
Foreign Language Interfaces for Prolog:

A Terse Survey

Roberto Bagnara
Department of Mathematics

University of Parma
Italy

bagnara@cs.unipr.it

Manuel Carro
School of Computer Science

Technical University of Madrid (UPM)
Spain

mcarro@fi.upm.es

Version 1

Abstract

The availability of good foreign language interfaces is fundamental for the

interoperability of different programming languages. While this observa-

tion is true for any language, it is especially important for non-mainstream

languages such as Prolog, since they are likely to be discarded when

shortcomings of the interfaces suggest the adoption of just one imple-

mentation language. In this paper we review some existing Prolog foreign

language interfaces, trying to highlight both the important characteris-

tics they share and the features that distinguish them from one another.

We argue that even a basic, but standard Prolog foreign language inter-

face could significantly contribute to increasing the adoption of Prolog

for those subsystems where it is “the right language”. Finally we suggest

which steps could be taken in this direction.

Note

This document and its previous versions may contain imprecisions and inaccura-
cies that we will try to correct. Moreover, the authors reserve the right to extend
and modify the material presented here as new information is gathered and as
old information becomes out of date. The latest version of this documents will al-
ways be available at http://www.cs.unipr.it/~bagnara/Papers/Prolog-FLI-survey
and http://www.clip.dia.fi.upm.es/papers/Prolog-FLI-survey.ps.gz.

1



1 Introduction

Given the wide range of goals and environments a programmer has to deal with
nowadays, it is difficult (not to say impossible) to find a single language able to
cope satisfactorily with all the heterogeneous needs appeared in the last years.
While it is perfectly possible to write expert systems in Fortran and perform
massive numerical computations in Prolog, choosing an inadequate language for
the task at hand can significantly increase the costs of software development and
maintenance, and even compromise the successful end of a project.

There are in practice several reasons why a language seemingly well-fitted for
a particular purpose cannot be selected: technically obtuse management, lack
of appropriate knowledge or culture (this is especially true for paradigms, such
as logic or functional programming, where a particular forma mentis may help
considerably), lack of appropriate programming environments, etc. Another
reason that may prevent choosing the right language is the lack of standard
foreign language interfaces, which would be used to patch weaknesses in a host
language. Suppose that a complex application, to be written in its largest
part in C, has some inference engine as one of its components. In principle,
Prolog could be the best language to develop the inference part. However, if the
interface between C and Prolog has serious drawbacks (e.g., it does not provide
the right functionality, or it is non-standard and/or non-portable, or it is poorly
documented), very likely Prolog will succumb and the inference engine will be
written in C.

The number of already existing systems with foreign language interfaces wit-
nesses that the technical difficulties of implementing them have been overcome.
The right shape of the interface and its functionality is a matter of careful design
and refinement; in fact the very basic facilities should be, understandably, much
the same in different interfaces. But a widely accepted, homogeneous form of
a foreign language interface is still a pending subject. It is not that the very
basic features (i.e., accepting Prolog terms as input arguments, traversing these
terms, creating new ones, and returning them as a result) are not present, but
rather that they come in many different flavors. More advanced characteris-
tics (such as raising exceptions or calling Prolog back from C) are not always
implemented, despite that they are needed in many applications.

While Prolog interfaces for different languages may choose to adopt different
views (in order to take advantage of the characteristics of each language), there
should be a consensus for making the interface to a single language as compatible
as possible across different vendors. One of the concerns of software production
managers is the maintainability of a product: the question “What would happen
if Prolog X disappears in one year? How difficult (and feasible) would it be to
port my product to Prolog Y?” will have a more positive answer if there is a
common ground about what is provided by those Prolog systems. Note that an
unsatisfactory answer may mean not selecting any Prolog system at all rather
than opting for a Prolog system instead of for another one. The ISO Prolog
Standard has made (and is making) steps toward homogenizing the language,
thus increasing the possibility of Prolog being selected. In the heterogeneous

2



world computer science lives now, a similar action should be made with respect
to foreign language interfaces.

In this piece of work we will pay attention to some characteristics of foreign
language interfaces for C, study what is available in some well-known Prolog
systems, summarize the results, and draw some conclusions. We aim, on one
hand, at finding, the “average state of the practice”, and, on the other hand,
at pointing out which features need standardization more acutely. Our choice
of C is motivated by the number of Prolog systems that have a C interface
and because many of the characteristics to be studied are actually valid for a
wide range of languages that are compiled and linked in a similar fashion to
C. Moreover, there are several programming languages’ implementations that
provide a C interface so that they can all be interfaced to Prolog via C.

This paper is necessarily incomplete: real experiences have been taken into
account only up to a limited extent. This means that we will not dig into
possible implementation bugs: we will just trust the reference manuals of the
vendors, and discuss the ideas behind that interfaces.

2 Systems Under Analysis

This survey focuses on a series of well-known Prolog implementations; the au-
thors chose some of those that have free WWW access to the documentation, or
that were available to the authors for other reasons. Time restrictions forced us
not to be as comprehensive as we would have desired. It may also be the case
that the systems under study changed some of the facilities available during the
time elapsed between the moment the survey was compiled and the moment
it was published. We apologize in advance for inaccurate or out-of-date data,
and also for not including all the Prolog environments available, and encourage
Prolog system producers to get in touch with the authors to provide data or
clarifications about their products. We would like to stress that this survey does
not aim at coming up with a winner, but rather with a set of observations on
existing foreign interfaces.

All the information pertaining to the Prolog systems we examined was found
on the respective Web sites that, in turn, are listed in the comp.lang.prolog

FAQ, posted once a month to news:comp.lang.prolog and currently also avail-
able at http://www.cs.kuleuven.ac.be/~remko/prolog/faq/. The environ-
ments evaluated, and their URLs (which we refer the reader to for further in-
formation), are:

• B-Prolog (http://www.cad.mse.kyutech.ac.jp/people/zhou/bprolog.html)

• BinProlog (http://www.binnetcorp.com/BinProlog/)

• Ciao Prolog (http://clip.dia.fi.upm.es/Software/Ciao/)

• Eclipse (http://www.icparc.ic.ac.uk/eclipse/)

• GNU Prolog (http://gnu-prolog.inria.fr/)

3



• SICStus Prolog (http://www.sics.se/sicstus/)

• SWI Prolog (http://www.swi-prolog.org/)

• XSB (http://xsb.sourceforge.net/)

• YAP (http://yap.sourceforge.net/)

3 Features Taken into Account

Identifying which characteristics are those more relevant from a user point of
view was perhaps the hardest part of all the survey. Besides some subjectiveness
in this task, there are a number of facilities that almost every user would find
desirable in order to ease the interfacing task. We will review here the points we
have paid attention to, and why. We also mention some characteristics which,
not having made it into the final table, are worth pointing out.

3.1 Data Interface

Prolog systems have their own internal (tagged) data representation; this has
the implication that passing around any data types needs a conversion. Simple
data types, such as integers, that exist both in Prolog and C make no exception.
A Prolog system should provide convenient conversion operations. These are
usually implemented by fragments of code (known as glue code) that are also in
charge of testing types, checking the instantiation state, raising runtime errors,
etc. Glue code can be hand-written or automatically generated; in any case it
is mainly composed of calls to interface operations.

Simple data types can be given a C-level representation (e.g., C integers
for Prolog integers, C strings for Prolog atoms) or passed to C as references
to the corresponding Prolog object (e.g., an atom as a pointer to the atom
storage in Prolog, where the corresponding string is to be found). More general
data types cannot be given a straightforward C representation, and thus the
commonly used approach is to offer an interface to construct and consult such
data. Figures 1, 2, and 3 give an idea of how C functions to construct a list
of integers from m to n could look like. The integers m and n are supposed to
have been previously unboxed out of their Prolog representation.

Besides the names given to the operations in the interface, there are differ-
ent flavors in which they may come. A functional interface (we apologize for
this abuse of terminology) returns the data as function results, and often helps
to have compact C code (see Figure 1). A procedural interface usually needs
intermediate variables and more lengthy code, but it offers a way to return error
codes very similar to what a C programmer would expect (Figure 2). Both can
however be reconciled by selecting a special, non-valid term to denote an error
situation (Figure 3). While comparable, they are clearly incompatible.

In addition to the functional/procedural difference, the interfaces can have
been designed to be used top-down or bottom-up when constructing terms. That

4



Prolog_term from_to_list(int n, int m) {

int i;

Prolog_term tail = nil();

for (i = m; i >= n; --i)

tail = make_cons(make_integer(i), tail);

return tail;

}

Figure 1: Constructing a Prolog list from C: A functional view.

is, if f(g(a)) is to be created on variable X, should the order be Y = g(a), X

= f(Y), or is the other way around acceptable? While from the point of view
of a Prolog programmer this order is immaterial, some C interfaces might not
accept the seemingly dangling pointer introduced by issuing first the code for X
= f(?) and then filling in the hole — or would need to set up an explicit free
variable first as an argument to f(?).

To summarize this section, although the general lines followed by the differ-
ent interfaces are the same, there are several variations regarding how they are
actually implemented and what they offer:

Automatic Type Conversion: Is it possible to specify cleanly which C data
types are expected, so that glue code can be generated automatically?
What language is used to specify it? How rich is set of allowed types?

Level: Does it provide an abstraction of the structures, or does it have a more
low level flavor, perhaps with explicit reference to the tags usually associ-
ated to data inside the Prolog engine?

Functional or Procedural: Is the interface functional or procedural?

Top-Down or Bottom-Up: Do subterms have to be created prior to be used
in term construction?

3.2 Control Interface

The quite generic term control interface actually groups several different is-
sues: non-determinism, exceptions, the ability to call back Prolog from C, and
automatic initialization and deinitialization.

Non-determinism, implemented as backtracking, is not directly supported by
the C language. If the C code to be interfaced is to offer the possibility of giving
different solutions for a call, the foreign interface should provide primitives to
that effect — basically mimicking what a Prolog choice-point does. We have
to point out that this possibility is not the more acutely needed in practice,
since often existing C code does not exhibit such behavior. Moreover, non-
determinism in C can be simulated by wrappers at the Prolog level.

5



#define CHECK(f) if (f == 0) return 0

int from_to_list(int n, int m, Prolog_term res) {

int i;

Prolog_term head, tail;

new_Prolog_term(head);

new_Prolog_term(tail);

CHECK(put_atom(tail, nil()));

for (i = m; i >= n; --i) {

CHECK(put_integer(head, i));

CHECK(put_cons(tail, head, tail));

}

CHECK(put_term(res, tail));

return 1;

}

Figure 2: Constructing a Prolog list from C: A procedural view. In fact er-
ror returning should be more complicated and make untrailing, etc. This can
however be left to the general fail mechanism of Prolog.

While a program whose control relies heavily on exceptions is arguably a
badly designed one in any language (exceptions should be exceptional), error
recovery by means of exceptions is a widely adopted technique. In order to take
full advantage of it, C code should be able to raise exceptions on the Prolog side.
Of course, a Prolog wrapper to throw exceptions upon receiving a designated
result can be written, but the programmer may prefer not to put additional
effort in designing an artificial interface.

Calling Prolog from C shares some common points with the Prolog-to-C
interface: goals and arguments can be created and inspected using the same
primitives. However a way to interpret a term as a goal, hand it to the Prolog
engine, and recover the different solutions, is needed. Note that there are con-
ceptually two levels here: one is just calling Prolog from a C application, and
the other is calling Prolog from C when the C part has in turn been called from
Prolog; the latter needs the Prolog system to be reentrant.

Some pieces of code may need explicit initialization and deinitialization rou-
tines, intended to be automatically called whenever foreign code is loaded and
just before it is unloaded (or execution finishes for any reason). This is espe-
cially important in connection with interfaces to object-based languages, but
it is useful in general: foreign code may allocate resources that ought to be
deallocated, open files that must be properly closed, initialize transactions that
need to be finalized for proper operation. Providing an elegant way to call these
routines will help in developing certain types of applications in a robust way.

The control interface features to look at are thus:

6



#define CHECK(f) if ((f) == Prolog_term_error) return Prolog_term_error;

Prolog_term from_to_list(int n, int m) {

int i;

Prolog_term tail, head;

CHECK(tail = nil());

for (i = m; i >= n; --i) {

CHECK(head = make_integer(i));

CHECK(tail = make_cons(head, tail));

}

return tail;

}

Figure 3: Constructing a Prolog list from C: Functions with designated errors.

Non-determinism: Can non-deterministic C code be easily written with the
interface provided?

Exceptions: Can Prolog exceptions be directly (and nicely) generated from C?

Calling Prolog from C: Can Prolog code call C? Can Prolog code call C in
a reentrant fashion?

Init/DeInit: Can explicit initialization/deinitialization procedures be clearly
marked?

3.3 Compiling and Linking Procedures

Different variations of the mechanism for compiling and linking will offer the
programmer several degrees of automatization in the development environment.
We believe that the system behavior should be as close as possible to what a
programmer would perform by hand, in order for her/him to be able to arrange
custom compilations for special cases. This does not mean that tasks to be done
routinely (as recompiling old files) should be left to the programmer, but rather
that they must be automated sensibly (e.g., not recompiling always everything
from scratch).

In fact, a minimal (but usable) foreign language interface boils down to
having a set of interface operations and header files with which the programmer
can generate (by hand) an object file to be linked with already existing Prolog
machinery. Starting from this basic scheme, there are several intermediate steps
toward a fuller integration and a more programmer-friendly behavior. Care
should be taken, however, that friendliness does not turn out to hinder flexibility.

Compiling Source Code: Does compiling of source code to object code have
to be done manually, or is it automated? Is an additional tool used to take

7



care of that task? In the case of automatic compiling, how does the Prolog
system know where the source files are located? Is recompilation minimal?
How is type conversion communicated to the glue code generator?

Linking Object Code: Once object/library files for the C code are available,
how are they linked with the Prolog system? Three possibilities appear:

1. The source code of the Prolog engine has to be recompiled and linked
with the new C object files to give a new engine.

2. As above, but the Prolog engine is also provided in the form of an
object file. Recompiling is then avoided.

3. The generated C object files can be dynamically linked and loaded
by the Prolog system. This facilitates program development.

From a practical aspect, these three differ in how much the development
process is hindered. Considerations regarding the location of object code,
similar to those for source code in the compilation stage, can be applied.

3.4 Miscellaneous

There are other points that, while not being crucial for the development of
an application, can make that task easier. These belong perhaps to a more
pragmatic classification because they do not affect the basic functionality of the
system, but a sizable amount of time can be invested in a workaround for the
lack or presence of some unexpected features. Apart from the points mentioned
in the previous sections, we would like to highlight the following ones:

Naming Conventions: How is the mapping from C functions to Prolog pred-
icates expressed? Is it tailorable, in order to take advantage of, e.g., pred-
icates with different number or arguments? Assigning names, while not
crucial in principle for the usefulness of an interface, can be of importance,
if only because one might need to avoids name clashes between already
provided C objects and existing Prolog code.

Final Application Deployment: How can a mixed-language application be
packaged for distribution? Is there a relatively stable ABI so that binary
distributions of packages can work reliably with different versions of the
Prolog system?

O.S. Support: Which operating systems are supported? Reconciling and sup-
porting different operating systems may be a technical issue, but it is
certainly an issue to be solved for a supposedly platform-independent lan-
guage.

8



Syst./Charac. B-Prolog Bin Ciao Eclipse GNU SICStus SWI XSB YAP

Glue code m m b m b b m b m
Int. style f l f f f p p p f
Term constr. t b b b b b b t b
Non-det. n n s n y n y n y
Exceptions n n y n y y y n n
C to Prolog r r r y r r r y r
(De)Init n n i n n b n n n
Compilation m m a m m e m a m
Linking s s d b s b b s d

Table 1: Summary of gathered information

4 Analysis of Some Systems

Table 1 summarizes our understanding of the C foreign language interfaces of
the systems mentioned in Section 2.

Here is, for each of the features corresponding to rows in the table, the
meaning of the symbols used in the table:

Glue code generation: Automatic, Manual, Both.

Interface style: Low-level, Functional, Procedural.

Complex term construction: Top-down, Bottom-up.

Non-deterministic calls: No, with Some work, Yes.

Throw Prolog exceptions from C code: Yes, No.

Calling Prolog from C: Yes and Reentrant, Yes but non-reentrant.

Initialization/Deinitialization: only Initialization, Both initialization and
deinitialization, None of them.

Compilation: Automatic recompilation, External tool used, Manual recom-
pilation.

Linking: Dynamic, Static, Both.

5 Some Preliminary Conclusions

The work presented here is very preliminary. Nonetheless, from this survey and
from the work done and being done on interfacing the Parma Polyhedra Li-
brary (see http://www.cs.unipr.it/ppl/) with several Prolog systems, some
considerations can safely follow.

9



5.1 Data Interface

In what concerns terms as abstract data types, there is a (natural) convergence,
with two approaches: top down and bottom up. The bottom up approach is
more widely adopted, presumably because it is more natural for interface users
with an imperative programming background, and because it more easily allows
for efficient implementations.

However, the semantics of the access functions is often different from one
Prolog system to another. Those trying to interface the same application with
different Prolog systems must be prepared to surprises. Moreover, same (or very
similar) names in different Prolog systems are used to denote different things.
For instance, there are foreign language interfaces where a list is a synonym
for a term whose principal functor is cons (’.’/2), others where a list is either
a cons structure or nil ([]/0), others that reserve the word list for properly
terminated Prolog lists.

The automatic generation of glue code is interesting for simple interfaces
involving simple data types. When things gets more complicated glue code
must be written by hand since complete control is what is needed. This is the
case, for instance, when foreign predicates acquire resources (e.g., they allocate
memory) that must be released in case of failure: this cannot be done if output
unifications are delegated to the automatically generated glue code.

5.2 Control Interface

Most of the characteristics of the foreign interface reviewed so far do not affect
the Prolog side — i.e., how the C part is written should be, to a large extent, im-
material. However, some features of procedural (and OO languages) might call
for a special Prolog support. In particular, initialization (and deinitialization)
of, e.g., static data, might be automated and done more cleanly by stating which
are associated functions with Prolog declarations. We note that the ISO Pro-
log standard only supports :- initialization, and a :- deinitialization

whose associated goal is called when the module is unloaded would be useful in
several cases — especially if a normal (i.e., not an abortion) program shutdown
also unloads the modules. In that case, if the C code is seen at the same level as
Prolog, foreign code initialization and deinitialization is just a particular case
which can be handled by the Prolog mechanism.

5.3 Compiling and Linking

On the one hand, making the tasks of compiling and linking as automatic as
possible may reduce the stress on the programmer and, in some cases, the time
to catch bugs. On the other hand, it is important that the programmer is
not trapped into the automatic mechanisms as this may be the source of even
more frustration. There are foreign applications that may require particular
tools for compiling and linking the C part, and each tool may need a particular
set of options for the operation to be done exactly as the user wants it. As a

10



consequence, there is no way an automated mechanism can do for all (present,
let alone future) possibilities. For instance, it is inadvisable to restrict the choice
of the C compiler to the one that was used to compile the Prolog system: that
compiler may be unavailable (e.g., because the Prolog system was distributed
in binary form) or it may have a bug affecting the C resource the user wants
to interface. Given that the C compiler may change completely, the options it
handles and the way it handles them as far as their relative ordering is concerned
can also change completely: this reduces the things the Prolog system can count
on to just anything. It is thus important that the automated mechanism that
helps the user during the more routine work can be skipped altogether so as to
allow the user complete control, that is, the same degree of control that can be
exercised in developing the C part of the application. This is possible if, among
other things,

• no assumption on the compiler is done besides that it follows the standard
C ABI on the platform considered;

• standard C header and library file are provided in standard places so as
to facilitate the production of the foreign objects.

6 Time to Standardize

As we have argued in the introduction, a well-designed standard is a good way
for the work of a community to be accepted outside the community. Partly
due to the expected application of a foreign interface, giving a homogeneous,
well-known, widely accepted shape to it is a sign of technical maturity that will
be appreciated by many people outside the Prolog fellowship. However, the re-
viewed systems are far from being compatible, although the basic characteristics
are roughly the same — there are minor differences in the big picture, but they
are incompatible after all. While it is perfectly understandable that implemen-
tors want to highlight a particular advantage or feature not offered by the rest of
the developers, it seems to make sense that common services should be available
using the same interface: that is, there should be a well-established minimal set
of interface operations that ought to be adhered to by any vendor who wants
to abide by some de facto (if not yet de jure) standard. We summarize some of
the components of such a set.

6.1 Automatic Type Conversion

While it is true that automatic type conversion only works fully for simple cases,
it is also true that many cases are simple. A conceptually easy to understand
scenario should not need complex machinery to be dealt with. Points to be
agreed upon in this respect are:

• Set of types to be reflected in each language.

11



• Which conversions are available (e.g., a list of character codes in Prolog
can be seen as a C string on the C side, or also as a general term, depending
on the purpose. The same holds for a C string, which can be converted
into Prolog as an atom or as a list of character codes, depending on the
final application).

• Language to express type conversions.

• Which type and mode checking is performed, and how should the sys-
tem react when these are violated (related to this, see the Exceptions
paragraph).

6.2 Data

In the more general case it is necessary to traverse and construct the data in
the format used internally by Prolog, using an API interface. A minimal set
should include: bi-directional conversion for basic data types (atoms, integers,
and floating point numbers) in a way compatible with (a subset of) the auto-
matic type conversion, type checking, and construction and traversal of complex
structures. Error conditions should be detectable and recoverable.

6.3 Control

Calling Prolog from C (or from any other language) is in practice as relevant —
and maybe more demanded— than the other way around. The data construction
primitives are a preliminary need, to which transformation of terms into goals
and a call/1 counterpart in C is added, plus facilities to get additional solutions
and to detect final failure and to discard further solutions. Also, if the runtime
system cannot have the Prolog program linked and an external Prolog program
is to be loaded, additional primitives to this effect are necessary.

6.4 Exceptions

These are the standard way to denote run-time errors, and should therefore be
raised by the C part whenever an abnormal situation is detected. The API
should therefore include a way to raise exceptions, and also a way to easily

construct the different exceptions that appear in the Prolog Standard.

To Conclude

It is true that, today, there seems to be little agreement as to what is the best
way to accomplish the minimal set of functionalities a foreign language interface
should provide. However, the difference among current implementations is not
insurmountable, and we hope that, if a consensus is reached, the effort to adapt
existing Prolog systems to it will be, in the worst case, moderate and, in most
cases, small.

12



Acknowledgments

Roberto Bagnara has been partially supported by project Adela (Italian-Spanish
Azione Integrata IT 229) and by the University of Parma’s FIL scientific research
project (ex 60%) “Pure and Applied Mathematics”.

Manuel Carro has been partially supported by projects Adela (Spanish-
Italian Acción Integrada MCYT HI2000-0043), Amos (EU Project IST-2001-
34717), and EDIPIA (Spanish Project MCYT TIC 99-1151).

13


