution σ for La, and the constraint store θ at the predicate
call (i.e., just before the literal is reduced). Given a deriva-
tion whose current state corresponds exactly to the return
from a call to La, the step function returns the substitution
σ for La, the constraint store θ at the call to La, and the
constraint store θ′ at La’s success (i.e., just after all literals
introduced from the body of La have been fully reduced).
Using these functions, the semantics of our calls and success
assertion conditions are given by the following definition:

Definition 9. Given a calls or success assertion condition
C, the valuation of C on a derivation D, denoted solve(C,D)
is defined as follows:

solve(calls(La, P re), D) ≡ (prestep(La, D) = (θ, σ))
⇒ (θ ⇒P σ(Pre))

solve(success(La, P re, Post), D) ≡ (step(La, D) = (θ, σ, θ′))
⇒ ((θ ⇒P σ(Pre))
⇒ (θ′ ⇒P σ(Post)))

where La is a normalized atom.

3.5 Status of Assertions and Partial Correctness

As mentioned before, the intended use of our assertions is to
perform debugging with respect to partial correctness, i.e.,
to ensure that the program does not produce unexpected
results for valid (“expected”) queries.2 Thus, we extend our
notion of program to include assertions and valid queries.

Definition 10. An annotated program is a tuple (P,Q,A)
where P is a (higher-order) constraint logic program (as
defined in Section 2), Q is a set of valid queries, and A is a
set of assertions. As before, AC denotes the set of calls and
success assertion conditions derived from A.

In the context of annotated programs we extend derivations
to operate on the set of valid queries as follows: derivs(Q) =⋃

Q∈Q derivs(Q). We now provide several simple definitions
which will be instrumental:

Definition 11. Given the set of queries Q, the assertion
condition C can be either checked or false, as follows:

checked(C) ≡ ∀D ∈ derivs(Q) . solve(C,D)
false(C) ≡ ∃D ∈ derivs(Q) | ¬solve(C,D)

2 In practice, this set of expected queries is determined from
module interfaces that define the set of exported predicates.

Definition 12. In an annotated program (P,Q,A) an as-
sertion A ∈ A is checked ( false) if all (any) of the corre-
sponding assertion conditions are checked ( false).

Definition 13. An annotated program (P,Q,A) is partially
correct w.r.t. the set of assertions A and the set of queries
Q iff ∀A ∈ A, A is checked for Q.

Note that it follows immediately that a program is partially
correct if all its assertion conditions are checked. The goal
of assertion checking is thus to determine whether each as-
sertion A is false or checked for Q. Again, for this it is
sufficient to prove the corresponding assertions conditions
false or checked. There are two kinds of approaches to do-
ing this (which can also be combined). While it is in gen-
eral not possible to try all derivations stemming from Q,
an alternative is to explore a hopefully representative set
of them [21]. Though this does not allow fully validating
the program in general, it makes it possible to detect many
incorrectness problems. This approach is explored in Sec-
tion 3.6 in the context of our higher-order derivations. The
second approach is to use global analysis techniques and is
based on computing safe approximations of the program be-
havior statically [4, 13]. The extension of this approach to
higher-order assertions is beyond the scope of this paper.

3.6 Operational Semantics for Higher-order
Programs with First-order Assertions

We now provide an operational semantics which checks
whether assertion conditions hold or not while computing
the (possibly higher-order) derivations from a query.

Definition 14. Given the atom La and the set of assertion
conditions AC , A#

C (La) denotes the set of labeled assertion
condition instances for La of the form c#Ca, such that ∃C ∈
AC , C = calls(L,Pre) (or C = success(L,Pre, Post)), σ
is a renaming s.t. L = σ(La), Ca = calls(La, σ(Pre)) (or
Ca = success(La, σ(Pre), σ(Post))), and c is an identifier
that is unique for each Ca.

In order to keep track of the violated assertion conditions,
we introduce an extended program state of the form 〈G |
θ | E〉, where E denotes the set of identifiers for falsified
assertion condition instances. We also extend the set of
literals with syntactic objects of the form check(c) where
c is an identifier for an assertion condition instance, which
we call check literals. Thus, a literal is now a constraint, an
atom, a higher-order literal, or a check literal.3

Definition 15. A state S = 〈L :: G | θ | E〉, where L is
a literal can be reduced to a state S′, denoted S  A S′, as
follows:

1. If L is a constraint or L = X(t1, . . . , tn), then S′ = 〈G′ |
θ′ | E〉 where G′ and θ′ are obtained in a same manner
as in 〈L :: G | θ〉 〈G′ | θ′〉

2. If L is an atom and ∃(L:-B) ∈ defn(L), then S′ = 〈B ::
PostC :: G | θ | E ′〉 where:
• PostC is the sequence check(c1) :: . . . :: check(cn)

including all the checks check(ci) such that
ci#success(L,Prei, Posti) ∈ A#

C (L) ∧ θ ⇒P Prei

3 While check literals are simply instrumental here, note that they
are also directly useful for supporting program point assertions
(which are basically check literals that appear in the body of
rules) [25]. However, for simplicity we do not discuss program
point assertions in this paper.



• and either E ′ = E ∪ {c̄} if ∃ c#calls(L,Pre) ∈ A#
C (L)

s.t. θ 6⇒P Pre or E ′ = E otherwise.
3. If L is a check literal check(c), then S′ = 〈G | θ | E ′〉

where either E ′ = E ∪ {c̄} if c#success(L, , Post) ∈
A#

C (L) ∧ θ 6⇒P Post or E ′ = E otherwise.

Note that the order in which the PostC check literals are
selected is irrelevant.

The set of derivations for a program from its set of queries
Q using the semantics with assertions is denoted derivsA(Q).

Definition 16. The set of error-erased derivations from
 A is obtained by a syntactic rewriting (−)◦ that removes
states that begin by a check literal, check literals from goals,
and the error set. It is recursively defined as follows:

{D1, . . . , Dn}◦ = {D◦1 , . . . , D◦n}

(S1, . . . , Sm, Sm+1)◦ =


(S1, . . . , Sm)◦

if Sm+1 = 〈check( ) :: | | 〉
(S1, . . . , Sm)◦ ‖ ((Sm+1)◦)

otherwise
〈G | θ | E〉◦ = 〈G◦ | θ〉

(L :: G)◦ =
{

G◦ if L = check( )
L :: (G◦) otherwise

�◦ = �

where ‖ stands for sequence concatenation.

Theorem 1 (Correctness and Completeness Under Asser-
tion Checking). For any annotated program (P,Q,A), given
D = derivs(Q) and D′ = derivsA(Q), it holds that D and D′
are equivalent after filtering out check literals and error sets
(formally defined as D = (D′)◦ in appendix Def. 16).

Proof. We will prove D = (D′)◦ by showing that D ⊆ (D′)◦
and D ⊇ (D′)◦.

• (⊆) For all D ∈ D exists D′ ∈ D′ so that D = (D′)◦.
• (⊇) For all D′ ∈ D′, D = (D′)◦ ∈ D.

We will prove each case:

• (⊆) Let D = (S1, . . . , Sn), Si = 〈Li | θi〉, for some
Q = (L1, θ1) ∈ Q and Si  Si+1. Proof by induction
on the length n of D:

Base case (n = 1). Let S′1 = 〈L1 | θ1 | ∅〉. It holds that
(S′1)◦ = 〈L1 | θ1 | ∅〉)◦ = 〈L◦1 | θ1〉 = 〈L1 | θ1〉 = S1
(since L1 does not contain any check literal). Thus,
(D′)◦ = ((S′1))◦ = ((S′1)◦) = (S1) = D.
Inductive case (show n + 1 assuming n holds). For
each D2 = (S1, . . . , Sn, Sn+1) there exists D′2 =
(S′1, . . . , S′m, S′m+1) such that (D′2)◦ = D2. Given the
induction hypothesis it is enough to show that for
each Sn  Sn+1 there exists S′m  A S′m+1, such that
(S′m+1)◦ = Sn+1. According to  A (see Def. 15),
L′m+1 and θ′m+1 are obtained in the same way than in
 (see Def. 2), except for the introduction of check
literals. Since all check literals are removed in error-
erased states, it follows that (S′m+1)◦ = Sn+1.

• (⊇) Let D′ = (S′1, . . . , S′m), S′i = 〈L′i | θ′i | Ei〉, for some
Q = (L′1, θ′1) ∈ Q and S′i  A S′i+1. Proof by induction
on the length m of D′:

Base case (m = 1). It holds that (S′1)◦ = S1 (showed
in base case for ⊆). Then (D′)◦ = D ∈ D.

Inductive case (show m + 1 assuming m holds). We
want to show that given D′2 = (S′1, . . . , S′m, S′m+1),
(D′2)◦ = D2 ∈ D. Given the induction hypothesis
it is enough to show that for each S′m  A S′m+1
there exists Sn  Sn+1 such that Sn+1 = (S′m+1)◦
(so that (S1, . . . , Sn, Sn+1) ∈ D) or Sn = (S′m+1)◦
(D2 = D ∈ D). According to cases of Def. 15:
− If L′m begins with a check literal then (L′m+1)◦ =

(L′m)◦. Thus (S′m+1)◦ = (S′m)◦ = Sn.
− Otherwise, it holds that (S′m+1)◦ = Sn+1 using the

same reasoning than in the inductive case for ⊆.

This result implies that the semantics with assertions can
also be used to obtain all answers to the original query. Fur-
thermore, the following theorem guarantees that we can use
the proposed operational semantics for annotated programs
in order to detect (all) violations of assertions:
Definition 17. Let E(D) denote the error set of the last
state of derivation D, D[−1] = 〈 | | E〉. The run-time
valuation of an assertion condition C on a derivation D is
given by:

rtsolve(C,D) ≡ ∀c, C′, σ, L (c#C′ ∈ A#
C (L) ∧ σ(C) = C′)

⇒ E(D) 0 c̄
I.e., condition rtsolve(C,D) is valid if none of the possible

instances of the assertion condition C are in the error set for
derivation D.
Theorem 2 (Run-time Error Detection). For any anno-
tated program (P,Q,A), C ∈ AC is false iff ∃ D ∈
derivsA(Q) s.t. ¬rtsolve(C,D).

Proof. A ∈ AC is false
⇔ from Def. 12 and Def. 8 ∃{Cc, Cs} assertion conditions
s.t. false(Cc)∨ false(Cs), where Cc = calls(L,Pre) and Cs =
success(L,Pre, Post) correspond to A. Let us first prove
¬rtsolve(Cc, D), and then ¬rtsolve(Cs, D).

false(Cc)
⇔ from Def. 11 ∃D ∈ derivs(Q) s.t. ¬solve(Cc, D)
⇔ from Def. 9 (prestep(L,D) = (θ, σ) ∧ θ 6⇒P σ(Pre))
⇔ from Def. 15 ∃ S  A S′ where:

S = 〈L :: G | θ | E〉 s.t. ∃ c#calls(L,Pre) ∈ A#
C (L)

S′ = 〈 | θ | E ′〉 ∧ E ′ = E ∪ {c̄}
⇔ from Def. 17 ¬rtsolve(Cc, D)

false(Cs)
⇔ from Def. 11 ∃D ∈ derivs(Q) s.t. ¬solve(Cs, D)
⇔ from Def. 9 (step(L,D) = (θ, σ, θ′) ∧ θ ⇒P σ(Pre) ∧
θ′ 6⇒P σ(Post))
⇔ from Def. 15 ∃ S  ∗A S′  A S′′ where
S = 〈L :: G | θ | 〉 ∧ ∃ c#success(L,Pre, Post) ∈ A#

C (L)
∧ θ ⇒P Pre

S′ = 〈check(c) :: G | θ′ | E ′〉 ∧ θ′ 6⇒P Post

S′′ = 〈 | | E ′′〉 ∧ E ′′ = E ′ ∪ {c̄}
⇔ from Def. 17 ¬rtsolve(Cs, D)

Th. 2 states that assertion condition C is false iff there is a
derivation D in which the run-time valuation of the assertion



condition of C in D is false (i.e., if at least one instance of the
assertion condition A is in the error set for such derivation
D). Given a set of false assertion conditions we can easily
derive the set of false assertions using Def. 8. In order
to prove that any assertion is checked this has to be done
for all possible derivations for all possible queries, which is
often not possible in practice. This is why analysis based on
abstractions is often used in practice for this purpose.

4. Higher-order Assertions on
Higher-order Derivations
Once we have established basic results for the case of first-
order assertions in the context of higher-order derivations,
we extend the notion of assertion itself to the higher-order
case. The motivation is that in the higher-order context
terms can be bound to predicates and our aim is to also
be able to state and check properties of such predicates.

4.1 Anonymous Assertions

We start by generalizing the notion of assertion to include
anonymous assertions: assertions where the predicate sym-
bol is a variable from VS, which can be instantiated to
any suitable predicate symbol from PS to produce non-
anonymous assertions. An anonymous assertion is an ex-
pression of the from “:- pred L : Pre => Post”, where
L is of the form X(V1, . . . , Vn) and Pre and Post are DNF
formulas of prop literals.
Example 5. The anonymous assertion:

“:- pred X(A,B) : list(A) => list(B).”
states that any predicate p ∈ P that X is constrained to
should be of arity 2, it should be called with its first argument
instantiated to a list, and if it succeeds, then its second
argument should be also a list on success.

We now introduce predprops, which gather a number of
anonymous assertions in order to fully describe variables
containing higher-order terms (predicate symbols), similarly
to how prop literals describe conditions for variables contain-
ing first-order terms.
Definition 18. Given Prei and Posti conjunctions of prop
literals, a predprop pp(X) is an expression of the form:

pp(X){ :- pred X(V1, . . . , Vm) : Pre1 => Post1.
. . .
:- pred X(V1, . . . , Vm) : Pren => Postn. }

Definition 19. The corresponding set of anonymous asser-
tion conditions for the predprop pp(X) is defined as
AC [pp(X)] = {Ci[X] | i = 0..n} where:

Ci[X] =
{

calls(X(V1, . . . , Vm), P re) i = 0
success(X(V1, . . . , Vm), P rei, Posti) i = 1..n

The variable X can be instantiated to a particular predicate
symbol q ∈ PS to produce a set of non-anonymous assertion
conditions AC [pp(p)] for q.
Example 6. Consider defining a comparator(Cmp) pred-
prop that describes predicates of arity 3 which can be used
to compare numerical values:

comparator(Cmp) {
:- pred Cmp(X,Y,Res) : int(X),int(Y) => between(-1,1,Res).
:- pred Cmp(X,Y,Res) : flt(X),flt(Y) => between(-1,1,Res).
}.

:- prop nneg/1.
:- prop neg/1.

nneg(P) { :- pred P(X) => nnegint(X). }.
neg(P) { :- pred P(X) => negint(X). }.

:- pred test_c(P,N) : nneg(P).
:- pred test_c(P,N) : neg(P).
test_c(P,N) :- P(N).

:- pred test_s(N,P) : nnegint(N) => nneg(P).
:- pred test_s(N,P) : negint(N) => neg(P).
test_s( 1,P) :- P = z. % bug here, should be P = p
test_s(-1,P) :- P = n.

z(1). z(-2). p(1). p(2). n(-1). n(-2). c(a). c(b).

Figure 1. Sample Program with predprops.

The comparator(Cmp) predprop includes two anonymous
assertions describing a set of possible preconditions and
postconditions for predicates of this kind. In this example:
AC [comparator(Cmp)] = {

calls(Cmp(X, Y, Res), (int(X) ∧ int(Y )) ∨ (flt(X) ∧ flt(Y ))),
success(Cmp(X, Y, Res), int(X) ∧ int(Y ), between(−1, 1, Res))
success(Cmp(X, Y, Res), f lt(X) ∧ flt(Y ), between(−1, 1, Res))
}

Example 7. Fig. 1 provides a larger example. This example
is more stylized for brevity, but it covers a good subset of the
relevant cases, used later to illustrate the semantics.
Definition 20. The meaning of a predprop pp(X), denoted
|pp(X)| is the set of constraints {X = q | q ∈ PS, ∀ #C ∈
AC [pp(q)] : checked(C)}.

A predicate given by its predicate symbol p ∈ PS is com-
patible with a predprop pp(X) if all the assertions resulting
from pp(p) are checked for all possible queries in an anno-
tated program.

4.2 Operational Semantics for Higher-order
Programs with Higher-order Assertions

We now discuss several alternative operational semantics for
higher-order programs with higher-order assertions. In all
cases the aim of the semantics is to check whether assertions
with predprops hold or not during the computation of the
derivations from a query.

4.2.1 Checking with Static predprops
According to Definition 20, a predprop literal pp(X) denotes
the subset of predicates for which all the associated asser-
tions are checked. When that set of assertions can be stati-
cally computed, then θ ⇒P Cond can be used for both prop
and predprop Cond literals, and the operational semantics
is identical to the one for the higher-order programs and
regular assertions.

We will denote as S  HAs S
′ a reduction from a state S

to a state S′ under the semantics for higher-order derivations
in programs with assertions that may contain higher-order
properties, which are statically precomputed. Thus, state
reductions are performed as follows:

〈G | θ | E〉 A 〈G′ | θ′ | E ′〉
〈G | θ | E〉 HAs 〈G′ | θ′ | E ′〉

The meaning of each predprop, |pp(X)|, can be inferred or
checked (if given by the user) by static analysis.



In this semantics, given the program shown in Fig. 1 and
the goal test c(z,-2), assertions are detected to be false
since {P = z} 6⊂ |neg(P)| and {P = z} 6⊂ |nneg(P)|.

4.2.2 Checking with Dynamic predprops
Given the difficulty in determining the meaning of |pp(X)|
statically, we also propose a semantics with dynamic check-
ing. We start with an over-approximation of each predprop
|pp(X)| = {X = p | p ∈ PS} and incrementally remove
predicate symbols, as violations of assertion conditions are
detected. :

• we can detect when some assertion condition instance is
violated (Def. 15);

• we need a way to obtain a set of assertion condition
instances from predprops (anonymous asserion condition
instances);

We do that by defining instantiations of anonymous asser-
tion conditions for particular predicate symbols and the de-
pendencies among those instances.

The following two definitions extend the notion of asser-
tion condition instances from Def. 14 to the case of anony-
mous assertion conditions and higher-order literals:

Definition 21. Given a predprop pp(X) and a predicate
symbol p ∈ PS, A#

C [pp(p)] denotes the set of labeled hypo-
thetical assertion conditions of the form h#Cp, such that
C[X] ∈ AC [pp(X)] (Def. 19), L = X(V1, . . . , Vn), Lp =
p(V1, . . . , Vn), Cp is defined as:

Cp =
{

calls(Lp, P re) if C[X]=calls(L,Pre)
success(Lp, P re, Post) if C[X]=success(L,Pre, Post)

and h is an identifier that is unique for each Cp.

In this semantics we allow the assertion condition in-
stances to be derived from the hypothetical assertion condi-
tions in the same way, as in Def. 14. However, the violation of
such an instance has to be treated in a special way, as it does
not signal the violation of its conditions, but instead of the
corresponding predprop. For simplicity, we also introduce a
special label h0 to denote the assertion conditions that ap-
peared originally in the program. The error set E in Def. 15
contained negated assertion condition instance identifiers.
Now we extend this set with assertion dependency rules of
the form

∧
(
∨
c̄)→ c̄. The following definitions provide the

description of how such dependencies are generated.

Definition 22. The simplification of a literal L w.r.t. θ is
defined as:

simp(L, θ) =

{
L if L is a predprop
true if θ ⇒P L
false if θ 6⇒P L

We extend this definition for a conjunction of literals.

Definition 23. Given the label c of an assertion condition
instance and a formula of the form Props =

∨n

i=1(
∧m(i)

j=0 Propij),
where Propij is either a prop or predprop literal, the exten-
sion of AC and E for dynamic predprop checking, denoted
as ext(AC , c, Props) = (∆AC ,∆E), is obtained as follows:

1. if simp(Props, θ) = false, then ∆AC = ∅ and
∆E = {c̄};

2. otherwise: ∆AC =
⋃n

i=1A
i
C , and

∆E = {
∧n

i=1(
∨

h∈Hi
h̄)→ c̄} where:

Ai
C = {h#C ∈ A#

C [Propij ] | 0 ≤ j ≤ m(i),
P ropij = ppij(Xij), ppij(Xij) is a predprop and

Xij is bound to some q ∈ PS}.
Hi = {h | h# ∈ Ai

C},

We will denote as S  HAd S
′ a reduction from a state S

to a state S′ under the current semantics.
Definition 24. A state S = 〈L :: G | θ | E〉, where L is a
literal can be reduced to a state S′, denoted S  HAd S

′, as
follows:
1. If L is a constraint or L = X(t1, . . . , tn), then S′ = 〈G′ |
θ′ | E〉 where G′ and θ′ are obtained in a same manner
as in 〈L :: G | θ〉 A 〈G′ | θ′〉;

2. If L is an atom and ∃(L:-B) ∈ defn(L), then for each
ci#Ci ∈ A#

C (L):

hi =

{
h if Ci is an instance of some

h#C ∈ AC

h0 otherwise

(∆iAC ,∆iE)=
{

ext(AC , ci, P re) if Ci = calls(L,Pre)
(∅, ∅) otherwise

PostCi =

{
check(ci) if Ci = success(L,Prei, Posti)

and simp(Prei, θ) = true
true otherwise

and S′ = 〈B :: PostC :: G | θ | E ′〉, where E ′ =
E ∪

⋃
i
{c̄i → h̄i} ∪

⋃
i
∆iE, A′C = AC ∪

⋃
i
∆iAC ,

and PostC is the sequence PostC1 :: . . . :: PostCn

(simplifying true literals).
3. If L is a check literal check(c) and c#success(L′, , Post) ∈
A#

C (L′), then S′ = 〈G | θ | E ′〉 where (∆E ,∆AC) =
ext(AC , c, Post), E ′ = E ∪∆E and A′C = AC ∪∆AC .
Note that in this semantics we support more than one

calls assertion condition per predicate (as several predprops
may be applied to the same predicate symbol). Also note
that in general we cannot prove with dynamic checking that
a predprop is true. So, as a safe approximation we treat
preconditions in such success assertion conditions as false.
Definition 25. An assertion condition C is trivial if it is of
the form calls( , true) or success( , , true). It is also assumed
that for any predprop pp(X) AC [pp(X)] does not contain
trivial assertion conditions.
Theorem 3 (Higher-order Run-time Checking). For any
annotated program (P,Q,A), if ∃D ∈ derivsHAd(Q) s.t.
¬rtsolve(C,D)⇒ C ∈ AC is false.

Proof. In this proof we reflect the case when an assertion
condition is falsified because of some of its predprops vi-
olation. To do so it is enough to show that at most one
predprop was violated. Let us first prove the theorem for
the simplified case when the falsified assertion condition is
Cs = success(L,Pre, pp(X)) and then for the case Cc =
calls(L, pp(X)), where pp(X) is a predprop. Without the loss
of generality we assume that AC [pp(X)] has cardinality of
1 (which is a case when pp(X) consists of one anonymous
assertion and one of the corresponding anonymous assertion
conditions is trivial).

¬rtsolve(Cc, D)
⇔ From Def. 17: ∃c′, C′c, σ, L (c′#C′c ∈ A#

C (L)) ∧ (σ(Cc) =



G ∆θ ∆E ∆(labeled instances + hypothetic AC)
test c(n,X) P = n

N = −1
X = N

c̄1 → h̄0
h̄1∧ h̄2 → c̄1

c1#calls(test c(n,X), nneg(n) ∨ neg(n))
h1#success(n(Z), true, nnegint(Z))
h2#success(n(Z), true, negint(Z))

P(-1) Z = −1 c̄2 → h̄1
c̄3 → h̄2

c2#success(n(−1), true, nnegint(−1))
c3#success(n(−1), true, negint(−1))

check(c2),
check(c3)

- c̄2 -

check(c3) - - -
� - - -

Table 1. A derivation of the query (test c(n,X), true) to the program in Fig. 1.

C′c) ∧ (E(D) ` c̄′)
⇒ From Def. 24 and E(D) ` c̄′ it must hold
D = (. . . , S1, . . . , S2, S3 . . . , S4, . . .) where:
S1 = 〈L′ :: | θ1 | 〉 s.t. ∃ L′:-B′ ∈ defn(L),

c′#calls(L′, σ(pp(X))) ∈ A#
C (L),

θ1 |= (X = q), q ∈ PS
S2 = 〈L2 :: | | E2〉 s.t. {h̄ → c̄′, c̄′ → h̄0, } ∈ E2,

h#Cq ∈ A#
C [pp(q)], L2 = q(. . .)

S3 = 〈 | | E3〉 s.t. {c̄′′ → h̄} ∈ E3, c
′′#C′′c ∈ A#

C (L2)
S4 = 〈 | | E4〉 s.t. E4 ` c̄′′

⇒ From E3 ` c̄′′ and Th. 2 we know that ¬checked(C′′c ) and
thus (X = q) 6∈ |pp(X)| according to Def. 20.
⇒ From Def. 6 it follows that θ3 6⇒P pp(q)
⇒ Given the state S1 before the call to L′ and the state S3:
(prestep(L,D) = (θ3, σ)) ∧ (θ′ 6⇒P σ(pp(X)))
⇒ From Def. 9 ¬solve(Cc, D)⇒ From Def. 11 false(Cc)

¬rtsolve(Cs, D)
⇔ From Def. 17: ∃c′, C′s, σ, L (c′#C′s ∈ A#

C (L)) ∧ (σ(Cs) =
C′s) ∧ (E(D) ` c̄′)
⇒ From Def. 24 and E(D) ` c̄′ it must hold
D = (. . . , S1, S2, . . . , S3, S4, . . . , S5, S6, . . . , S7, . . .) where:
S1 = 〈L′ :: | θ1 | 〉 s.t. ∃ L′:-B′ ∈ defn(L),

c′#success(L′, σ(Pre), σ(pp(X))) ∈ A#
C (L),

θ1 ⇒P σ(Pre)
S2 = 〈B′ :: check(c′) :: | | E2〉 s.t. {c̄′ → h̄0} ∈ E2
S3 = 〈check(c′) :: | | 〉
S4 = 〈 | θ4 | E4〉 s.t. θ4 |= (X = q), q ∈ PS,

{h̄ → c̄′} ∈ E4,

h#Cq ∈ A#
C [pp(q)].

S5 = 〈L5 :: | | 〉 s.t. L5 = q(. . .)
S6 = 〈 | | E6〉 s.t. {c̄′′ → h̄} ∈ E6where

c′′#C′′s ∈ A#
C (L5)

S7 = 〈 | θ7 | E7〉 s.t. E7 ` c̄′′

⇒ From E7 ` c̄′′ and Th. 2 we know that ¬checked(C′′s ) and
thus (X = q) 6∈ |pp(X)| according to Def. 20.
⇒ From Def. 6 it follows that θ7 6⇒P pp(q)
⇒ Given the state S1 before the call to L′ and the state
S7: (step(L,D) = (θ1, σ, θ7)) ∧ (θ1 ⇒P σ(Pre)) ∧ (θ7 6⇒P

σ(pp(X))) for c′#C′s ∈ A#
C (L)

⇒ From Def. 9 ¬solve(Cs, D) ⇒ From Def. 11 false(Cs)

Let us trace finished derivations D1, D2 and D3 from the
queriesQ1 = (test c(n,X), true),Q2 = (test c(c,X), true)
and Q3 = ((test s(1,P),P(-2)), true), respectively, to the
program in Fig. 1.

In D1
[1] (see Tab. 1) we encounter two assertions for

test c/2 with a predprop in each precondition and trivial
postconditions. According to state reduction rules, ∆AC

consists of calls assertion condition instance c1 and two
hypothetical assertion conditions h1 and h2, derived from
predprops nneg/1 and neg/1, and ∆E = {c̄1 → h̄0, h̄1 ∧ h̄2 →
c̄1}. In D1

[2] and current goal P(-1) (which is implicitly
reduced as n(-1)), success assertion condition instances c2
and c3 are derived from the hypotheses h1 and h2, and
∆E = {c̄2 → h̄1, c̄3 → h̄2}. Consequently, two check literals,
check(2) and check(3) are added to the goal sequence. In
states D1

[3] and D1
[4] those literals are reduced, which

results in adding c̄2 to E because nnegint(-1) property from
the postcondition of c2 is violated. This example shows that
the mechanism of dependencies between assertion conditions
allows to avoid “false negative” results in assertion checking.

The derivation D2 is similar to D1 (see Tab. 2). The
difference is in D2

[4] state, when it becomes possible to infer
E ` c̄1 and thus to conclude that c/1 6∈ |nneg(X)| ∧ c/1 6∈
|neg(X)| and that both assertions for test c/2 are false for
this query.

In D3
[1] (see Tab. 3) we encounter two assertions with

a predprop in each postcondition. According to state reduc-
tion rules, ∆AC for this state consists of calls and success as-
sertion condition instances, c1 and c2, ∆E = {c̄0 → h̄0, c̄1 →
h̄0} for them. Also, a check literal check(c1) is added to
the goal sequence. After its reduction a hypothetical asser-
tion condition h2, derived from nneg(X) predprop, is added
to AC in D3

[3], and E is extended with a dependency rule
{h̄2 → c̄1}. In state D3

[4] an assertion condition instance c2

is obtained from h2 and ∆E = {c̄2 → h̄2}. Finally, in state
D3

[5] it becomes possible to infer E ` c̄1 and thus detect
that the corresponding assertion for test s/2 predicate is
false because of the predprop nneg(X) violation.

5. Conclusions and Future Work
This paper contributes towards filling the gap between
higher-order (C)LP programs and assertion-based exten-
sions for error detection and program validation. To this
end we have defined a new class of properties, “predicate
properties” (predprops in short), and proposed a syntax and
semantics for them. These new properties can be used in
assertions for higher-order predicates to describe the prop-
erties of the higher-order arguments. We have also discussed
several operational semantics for performing run-time check-
ing of programs including predprops and provided correct-
ness results.

Our predprop properties specify conditions for predicates
that are independent of the usage context. This corresponds



G ∆θ ∆E ∆(labeled instances + hypothetic AC)
test c(c,X) P = c

N = a
X = N

c̄1 → h̄0
h̄2∧ h̄3 → c̄1

c1#calls(test c(c,X), nneg(c) ∨ neg(c))
h2#success(c(Z), true, nnegint(Z))
h3#success(c(Z), true, negint(Z))

P(a) Z = a c̄2 → h̄2
c̄3 → h̄3

c2#success(c(a), true, nnegint(a))
c3#success(c(a), true, negint(a))

check(c2),
check(c3)

- c̄2 -

check(c3) - c̄3 -
� - - -

Table 2. A derivation of the query (test c(c,X), true) to the program in Fig. 1.

G ∆θ ∆E ∆(labeled instances + hypothetic AC)
test s(1,P),
P(-2)

N = 1 c̄0 → h̄0
c̄1 → h̄0

c0#calls(test s(1, P ), nnegint(1) ∨ negint(1))
c1#success(test s(1, P ), nnegint(1), nneg(P ))

P = z,
check(c1),
P(-2)

P = z - -

check(c1),
P(-2)

- h̄2 → c̄1 h2#success(z(Z), true, nnegint(Z))

P(-2) Z = −2 c̄2 → h̄2 c2#success(z(−2), true, nnegint(−2))
check(c2) - c̄2 -
� - - -

Table 3. A finished derivation of the query ((test s(1,P),P(-2)), true) to the program in Fig. 1.

in functional programming to the notion of tight contract
satisfaction [9], and it contrasts with alternative approaches
such as loose contract satisfaction [11]. In the latter, con-
tracts are attached to higher-order arguments by implicit
function wrappers. The scope of checking is local to the func-
tion evaluation. Although this is a reasonable and pragmatic
solution, we believe that our approach is more general and
more amenable for combination with static verification tech-
niques. For example, avoiding wrappers allows us to remove
checks (e.g., by static analysis) without altering the program
semantics.4 Moreover, our approach can easily support loose
contract satisfaction, since it is straightforward in our frame-
work to optionally include wrappers as special predprops.

We have included the proposed predprop extensions in an
experimental branch of the Ciao assertion language imple-
mentation. This has the immediate advantage, in addition to
the enhanced checking, that it allows us to document higher-
order programs in much more accurate way. We have also
implemented several prototypes for operational semantics
with dynamic predprop checking (see A for a minimalistic
implementation), which we plan to integrate into the al-
ready existing assertion checking mechanisms for first-order
assertions.
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Integrated Program Debugging, Verification, and Optimiza-
tion Using Abstract Interpretation (and The Ciao System
Preprocessor). Science of Computer Programming, 58(1–2),
2005.

[14] M. V. Hermenegildo, F. Bueno, M. Carro, P. López,
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A. Minimalistic Sample Implementation
The following code (portable to most Prolog systems with
minor changes) shows a minimalistic sample implementa-
tion (as an interpreter intr/1) of the operational seman-
tics for dynamic predprop checking (Def. 24). Conciseness
and simplicity has been favoured over efficiency. We as-
sume that clauses, assertion conditions, and predprops have
been parsed and stored in cl/2, ac/1, pp/2 facts, respec-
tively. The interpreter will throw an exception the first time
that a failed program assertion is detected (see ext/2 pred-
icate). E.g., intr((test s(1,P),P(1))) is a valid query
while intr((test s(1,P),P(-2))) throws a failed asser-
tion exception. Predicate reset/0 must be called between
intr/1 queries to reset error status and temporary data. In
the handler errors can be gathered (as in the semantics) or
execution aborted.
:- module(_,[reset/0,intr/1],[hiord,dcg dynamic_clauses]).
:- use_module(library(aggregates)).

% -------------------------------------------------------%
% Sample program data and properties

% negint/1 and nnegint/1 properties
eval_prop(negint(X)) :- integer(X), X < 0.
eval_prop(nnegint(X)) :- integer(X), X >= 0.

% predprops nneg/1 and neg/1
pp(nneg(P),ac(P(X), nneg_c1(P)#success(true,nnegint(X)))).
pp(neg(P), ac(P(X), neg_c1(P)#success(true, negint(X)))).

% assertion conditions and clauses for test_s/2
ac(test_s(N,_P), c1#calls((nnegint(N);negint(N)))).
ac(test_s(N,P), c2#success(nnegint(N), nneg(P))).
ac(test_s(N,P), c3#success(negint(N), neg(P))).
cl(test_s( 1,P), P = z).
cl(test_s(-1,P), P = n).

% clauses for z/1, n/1
cl(z(1), true). cl(z(-2), true).
cl(n(-1), true). cl(n(-2), true).

% -------------------------------------------------------%
% Intepreter

:- dynamic hyp_ac/2. % hypothetical assertion condition
:- dynamic negac/1. % (negated) assertion dependency rule

% Reset errors and hypothetical assertion conditions
reset :- retractall(hyp_ac(_, _)),

( retract((negac(_) :- _)), fail ; true ).

% Interpreter with higher-order assertion checking
intr(X) :- ctog(X, X1), !, intr(X1).
intr(X) :- is_blt(X), !, X.
intr((A,B)) :- !, intr(A), intr(B).
intr((A ; B)) :- !, ( intr(A) ; intr(B) ).
intr(A) :-

get_acs(A, Acs),
pre(Acs, Ids, []), cl(A, Body),
intr(Body), post(Ids, Acs).

% Built-ins
is_blt(true). is_blt(fail). is_blt(_ = _).

% From call(N,...) to N(...),where N is a predicate symbol
ctog(X, _) :- var(X), !, throw(inst_error).
ctog(X, X1) :-

X =.. [call,N|Args],
( atom(N) -> true ; throw(inst_error) ),
X1 =.. [N|Args].

% Get assertion conditions for the given literal A
get_acs(A, Acs) :- ( bagof(Ac, get_ac(A, Ac), Acs)

-> true ; Acs = [] ).
get_ac(A, Ac) :- ( ac(A, Ac) ; hyp_ac(A, Ac) ).

pre([]) --> [].
pre([Ac|Acs]) --> pre_(Ac), pre(Acs).
pre_(Id#calls(Pre)) --> { ext(Pre, Id) }.
pre_(Id#success(Pre, _)) --> ( { simp0(Pre, true) }

-> [Id] ; [] ).

post([], _Acs).
post([Id|Ids], Acs) :- post_(Id, Acs), post(Ids, Acs).
post_(Id, Acs) :- member(Id0#success(_Pre,Post), Acs),

Id == Id0, !, ext(Post, Id).
post_(_, _).

% Check/extend assertion conditions
ext(Props, Id) :-

simp(Props, Props2), ext_(Props2, Id),
( negac(A), atom(A)
-> throw(failed_assertion(A)) ; true ).

ext_(true, _Id) :- !.
ext_(false, Id) :- !, assertz((negac(Id) :- true)).
ext_(Props, Id) :- acsubs(Props, Props2),

assertz((negac(Id) :- Props2)).

% Add assertion dependency rules
acsubs((A,B), (A2;B2)) :- !,

acsubs(A, A2), acsubs(B, B2).
acsubs((A ; B), (A2 , B2)) :- !,

acsubs(A, A2), acsubs(B, B2).
acsubs(ac(L, Id#Ac), negac(Id)) :-

ctog(L, L2), assertz(hyp_ac(L2, Id#Ac)).

% Condition simplification
simp(true, R) :- !, R = true.
simp((X;Y), R) :- !,

simp(X, Rx), simp(Y, Ry), or(Rx, Ry, R).
simp((X,Y), R) :- !,

simp(X, Rx), simp(Y, Ry), and(Rx, Ry, R).
simp(X, R) :- pp(X, Ac), !, R = Ac.
simp(X, R) :- eval_prop(X), !, R = true.
simp(_, R) :- R = false.

% Condition simplification for success preconditions
simp0(true, R) :- !, R = true.
simp0((X,Y), R) :- !,

simp0(X, Rx), simp0(Y, Ry), and(Rx, Ry, R).
simp0(X, R) :- eval_prop(X), !, R = true.
simp0(_, R) :- R = false.

or(true, _, R) :- !, R = true.
or(false, X, R) :- !, R = X.
or(_, true, R) :- !, R = true.
or(X, false, R) :- !, R = X.
or(X, Y, (X;Y)).

and(false, _, R) :- !, R = false.
and(true, X, R) :- !, R = X.
and(_, false, R) :- !, R = false.
and(X, true, R) :- !, R = X.
and(X, Y, (X,Y)).
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