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Abstract The classical approach to automatic cost analysis consists of two phases.
Given a program and some measure of cost, the analysis first produces cost relations
(CRs), i.e., recursive equations which capture the cost of the program in terms of
the size of its input data. Second, CRs are converted into closed-form, i.e., without
recurrences. Whereas the first phase has received considerable attention, with a
number of cost analyses available for a variety of programming languages, the second
phase has been comparatively less studied. This article presents, to our knowledge,
the first practical framework for the generation of closed-form upper bounds for CRs
which (1) is fully automatic, (2) can handle the distinctive features of CRs, originating
from cost analysis of realistic programming languages, (3) is not restricted to simple
complexity classes, and (4) produces reasonably accurate solutions. A key idea in our
approach is to view CRs as programs, which allows applying semantic-based static
analyses and transformations to bound them, namely our method is based on the
inference of ranking functions and loop invariants and on the use of partial evaluation.
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1 Introduction

Having information about the execution cost of programs, i.e., the amount of
resources that the execution will require, is quite useful for many different purposes.
Also, reasoning about execution cost is difficult and error-prone. Therefore, it is
widely recognized that cost analysis, sometimes also referred to as resource analysis
or automatic complexity analysis, is quite important. In this work we are interested
in static cost analysis, i.e., the analysis results for a program P should allow bounding
the cost of executing P on any input data x without having to actually run P(x).

The classical approach to static cost analysis consists of two phases. First, given a
program and a cost model, the analysis produces cost relations (CRs for short), i.e.,
a system of recursive equations which capture the cost of the program in terms of
the size of its input data. As a simple example, consider the following Java method
m which traverses an array v and, depending whether the array elements are odd or
even, invokes a different method m2 or m1:

public void m(int[ ] v) {
int i=0;
for (i=0; i<v.length; i++)
if (v[i]%2==0) m1();
else m2();

}

The following cost relations capture the cost of executing this program:

(a) Cm(v) = k1 + Cfor(v, 0) {v≥0}
(b) Cfor(v, i) = k2 {i≥v, v≥0}
(c) Cfor(v, i) = k3 + Cm1() + Cfor(v, i+1) {i<v, v≥0}
(d) Cfor(v, i) = k4 + Cm2() + Cfor(v, i+1) {i<v, v≥0}

where v denotes the length of the array v, i stands for the counter of the loop and
Cm, Cm1 and Cm2 approximate, respectively, the costs of executing the methods m,
m1 and m2. The constraints attached to the equations contain their applicability
conditions. For instance, equation (a) corresponds to the cost of executing the
method m with an array of length greater that 0 (stated in the condition {v≥0}),
where a cost k1 is accumulated to the cost of executing the loop, given by Cfor.
The constants k1, . . . , k4 take different values depending on the cost model that one
selects. For instance, if the cost model is the number of executed instructions, then
k1 is 1 which corresponds to the execution of the Java instruction “int i = 0;”. If the
cost model is the heap consumption, then k1 is 0 since the previous instruction does
not allocate any memory. Equations (c) and (d) capture, respectively, the costs of the
then and the else branches. Note that, even if the program is deterministic, they are
non-deterministic equations which contain the same applicability conditions. This
is due to the fact that the array v is abstracted to its length and hence the values
of its elements are unknown statically. Equation (b) captures the cost of exiting
the loop.

Some interesting features of cost relations are that: (1) They are programming
language independent: there are analyzers for many different languages which
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produce cost relations. (2) They can cover a wide range of complexity classes: the
same techniques can be used to infer cost which is logarithmic, exponential, etc. (3)
They can be used for capturing a variety of non-trivial notions of resources, such as
heap consumption, number of calls to a specific method, etc.

Though cost relations are simpler than the programs they originate from, since all
variables are of integer type, in several respects they are not as static as one would
expect from the result of a static analysis. One reason is that they are recursive and
thus we may need to iterate for computing their value for concrete input values.
Another reason is that even for deterministic programs, it is well known that the
loss of precision introduced by the size abstraction may result in cost relations which
are non-deterministic. This happens in the above example: since the array v has been
abstracted to its length v, the values of v[i] are unknown statically. Hence, the last two
equations (c) and (d) become non-deterministic choices. In general, for finding the
worst-case cost we may need to compute and compare (infinitely) many results. For
both reasons, it is clear that it is interesting to compute closed-form upper bounds
for the cost relation, whenever this is possible, i.e., upper bounds which are not in
recursive form. For instance, for the above example, we aim at inferring the closed-
form upper bound k1+k2+v∗max({k3 + Cm1, k4 + Cm2}) where Cm1 and Cm2 are in
turn closed-form upper bounds for the corresponding methods.

Since cost relations are syntactically quite close to Recurrence Relations [15] (RRs
for short), in most cost analysis frameworks, it has been assumed that cost relations
can be easily converted into RRs. This has led to the belief that it is possible to use
existing Computer Algebra Systems (CAS for short) for finding closed-forms in cost
analysis. As we will show, cost relations are far from RRs. In this article, we present,
to the best of our knowledge, the first practical framework for the fully automatic
inference of reasonably accurate closed-form upper bounds for CRs originating from
a wide range of programs. The main novelty of our approach is that, by providing
a semantics for CRs, we can view CRs as programs and, thus, apply semantic-based
static analyses and transformations to automatically infer upper bounds for them. In
particular, our main contributions are summarized as follows:

– We identify the differences between CRs and RRs, in Section 2.
– We provide a formal definition of CRs and their semantics in terms of evaluation

trees, in Section 3. These notions are independent of the language and cost model.
– We present a general approximation scheme to infer closed-form upper bounds

in Section 4. Basically, it is based on the idea of bounding the cost of the
corresponding evaluation trees. This requires computing upper bounds both on
the depth of trees and also on the cost of nodes.

– In Section 5, we propose to use a specific form of ranking functions, which have
been extensively studied in termination analysis (see e.g. [45]), to bound the
depth of the evaluation tree.

– In Section 6, we present how to bound the cost of nodes by relying on loop
invariants [23] and maximization operations.

– In Section 7, we develop an extension of our method to obtain more accurate
upper bounds for divide and conquer programs which is based on counting levels
in the evaluation tree rather than counting nodes.

– Our method can be used when CRs are directly recursive. We present in Section 8
an automatic program transformation, formalized in terms of partial evaluation
(see e.g. [33]), which converts CRs into an equivalent directly recursive form.
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– We report on a prototype implementation and apply it to obtain closed-form
upper bounds for CRs automatically generated from Java bytecode programs.

A preliminary version of this work appeared in the Proceedings of SAS’08 [4].
We have pursued cost relations as a language-independent target language for cost
analysis in [5]. Our remaining previous work on cost analysis [6, 8, 10, 11] is not
related to this article but to the first phase in cost analysis which obtains, from a
program and a cost model, a cost relation.

1.1 Applications of Upper Bounds of Cost Relations

Automatic cost analysis requires the inference of closed-form upper bounds in order
to be used within its large application field, which includes the following applications:

Resource Bound Certif ication This research area deals with security properties
involving resource usage requirements; i.e., the code must adhere to specific bounds
on its resource consumption. The present work enables the automatic generation of
non-trivial closed-form upper bounds on cost. Such upper bounds can be computed
by a trusted server who signs the code using public key infrastructure. Alternatively,
they can be computed from scratch on the client side or (hopefully) efficiently
checked by using certif icates, in the proof-carrying code [43] style, though the latter
would require further research. Previous work in resource bound certification was
restricted to linear bounds [12, 25, 31] and to semi-automatic techniques [21].

Performance Debugging and Validation This application is based on automating the
process of checking whether certain assertions about the efficiency of the program,
possibly written by the programmer, hold or not. This application was already
mentioned as future work in [54] and is available in the CiaoPP system for Prolog
programs [29]. Our closed-form upper bounds can be used to check whether the
overall cost of an application meets the resource-consumption constraints specified
in the assertions.

Program Synthesis and Optimization This application was already mentioned as
one of the motivations for [54]. Both in program synthesis and in semantic-preserving
optimizations, such as partial evaluation (see e.g. [24, 46]), there are multiple
programs which may be produced in the process, with possibly different efficiency
levels. Here, upper bounds on the cost can be used for guiding the selection process
among a set of candidates.

2 Cost Relations vs. Recurrence Relations

The aim of this section is to identify the differences between cost relations and
traditional recurrence relations. For this purpose, we take a close look at the CRs
which appear in cost analysis of real programs. Figure 1 shows a Java program which
we use as running example. We explain in detail, in Section 2.1 below, the CRs
produced for this program by the automatic cost analysis of [6]. Then, in Section 2.2
we discuss the differences with RRs.
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Fig. 1 Java code of running example

2.1 Cost Relations for the Running Example

Consider the Java code in Fig. 1. It uses a List class for (non sorted) linked lists of
integers which is implemented in the usual way. The del method receives as input: l,
a list without repetitions; p, an integer value (the pivot); a and b, two sorted arrays
of integers; and la and lb, two integers which indicate, respectively, the number of
positions occupied in a and b. The a (resp. b) array is expected to contain values
which are smaller (resp. greater or equal) than p, the pivot. Under the assumption
that all values in l are contained in either a or b, the method del removes all values in
l from the corresponding arrays. The rm_vec auxiliary method removes a given value
e from an array a of length la and returns a’s new length, la−1.

Example 1 The system Costa [7] is an abstract interpretation-based COSt and
Termination Analyzer for Java bytecode. It receives as input a bytecode program
and (a choice of) a resource of interest in the form of a cost model, and tries to obtain
an upper bound of the resource consumption of the program. In Fig. 2, we show the
control flow graphs (CFG) constructed by Costa in order to generate automatically
the CRs. Such CFGs correspond to the graphs for the two methods (del and rm_vec)
and separate CFGs for the loops, as in Costa loop extraction is performed mainly for
efficiency issues (see [2]). Although [6] analyzes Java bytecode and not Java source,
we show the source for clarity of the presentation.

Figure 3 shows the CRs automatically generated by the system for the del method
in Fig. 1 using the CFGs in Fig. 2. The syntax and semantics of CRs is explained in
detail in Section 3. Briefly, cost relations are defined by means of equations, each of
which has an associated set of constraints which is shown to the right of the equation.
Intuitively, the CRs are obtained from the program after performing the following
three main steps:

1. In the first step, the recursive structure of the cost relation is determined by
observing the iterative constructs in the program. In the case of imperative
programs, both loops and recursion produce recursive calls in the cost relation.
The CR matches the structure of the program such that when the program
contains an iterative construct, its CR has a recursion. To carry out this step,
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loop-D ENTRY

i<la and 
a [ i ]<e

i>= la  o r
    a [ i ]>=e

i = i + 1 loop-D EXIT

del ENTRY

call LOOP-C

loop-E ENTRY

 j<la-1  j>= la -1

j + +
a [ j ] =a [ j +1 ]

loop-E EXIT

l !=nu l l
l .data<p

l !=nu l l
l . da ta>=p

l=nu l l

la=rm_vec(l.data,b, lb)la=rm_vec(l.data,a,la)

loop-C ENTRY

l= l .next

loop-C EXIT

DEL rm_vec

i = 0
call LOOP-D
j = i
call LOOP-E
return la-1

Fig. 2 Control flow graphs for running example

analyzers usually build CFGs. In our example, we have three recursive cost
relations C, D and E which correspond to the three CFGs for the loops in Fig. 2:

– C : cost of the while loop in del,
– D : cost of the while loop in rm_vec,
– E : cost of the for loop in rm_vec.

For readability, the CRs in Fig. 3 are shown after performing partial evaluation, as
we will explain in Section 8. This explains why there is no relation for the method
rm_vec: the calls to rm_vec have been unfolded within its calling context, i.e.,
they have been replaced by the right hand side of the corresponding equation.

Fig. 3 Cost relations generated by cost analysis of running example
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2. In the second step, static analysis techniques are used in order to approximate
how the sizes of variables change from one call in the cost relation to another.
Each program variable is abstracted using a size measure such that every non-
integer value is represented as a natural number. Classical size measures used
for non-integer types are: array length for arrays, list length for lists, the length of
the longest reference path for linked data structures, etc. In the above example,
l represents the path-length [51] of the corresponding dynamic structure, which
in this case coincides with the length of the list; a and b are the lengths of the
corresponding arrays. Since la and lb are numeric (integer) variables, the CR
directly handles those values, i.e., no abstraction is required for them. Analysis
is often done by obtaining an abstract version of the program by relying on
abstract interpretation [22]. Essentially, the abstraction consists in inferring size
constraints, sometimes also referred to as size relations, between the program
variables at different program points. In Fig. 3, such size relations are shown
to the right of the equations. They are usually expressed by means of linear
constraints. We refer to such abstraction by size abstraction and to an analysis
that infers such relations by size analysis.

3. In the last step, instructions in the original program are replaced by the cost they
represent. In the running example, we count the number of bytecode instructions
executed such that each Java instruction corresponds to several bytecodes. It is
not a concern of this paper to understand how bytecode instructions are related
to Java statements. Hence, we omit explanations about the inferred constants in
the equations.

After applying the above steps, the analyzer can set up the CRs shown in Fig. 3
which we explain below. Equation (1) defines the cost of method del as 1 bytecode
instruction plus the cost of the call to C. Observe also that the set of constraints
contain applicability conditions (i.e., guards) for each equation, if any, by providing
constraints which only affect a subset of the variables in the left hand side (lhs for
short). For clarity, we have inlined equality constraints (e.g., inlining equality lb ′ =
lb − 1 is done by replacing all occurrences of lb ′ by lb − 1). The constraints attached
to (1) are the (abstract) preconditions of the program. Among them, we have a ≥ la
(resp. b ≥ lb), which requires that the number of elements occupied in each array is
less or equal than its length. Such preconditions are propagated properly to the rest
of the equations.

In addition to Del, we have three recursive relations. As regards E, (8) is its base
case and it corresponds to the exit from the for loop, whereas (9) counts the cost
of each iteration in the loop. As expected, the value of j is increased by one at the
recursive call to E. As regards the cost relation D, we have two base cases, (5) and
(6), which correspond to the exits from the loop because i ≥ la and because a[i] ≥ e,
respectively. The important point here is that the second condition does not appear
in the constraints of (6) because this condition is not observable after abstracting the
array a to its length, i.e., the value in a[i] is unknown. For the selected cost model, we
count three bytecode instructions in the first base case and eight in the second one.
The cost of executing an iteration of the loop is captured by (7), where the condition
i < la must be satisfied and variable i is increased by one at each recursive call.

Finally, in relation C, (2) corresponds to the case of an empty list, indicated by
the condition l = 0. Equations (3) and (4) correspond, respectively, to the then and
else branches of the if-then-else construct within thewhile loop. Hence, both of them
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contain the relation l > 0. Note that, as before, the conditions l.data < p and l.data ≥
p in the Java program do not appear in the constraints attached to (3) and (4) as they
are not preserved by the corresponding size abstraction. The calls to D and E in (3)
capture the cost of executing the method rm_vec for a and la. In the constraints, la
decreases by one upon exit from rm_vec. l′ corresponds to the length of the list when
we perform the recursive call. It is ensured that the size of l has decreased (l > l′),
but due to the size abstraction, we do not know how much. This is because the size
analysis for heap allocated data structures used in [6] is based on path-length analysis,
where size relations are expressed using > and ≥ only. Equation (4) is similar to (3)
but for b and lb instead of a and la. Note that when calling E in (3) and (4), a fresh
variable j is used since we do not know the value that j can take after executing the
while loop. We only know that j ≥ 0, as it appears in the attached constraint.

Importantly, if the program were written in a different programming language,
the first phase in cost analysis would produce a similar cost relation which differs
essentially only on intermediate equations and on the constants which are counted.
This step is outside the scope of this article (see Section 11 for references to this
phase in several programming languages). Our approach for computing closed-form
upper bounds takes as input cost relations which originate from programs written in
any programming language.

2.2 Why Cost Relations Are Not Recurrence Relations?

As can be seen in the CRs in the example, CRs differ from standard RRs [15] in the
following ways:

(a) Non-determinism In contrast to RRs, CRs are highly non-deterministic: equa-
tions for the same relation are not required to be mutually exclusive. Even if
the programming language is deterministic, size abstractions introduce a loss of
precision: some guards which make the original program deterministic may not
be observable when using the size of arguments instead of their actual value. In
Example 1, this happens between (3) and (4) and also between (6) and (7).

(b) Inexact constraints CRs may have constraints other than equalities, such as
l > l′. When dealing with realistic programming languages which contain non-
linear data structures, such as trees, it is often the case that size analysis does not
produce exact results. E.g., analysis may infer that the size of a data structure
strictly decreases from one iteration to another, but it may be unable to provide
the precise reduction. This happens in Example 1 in (3) and (4).

(c) Multiple arguments CRs usually depend on several arguments that may increase
(variable i in (7)) or decrease (variable l in (2)) at each iteration. In fact, the
number of times that a relation is executed can be a combination of several of
its arguments. E.g., relation E is executed la − j − 1 times.

Point (a) is an obvious source of non-determinism and it was already detected
in [54]. Point (b) is another source of non-determinism. Though it may not be so
evident in small examples, it is almost unavoidable in programs handling trees or
when numeric value analysis loses precision. As a result of (a) and (b), strictly
speaking, CRs do not define functions, but rather relations: given a relation C and
input values v̄, there may exist multiple output values for C(v̄).



Closed-Form Upper Bounds in Static Cost Analysis 169

As regards point (c), most existing solvers can only handle single-argument
recurrences (Mathematica is an exception). Sometimes it is possible to automatically
convert relations with several arguments into relations with only one. However, this
approach is only applicable when the equations, in addition to the recursive calls
themselves, only have constant value expression in the right hand side (rhs for short).
This problem is illustrated in Fig. 4. There, relation C has two arguments, but it can
be converted into relation C′ which only has one argument by defining z = y−x,
resulting in equations 1′ and 2′, with the adapter equation 5. Now, if we try to apply
the same transformation to relation D, the situation is different. The reason for this
is that (4) accumulates the non-constant expression x in each iteration. Now, the
transformation results in (4′), where the value of y is unbounded and thus an upper
bound cannot be found. Note that a fundamental difference between C and D is that
while the former only depends on y−x the latter takes different values depending on
the initial value of x. E.g., C(0, 10) = C(1000, 1010) but D(0, 10) �= D(1000, 1010).

The above differences make existing methods for solving RRs insufficient to
bound CRs, since they do not cover points (a), (b), and (c) above. On the other hand,
CASs can solve complex recurrences (e.g., coefficients to function calls can be poly-
nomials) which our framework cannot handle. However, this additional power is not
needed in cost analysis, since such recurrences do not occur as the result of cost analysis.

Given a (non-deterministic) cost relation, it is sometimes useful to define a cost
function. A relatively straightforward way of obtaining a cost function from non-
deterministic CRs would be to introduce a maximization operator. Unfortunately,
the cost functions thus produced are not very useful since existing CAS do not
support the maximization operator. Adding it is far from trivial, since computing
the maximum when the equations are not mutually exclusive requires taking into
account multiple possibilities, which results in a highly combinatorial problem. This
combinatorial explosion also affects the use of such cost-bound function in dynamic
approaches, i.e., those based on executing cost-bound functions, such as [28].

Another approach is to obtain a cost-bound function by eliminating non-
determinism. For this, we need to remove equations from CRs as well as sometimes
to replace inexact constraints by exact ones while preserving the worst-case solution.
However, this is not possible in general. E.g., in Fig. 3, the maximum cost is obtained
when the execution interleaves (3) and (4), and therefore the worst case cannot be
achieved if we remove either equation. In other words, the upper bound obtained by
removing either of (3) and (4) is not an upper bound of the original CR.

Finally, let us observe that the properties listed above are all evident properties
of constraint programs whose arguments are integer values. This explains the fact

Fig. 4 Replacing multiple
arguments with a single one
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that we treat CR as programs and apply analysis and transformations developed for
programming languages on them.

3 Cost Relations: Syntax and Semantics

Let us introduce some notation and preliminary definitions. The sets of natural,
integer and real values are denoted respectively by N, Z and R. The sets of non-
negative integer and real values are denoted respectively by Z+ and R+. We use
v and w for values from Z and Z+, r for values from R and R+, and n for values
from N. We write x, y, and z, to denote variables which range over Z. Given any
entity t, vars(t) refers to the set of variables occurring in t. The notation t̄ stands for a
sequence of entities t1, . . ., tn, for some n > 0. For simplicity, we sometimes interpret
these sequences as sets. We use t[ȳ/x̄] to denote the renaming of the variables
x̄ by ȳ.

A linear expression has the form v0 + v1x1 + · · · + vnxn. A linear constraint c
(over Z) has the form l1 ≤ l2 where l1 and l2 are linear expressions. For simplicity,
we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1, and l1 < l2 instead of l1 + 1 ≤ l2. Note
that constraints with rational coefficients can be always transformed to equivalent
constraints with integer coefficients, e.g., 1

2 x > y is equivalent to x > 2y. We write
ϕ, ψ or φ, possibly subscripted, to denote sets of linear constraints, i.e., of the form
{c1, . . . , cn}, which should be interpreted as the conjunction c1 ∧ · · · ∧ cn. We write
x̄ = ȳ to denote x1 = y1 ∧ · · · ∧ xn = yn and ϕ1 |= ϕ2 to indicate that the (set of)
linear constraints ϕ1 implies the (set of) linear constraints ϕ2. An assignment σ over
a tuple of variables x̄ is a mapping from x̄ to Z. Sometimes we denote an assignment
over x̄ as x̄ = v̄, therefore we might write σ |= ϕ for x̄ = v̄ |= ϕ. We use σ(x) to refer
to the value of x in σ , and σ(x̄) for 〈σ(x1), . . . , σ (xn)〉. The projection operator ∃x̄.ϕ

(resp. ∃̄x̄.ϕ) projects the polyhedron defined by ϕ on the space vars(ϕ) \ x̄ (resp. x̄).
The following definition presents our notion of basic cost expression, which

characterizes syntactically the kind of expressions we deal with. Such expressions
will be crucial to characterize the cost relation systems defined in the next section.

Definition 1 (basic cost expression) A symbolic expression exp is a basic cost
expression if it can be generated using the grammar below:

exp::= r | nat(l) | exp+ exp | exp ∗ exp | expr | logn(exp) | nexp | max(S) | exp− r

where r ∈ R+, l is a linear expression, S is a non empty set of basic cost expressions,
nat : Z → Z+ is defined as nat(v)= max({v, 0}), and exp satisfies that for any assign-
ment σ : vars(exp) 
→ Z we have that [[exp]]σ ∈ R+, where [[exp]]σ is the result of
evaluating exp w.r.t. σ .

Basic cost expressions are symbolic expressions which represent the resources
we accumulate and are the non-recursive building blocks for defining cost relations
and for the closed-form upper bounds that we infer for them. Cost expressions
enjoy two crucial properties: (1) By definition, they are always evaluated to non-
negative values, for instance, the expression nat(x) − 1 is not a cost expression,
since its evaluated to negative numbers for x ≤ 0, however, nat(x − 1) is a valid cost
expression. Note that the −r expression has been introduced to the above grammar
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only for being able of constructing nnat(l) − 1 (when counting the number of nodes of
a tree), which is clearly evaluated to a non-negative value. (2) They are monotonic in
their nat components, i.e., replacing a sub-expression nat(l) by nat(l′) such that l′ ≥ l,
results in an upper bound of the original expression. This is essential for defining the
maximization procedure ub_exp, which is defined in Section 6.2.

Proposition 1 Let exp be a basic cost expression, l and l′ be linear expressions and ϕ

be a set of linear constraints such that ϕ |= l′ ≥ l. Let exp′ be the result of replacing
an occurrence of nat(l) in exp by nat(l′). Then for any assignment σ for vars(exp′) ∪
vars(exp), if σ |= ϕ then [[exp′]]σ ≥ [[exp]]σ .

Proof By structural induction on basic cost expressions: (1) for expressions of the
form nat(l) the result follows from σ |= ϕ and ϕ |= l′ ≥ l, which implies [[l′]]σ ≥ [[l]]σ ;
and (2) for the induction step, composing expressions as described in Definition 1
preserves trivially the monotonicity property. ��

Definition 2 (Cost Relation System) A cost relation system S is a finite set of
equations of the form 〈C(x̄) = exp+ ∑k

i=1 Di(ȳi), ϕ〉 with k ≥ 0, where C and all
Di are cost relation symbols, all variables x̄ ∪ ȳi are distinct variables; exp is a basic
cost expression; and ϕ is a set of linear constraints over x̄ ∪ vars(exp)

⋃k
i=1 ȳi.

In contrast to standard definitions of RRs, in CRSs, the variables which occur in
the rhs of the equations do not need to be related to those in the left hand side (lhs for
short) by equality constraints. Other constraints such as ≤ and < can also be used. We
denote by rel(S) the set of cost relation symbols which are defined in S , i.e., which
appear in the lhs of some equation in S . Given a CRS S and a cost relation symbol C,
the definition of C in S , denoted def (S, C), is the subset of the equations in S whose
lhs is of the form C(x̄). Without loss of generality, we assume that all equations in
def (S, C) have the same variable names in the lhs, and that S is self-contained in the
sense that all cost relation symbols which appear in the rhs of an equation in S must
be in rel(S).

A cost equation 〈C(x̄) = exp+ ∑k
i=1 Di(ȳi), ϕ〉 states that the cost of C(x̄) is exp

plus the sum of the cost of all Di(ȳi) where the linear constraints ϕ contain the
applicability conditions for the equation as well as size relations for the equation
variables. Intuitively, a cost relation is program, very similar to a constraint logic
program [32] where the relation plays the role of a predicate and an equation plays
the role of a clause. Evaluating a call C(v̄) can be done as follows: (1) choose a
matching equation E ≡ 〈C(x̄) = exp+ ∑k

i=1 Di(ȳi), ϕ〉; (2) choose an assignment σ

over vars(E) s.t. σ |= v̄ = x̄ ∧ ϕ; (3) evaluate exp w.r.t σ and accumulate it to the
result; and (4) evaluate each call Di(v̄i) where v̄i = σ(ȳi). Note that the result (i.e., the
cost of the execution) of the evaluation is the sum of all cost expressions accumulated
in step (3). Such evaluation strategy can be described in terms of evaluation trees.
Each node in the tree describes the cost accumulated at step (3), and the n sub-trees
correspond to the evaluation of the calls in step (4). Then, the result of the evaluation
corresponds to the sum of all nodes in the tree.

The next definition provides a formal (denotational) semantics for CRSs which
maps a call C(v̄) to the set of all possible evaluation trees, and therefore the set of
all possible answers. We will represent evaluation trees using nested terms of the
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form node(Call, Local_Cost, Children), where Local_Cost is a constant in R+ and
Children is a sequence of evaluation trees.

Definition 3 Given a cost relation system S , the set of evaluation trees induced by
an initial query C(v̄) is defined as:

Trees(C(v̄),S)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

node(C(v̄), r, 〈T1, . . ., Tk〉)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1. E≡〈C(x̄)=exp+ ∑k
i=1 Di(ȳi), ϕ〉∈S

2. σ is an assignment over vars(E) s.t.
σ |=x̄=v̄∧ϕ

3. r = [[exp]]σ
4. Ti ∈ Trees(Di(v̄i), S) s.t v̄i = σ(ȳi)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Then, the set of all possible answers for C(v̄) is defined as:

Answers(C(v̄),S)={Sum(T) | T ∈ Trees(C(v̄),S)}
where Sum(T) = Sum(node(C(v), r, 〈T1, . . . , Tk〉)) = r + ∑k

i=1 Sum(Ti).

A cost-bound function C+(x̄) can be defined as C+(v̄) = max(Answers(C(v̄),S)).
Clearly, it is not always computable. Sometimes there is actually no upper bound
because the tree is infinite. Also, it can happen that an upper bound exists but it is
not computable. Note that the branching in each tree is conjunctive and corresponds
to the different calls in the body, an that the disjunction comes in the form of multiple
trees for the same query.

Example 2 Figure 5 shows two possible evaluation trees for Del(3, 10, 2, 20, 2) in S ,
where S is the CR in Fig. 3. The tree on the left has maximal cost, whereas the one on
the right has minimal cost. Nodes are represented using boxes split in two parts. The
part on the left contains a call, e.g., Del(3, 10, 2, 20, 2) in the root nodes of both trees,
annotated with a number in parenthesis, e.g., (1) in such nodes, which indicates the
equation which was selected for evaluating such call. The part on the right contains
the local cost associated to the call, 1 in both root nodes. Nodes are linked by arrows
to their children, if any.

(9) E(2,1) 5

(8) E(2,0) 15

(5) D(10,2,2)

(7) D(10,2,1) 10

3

(5) D(20,2,2) 3

(7) D(20,2,1) 10

10(7) D(20,2,0)

5(9) E(2,1)

(8) E(2,0) 15

24(4) C(2,10,1,20,2)

(2) C(0,10,0,20,1) 25(9) E(1,0)

(5) D(10,1,1) 3

(7) D(10,1,0) 10

(3) C(1,10,1,20,1) 25

(6) D(20,2,0) 8 (8) E(2,1) 5 (2) C(0,10,1,20,2) 2

(4) C(3,10,2,20,2) 24

1(1) Del(3,10,2,20,2)1

(3) C(3,10,2,20,2) 25

(1) Del(3,10,2,20,2)

(7) D(10,2,0) 10

Fig. 5 Two evaluation trees for Del(3, 10, 2, 20, 2)
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The two trees differ in that, for solving C(3, 10, 2, 20, 2), in the one on the left we
pick (3) and in the one on the right we pick (4). Furthermore, in the recursive call
to C in (3) and (4) we always assign l′ = l − 1 in the tree on the left and we assign
l′ = l − 3 in the tree on the right. Note that both possibilities are valid w.r.t. S , since
we are allowed to pick any value l′ such that l′ < l. The tree on the left corresponds
to a possible execution of the program. However, the tree on the right does not
correspond to any actual execution. This is a side effect of using safe approximations
in static analysis for computing size abstractions: information is correct in the sense
that given a concrete program execution, at least one of the evaluation trees must
correspond to such execution, but there may be other trees which do not correspond
to any valid execution. Therefore, CRSs provide information which is sound but
possibly imprecise.

As this example shows, there may be multiple evaluation trees for a call. In fact,
there may even be infinitely many of them. The latter happens in our example call,
as step 1 in Definition 3 can provide an infinite number of assignments to variable
j which are compatible with the constraint j ≥ 0 in (3) and (4). This shows that
approaches like [28] based on evaluation of RRs may not be of general applicability in
CRSs, as size relations can be inexact and multiple, or even infinitely many evaluation
trees may exist. Fortunately, since we are not interested in executing CRSs but
rather on finding closed-form (i.e., static) upper bounds for them, whether there are
infinitely many evaluation trees for a call is not directly an issue, as long as there are
not infinitely many dif ferent answers. In our example, Trees(Del(3, 10, 2, 20, 2),S) is
an infinite set, but infinitely many of the trees in this set produce equivalent results
and Answers(Del(3, 10, 2, 20, 2)),S) is finite. Thus, it is in principle possible to find
an upper bound for it.

4 Closed-Form Upper-Bounds for Cost Relations

After providing a suitable semantics for CRs, we now study how to obtain closed-
form upper bounds for them. In what follows, we are only interested in upper-bound
functions which are in closed-form. Therefore, for brevity, we often just write ‘upper
bound’ instead of ‘closed-form upper bound’.

A function f : Zn 
→ R+ is in closed-form if it is defined as f (x̄) = exp, where exp
is a basic cost expression and vars(exp) ⊆ x̄. Let C be a cost relation, a closed-form
function U : Zn 
→ R+ is an upper bound of C if ∀v̄ ∈ Zn and ∀r ∈ Answers(C(v̄),S)

it holds that U(v̄) ≥ r. Similarly, we say that a function f : Zn 
→ Z is an upper bound
for g : Zn 
→ Z, if f (v̄) ≥ g(v̄) for any v̄ ∈ Zn. Given a relation C (resp. function f ),
we use C+ (resp. f+) to refer to an upper bound of C (resp. f ).

4.1 Stand-alone Cost Relations

An important feature of CRSs, also present in RRs, is their compositionality. This
allows computing upper bounds of CRSs composed of multiple relations by concen-
trating on one relation at a time. Let us consider an equation E for a cost relation
C(x̄) where a call of the form D(ȳ), with D �= C appears on the rhs of E . In order
to compute an upper bound of C(x̄), we can replace E by another equation E ′ where
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(3) C(3,10,2,20,2)
         38+15*nat(2–0–1)+
         10*nat(2)=73

(4) C(2,10,1,20,2)         37+15*nat(2–0–1)+
         10*nat(2)=72

(3) C(1,10,1,20,1)         38+15*nat(1–0–1)+
         10*nat(1)=48

(2) C(0,10,0,20,1) 2

Fig. 6 Stand-alone CR for relation C and a corresponding evaluation tree

the call to D(ȳ) is replaced by a call to an upper bound D+(ȳ), already in closed-
form. The resulting cost relation is trivially an upper bound of the original one. E.g.,
suppose that we have the following upper bounds:

E+(la, j) = 5 + 15 ∗ nat(la − j − 1)

D+(a, la, i) = 8 + 10 ∗ nat(la − i)

Replacing the calls to D and E in (3) and (4) by D+ and E+ results in the CR
shown in Fig. 6.

The compositionality principle only results in an effective mechanism if all
recursions are direct (i.e., all cycles are of length one). In that case we can start
by computing upper bounds for cost relations which do not depend on any other
relations, which we refer to as stand-alone cost relations and continue by replacing the
computed upper bounds on the equations which call such relations. In the following,
we formalize our method by assuming stand-alone cost relations and, in Section 8,
we provide a mechanism for obtaining direct recursion automatically.

4.2 Approximating Evaluation Trees

Existing approaches to compute upper bounds and asymptotic complexity of RRs,
usually applied by hand, are based on reasoning about evaluation trees in terms of
their size, depth, number of nodes, etc. They typically consider two categories of
nodes: (1) internal nodes, which correspond to applying recursive equations, and (2)
leaves of the tree(s), which correspond to the application of a base (non-recursive)
case. The central idea then is to count (or obtain an upper bound on) the number
of leaves and the number of internal nodes in the tree separately and then multiply
each of these by an upper bound on the cost of the base case and of a recursive step,
respectively. For instance, in the evaluation tree in Fig. 6 for the stand-alone cost
relation C, there are three internal nodes and one leaf. The values in the internal
nodes, once performed the evaluation of the expressions are 73, 72, and 48, therefore
73 is the worst case. In the case of leaves, the only value is 2. Therefore, the tightest
upper bound we can find using this approximation is 3 × 73 + 1 ∗ 2 = 221 ≥ 73 +
72 + 48 + 2 = 193.

We now extend the approximation scheme mentioned above in order to consider
all possible evaluation trees which may exist for a call. In the following, we use |S| to
denote the cardinality of a set S. Also, given an evaluation tree T, leaf (T) denotes
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the set of leaves of T (i.e., those without children) and internal(T) denotes the set of
internal nodes (all nodes but the leaves) of T.

Proposition 2 (node-count upper bound) Let C be a cost relation. We def ine:

C+(x̄) = internal+(x̄) ∗ costr+(x̄) + leaf+(x̄) ∗ costnr+(x̄)

where internal+(x̄), costr+(x̄), leaf+(x̄) and costnr+(x̄) are closed-form functions
def ined on Zn 
→ R+. Then, C+ is an upper bound of C if for all v̄ ∈ Zn and for all
T ∈ Trees(C(v̄),S), the following properties hold:

1. internal+(v̄) ≥ |internal(T)| and leaf+(v̄) ≥ | leaf (T)|;
2. costr+(v̄) is an upper bound of {r | node(_, r, _) ∈ internal(T)} and
3. costnr+(v̄) is an upper bound of {r | node(_, r, _) ∈ leaf (T)}.

Proof Trivially correct by the definition of upper bound and Answers. ��

This proposition presents the main approximation approach which we use for
computing upper bounds. Our main contribution is to come up with mechanisms
to infer the four functions appearing above.

5 Upper Bounds on the Number of Nodes

In this section, we present an automatic mechanism for obtaining correct internal+(x̄)

and leaf+(x̄) functions which statically provides upper bounds of the number of
internal nodes and leaves in evaluation trees. The basic idea is to first obtain upper
bounds on the branching factor (denoted b) and height (the distance from the root to
the deepest leaf) of all corresponding evaluation trees (denoted h+(x̄)) and, then, use
the number of internal nodes and leaves of a complete tree with such branching factor
and height as an upper bound. Well-known formulas exist which, given the branching
factor and the height of the tree, compute the number of nodes of the complete
tree. As usual, a tree is complete when all internal nodes have as many children as
indicated by the branching factor and leaves are at the same depth. Clearly, complete
trees provide an upper bound of the number of nodes of any tree with such height
and branching factor. Therefore, we define internal+(x̄) and leaf+(x̄) as follows:

leaf+(x̄) = bh+(x̄) internal+(x̄) =
{

h+(x̄) b = 1
bh+(x̄)-1

b-1 b ≥ 2

For a cost relation C, the branching factor b in any evaluation tree for a call
C(v̄) is limited by the maximum number of recursive calls which occur in a single
equation for C, which obviously can be computed statically. Note that we mean the
actual occurrences of recursive calls in the right hand side of the equations which
determines the complexity scheme (exponential, polynomial, etc.) not how many
calls will actually be performed in a concrete execution. This is not related to how
the arguments increase or decrease.
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We now propose a way to compute an upper bound for the height, h+. Given an
evaluation tree T ∈ Trees(C(v̄),S) for a cost relation C, consecutive nodes in any
branch of T represent consecutive recursive calls which occur during the evaluation
of C(v̄). Therefore, bounding the height of a tree may be reduced to bounding
consecutive recursive calls during the evaluation of C(v̄). The notion of loop in a
cost relation, which we introduce below, is used to model consecutive calls.

Definition 4 (loops) Let E = 〈C(x̄) = exp+ ∑k
i=1 C(ȳi), ϕ〉 be an equation for a cost

relation C. The set of loops induced by E is defined as:

Loops(E) = {〈C(x̄) → C(ȳi), ϕ
′〉 | ϕ′ = ∃̄x̄ ∪ ȳi.ϕ, 1 ≤ i ≤ k}

Similarly, we define Loops(C) = ∪E∈def (S,C)Loops(E).

Intuitively, a loop 〈C(x̄) → C(ȳ), ϕ′〉 over-approximates that evaluating C(v̄1)

such that x̄ = v̄1 |= ϕ′, may eventually be followed by an evaluation for C(v̄2) such
that x̄ = v̄1 ∧ ȳ = v̄2 |= ϕ′. In terms of evaluation trees, this means that the node
corresponding to C(v̄1) will have a child with C(v̄2).

Example 3 The cost relation in Fig. 6 induces the following two loops which corre-
spond to (3) and (4).

(3) 〈C(l, a, la, b , lb) → C(l′, a, la′, b , lb), ϕ′
1〉

where ϕ′
1 = {a ≥ 0, a ≥ la, b ≥ lb , b ≥ 0, l > l′, l > 0, la′ = la − 1}

(4) 〈C(l, a, la, b , lb) → C(l′, a, la, b , lb ′), ϕ′
2〉

where ϕ′
2 = {b ≥ 0, b ≥ lb , a ≥ la, a ≥ 0, l > l′, l > 0, lb ′ = lb − 1}

The problem of bounding the number of consecutive recursive calls has been
extensively studied in the context of termination analysis. Automatic termination
analyzers usually prove that an upper bound of the number of iterations of the loop
exists by proving that there exists a function f from the loop’s arguments to a well-
founded partial order, such that f decreases in any two consecutive calls. This in turn
guarantees the absence of infinite traces, and therefore termination. These functions
are usually called ranking functions [27]. A difference w.r.t. termination analysis is
that we aim at determining a concrete ranking function f , rather than just proving
that it exists, which is usually enough for termination proofs. The following definition
characterizes the kind of ranking functions we are interested in since, as we will see
later, they are adequate for bounding the number of iterations of a loop.

Definition 5 (ranking function for a loop) A function f : Zn 
→ Z+ is a ranking
function for a loop 〈C(x̄) → C(ȳ), ϕ〉 if ϕ |= f (x̄) > f (ȳ).

The above definition basically requires that f be decreasing in every iteration
of the loop, and well-founded since the range of f is Z+. In order to satisfy these
conditions it is required that: (1) the constraint ϕ captures information about the
way in which the value of variables change from one iteration to another; and (2)
ϕ captures sufficient information about the applicability conditions (guards) of the
loop so as to identify cases where the loop does not apply.
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In addition, since a cost relation may induce several loops (i.e., several possibilities
for generating calls), we require the ranking function to decrease for all loops.

Definition 6 (ranking function for a cost relation) A function fC : Zn 
→ Z+ is a
ranking function for C if it is a ranking function for all loops in Loops(C).

Example 4 The function fC(l, a, la, b , lb) = nat(l) is a ranking function for C in the
cost relation in Fig. 6. Note that ϕ′

1 and ϕ′
2 in the loops of C in Example 3 contain

the constraints {l > l′, l > 0} which is enough to guarantee that fC is decreasing and
well-founded.

The following example illustrates that sometimes the ranking function involves
several arguments.

Example 5 Consider the loop which originates from (7) depicted in Fig. 3. 〈D(a, la, i) →
D(a, la, i′), {i′ = i + 1, i < la, a ≥ la, i ≥ 0}〉. The function fD(a, la, i) = nat(la − i) is
a ranking function for the above loop. Any ranking function for D must involve both
la and i.

We propose to use ranking functions for cost relations as an upper bound on
the number of consecutive calls (and therefore on the height of the corresponding
evaluation trees). This is justified by the following two facts: (1) the ranking function
decreases at least by one unit in each iteration when applying it on two consecutive
calls (since its range is Z+); and (2) it is always non-negative.

Lemma 1 Let fC(x̄) be a ranking function for a cost relation C. Then, ∀v̄ ∈ Zn and
∀ T ∈ Trees(C(v̄),S) it holds fC(v̄) ≥ h(T).

Proof For h(T) = 0, the proof is straightforward as fC(v̄) is non-negative. For
h(T) > 0, assume the contrary, i.e., there exists an evaluation tree T ∈ Trees(C(v̄),S)

such that h(T) = n > fC(v̄). This means there exists a path (starting from the root)
which consists of n + 1 nodes. Let C(v̄0), . . . , C(v̄n) be the calls that correspond to
the nodes in that path, where v̄0 = v̄. By definition of ranking function for a cost
relation, for all i < n, we have fC(v̄i) − fC(v̄i+1) ≥ 1 and fC(v̄i) > 0. Then, it holds
that fC(v̄) ≥ n+1 > n = h(T), which contradicts the assumption that fC(v̄) < h(T).

��

As it can be observed, in the above examples, the ranking functions that we have
used are linear cost expressions. However, in general, we are not restricted to linear,
and any cost expression that satisfies the conditions of Definition 6 can be used
as ranking functions. The following example demonstrates the need for non-linear
ranking functions.

Example 6 Consider the following two loops:

〈P(x, y, z) → P(x′, y′, z′), {x > 0, y > 0, z > 0, x′ = x, z′ = z, y > y′, z ≥ y′}〉
〈P(x, y, z) → P(x′, y′, z′), {x > 0, y > 0, z > 0, x > x′, z′ = z, z ≥ y′}〉
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which correspond, for example, to the following while loop:

whi le ( x>0 && y>0 && z >0) {
i f (∗ ) {

y=y−1;
} e l s e {

x=x−1;
y=random ( 1 , z ) ;

}
}

No linear ranking function exists that decreases for both loops. However, the
non-linear cost expression fP(x, y, z) = nat(x) ∗ nat(z) + nat(y) is a ranking function
which can be used to bound the number of iterations.

In the current implementation, as we explain later, we have restricted ourselves to
linear ranking functions. We infer them by using the algorithm described in [45] and,
then, wrap them by nat in order to guarantee that they are always non-negative. This
explains why cost expressions, as defined in Definition 1, include nat.

Even though ranking functions inferred using [45] provide an upper bound for
the height of the corresponding trees, in some cases we can further refine them and
obtain tighter upper bounds. For example, if the difference between the value of
the ranking function in each two consecutive calls is guaranteed to be larger than a
constant δ > 1, then � fC(x̄)

δ
� is a tighter upper bound. A more interesting case, if each

loop 〈C(x̄) → C(ȳ), ϕ〉 ∈ Loops(C) satisfies ϕ |= fC(x̄) ≥ k ∗ fC(ȳ) where k > 1 is a
constant, then the height of the tree is bounded by �logk( fC(v̄) + 1)�, as each time
the value of the ranking function decreases by k. For instance, given a loop the form:
〈C(l) → C(l′), {l′ = l/3, l > 0}〉, we find the bound “�log3(nat(l) + 1)�” for the height
of the tree. These cases are handled in our system.

6 Bounding the Cost per Node

After studying how to obtain upper bounds of the number of internal and leaf
nodes in evaluation trees, in this section, we present an automatic method to obtain
functions costr+(x̄) and costnr+(x̄), which are upper bounds of the local cost associ-
ated to an internal node and of a leaf node, respectively. We first give an intuitive
description of the technique on our running example. Consider the evaluation tree
in Fig. 6. There is only one leaf node and its local cost is 2. Therefore, we can define
costnr+(x̄) = 2. As regards the three internal nodes, observe that the corresponding
expressions are instantiations of either:

exp3 = 38 + 15 ∗ nat(la − j − 1) + 10 ∗ nat(la)

exp4 = 37 + 15 ∗ nat(lb − j − 1) + 10 ∗ nat(lb)

Knowing the expressions which generate the possible values in nodes is important,
since if we know (or have a safe approximation of) the values of the variables which
appear in such expressions, then it is possible to obtain an upper bound of the cost
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of nodes. Therefore, we split the construction of costr+(x̄) and costnr+(x̄) in the
following two parts.

Invariants First, it is necessary to know what are the possible values to which the
different variables in exp3 and exp4 can be instantiated. Computing this information
is usually undecidable or impractical, but it can be approximated (by means of a
superset of the actual values) using static program analysis. One possible way to
approximate it is to infer (linear) constraints between the values of the variable in
each node and the initial values. For example, for the equations in Fig. 6, we are
interested in obtaining constraints between the root call C(l0, a0, la0, b 0, lb 0) and the
call in any node C(l, a, la, b , lb). Note that for a variable x we use x0 to refer to
the value of x at the root call. The following linear constraints describe a (possible)
relation:

ψ = {0 ≤ l ≤ l0, a = a0, la ≤ la0, b = b 0, lb ≤ lb 0}
In other words, ψ is a loop invariant that holds between the initial values
{l0, a0, la0, b 0, lb 0} and the variables in any recursive call C(l, a, la, b , lb) during the
evaluation.

Upper Bounds of Cost Expressions The invariant can then be used to infer upper
bounds for exp3 and exp4. Since exp3 and exp4 are monotonic in their nat sub-
expressions, as stated in Proposition 1, it is enough to obtain upper bounds for
those sub-expressions in order to obtain upper bounds for exp3 and exp4. For
maximizing exp3, we need to compute an upper bound for la − j − 1 in the context
of the invariant ψ conjoined with the local constraints ϕ3, associated to (3). By
maximizing la − j − 1 w.r.t. {l0, a0, la0, b 0, lb 0}, we infer that la0 − 1 is an upper
bound for la − j − 1 since ψ ∧ ϕ3 |= {la ≤ la0, j ≥ 0}. Similarly, we obtain the upper
bounds la0, lb 0 − 1 and lb 0 for la, lb − j − 1, and lb, respectively. By putting all
pieces together we obtain that:

mexp3 = 38 + 15 ∗ nat(la0 − 1) + 10 ∗ nat(la0)

mexp4 = 37 + 15 ∗ nat(lb 0) + 10 ∗ nat(lb 0)

are upper bounds for exp3 and exp4, respectively. Then, we use max({mexp3,

mexp4}) as an upper bound for all possible expressions in the internal nodes of any
possible evaluation tree for C(l0, a0, la0, b 0, lb 0). We now formalize the two steps
that have been described above.

6.1 Invariants

Computing an invariant, in terms of linear constraints, that holds between the
arguments at the initial call and at each call during the evaluation, can be done by
using Loops(C). Intuitively, if we know that a linear constraint ψ holds between
the arguments of the initial call C(x̄0) and the arguments of a specific recursive
call C(x̄) during the evaluation, denoted 〈C(x̄0) � C(x̄), ψ〉, and we have a loop
〈C(x̄) → C(ȳ), ϕ〉 ∈ Loops(C), then we can apply the loop one more step and get the
new calling context (or context for short) 〈C(x̄0) � C(ȳ), ∃x̄.(ψ ∧ ϕ)}〉. The following
definition describes how from a set of contexts I we learn more contexts by applying
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all loops in a relation. We denote by R the set of all possible contexts for C, and by
℘(R) all subsets of C that include I0 = 〈C(x̄0) � C(x̄), {x̄0 = x̄}〉.

Definition 7 (loop invariants) For a relation C, let TC : ℘(R) 
→ ℘(R) be an opera-
tor defined:

TC(X) =
⎧
⎨

⎩
〈C(x̄0) � C(ȳ), ψ ′〉

∣
∣
∣
∣
∣
∣

〈C(x̄0) � C(x̄), ψ〉 ∈ X
〈C(x̄) → C(ȳ), ϕ〉 ∈ Loops(C)

ψ ′ = ∃̄x̄0 ∪ ȳ.(ψ ∧ ϕ)

⎫
⎬

⎭

which derives a set of contexts, from a given context X, by applying all loops. The
loop invariant IC is defined as ∪i∈ωT i

C({I0}).

Example 7 Let us compute IC for the loops that we have computed in Example 3.
Let x̄0 = 〈l0, a0, la0, b 0, lb 0〉 and x̄ = 〈l, a, la, b , lb〉. The initial context is

I0 = 〈C(x̄0) � C(x̄), {l = l0, a = a0, la = la0, b = b 0, lb = lb 0}〉
In the first iteration we compute T 0

C ({I0}) = {I0}. In the second iteration we compute
T 1

C ({I0}), which results in the contexts

I1 = 〈C(x̄0) � C(x̄), {l < l0, a = a0, la = la0 − 1, b = b 0, lb = lb 0, l0 > 0}〉
I2 = 〈C(x̄0) � C(x̄), {l < l0, a = a0, la = la0, b = b 0, lb = lb 0 − 1, l0 > 0}〉

where I1 and I2 correspond to applying respectively the first and second loops on
I0. The underlined constraints are the modifications due to the application of the
loop. Note that in I1 (resp. I2) the variable la0 (resp. lb 0) decreases by one. The third
iteration T 2

C ({I0}), i.e., TC({I1, I2}), results in

I3 = 〈C(x̄0) � C(x̄), {l < l0, a = a0, la = la0 − 2, b = b 0, lb = lb 0, l0 > 0}〉
I4 = 〈C(x̄0) � C(x̄), {l < l0, a = a0, la = la0 − 1, b = b 0, lb = lb 0 − 1, l0 > 0}〉
I5 = 〈C(x̄0) � C(x̄), {l < l0, a = a0, la = la0, b = b 0, lb = lb 0 − 2, l0 > 0}〉
I6 = 〈C(x̄0) � C(x̄), {l < l0, a = a0, la = la0 − 1, b = b 0, lb = lb 0 − 1, l0 > 0}〉

where I3 and I4 originate from applying the loops to I1, and I5 and I6 from applying
the loops to I2. The modifications on the constraints reflect that, when applying a
loop, either we decrease la or lb . After three iterations, the invariant IC includes
{I0, . . . , I6}. More iterations will add more contexts that further modify the value of
la or lb . Therefore, the invariant IC grows indefinitely in this case.

The following lemma guarantees that IC, as defined in Definition 7, is a loop
invariant, i.e., it holds between the initial call and any call in the corresponding
evaluation tree.

Lemma 2 Let C(v̄) be a call, then ∀T ∈ Trees(C(v̄),S) and ∀node(C(w̄), _, _) ∈ T,
there exists 〈C(x̄0) � C(x̄), ψ〉 ∈ IC such that {x̄0 = v̄ ∧ x̄ = w̄} |= ψ .

Proof Given an initial call C(v̄) and an evaluation tree T ∈ Trees(C(v̄),S), we show
by induction that if node(C(w̄), _, _) ∈ T is at a level n (the level of the root is 0),
then there exists 〈C(x̄0) � C(x̄), ψ〉 ∈ ∪0≤i≤nT i

C({I0}) such that {x̄0 = v̄ ∧ x̄ = w̄} |=
ψ . Then, since TC is continuous over the lattice 〈℘(R), {I0},R, ⊆,∪, ∩〉, it holds for
the least fixed point IC = ∪i∈ωT i

C(I0) and any level.
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Base case. If n = 0, it is obvious that the lemma holds using the initial context which
is in T 0

C ({I0}).

Induction step. Assume the above lemma holds for any node at a level smaller than
n. Consider a node node(C(w̄), _, _) ∈ T at level n ≥ 1, and let its parent node be
node(C(w̄′), _, _) ∈ T. By the induction assumption, since the parent level is n − 1,
there exists I = 〈C(x̄0) � C(x̄), ψ〉 ∈ ∪0≤i<nT i

C({I0}) such that x̄0 = v̄ ∧ x̄ = w̄′ |= ψ .
By the definition of Loops(C), there exists a loop 	 = 〈C(x̄) → C(ȳ), ϕ〉 ∈ Loops(C)

such that x̄ = w̄′ ∧ ȳ = w̄ |= ϕ. Since the context I must have been introduced by
T k

C ({I0}) for some k < n, then at iteration k + 1 ≤ n the operator TC will use I
and 	 to generate 〈C(x̄0) � C(ȳ), ∃̄x̄0 ∪ ȳ.(ψ ∧ ϕ)〉 ∪0≤i≤n T i

C({I0}). Moreover, x̄0 =
v̄ ∧ ȳ = w̄ |= ∃̄x̄0 ∪ ȳ.(ψ ∧ ϕ). ��

The problem with Definition 7 is that it is not computable in general since the
invariant IC possibly consists of an infinite number of calling contexts, as it happens
in our example. In practice, we approximate IC using abstract interpretation over, for
instance, the domain of convex polyhedra [23]. For our example, as an approximation
for IC of Example 7 we obtain the invariant:

Iα
C = {〈C(x̄0) � C(x̄), {l ≤ l0, a = a0, la ≤ la0, b = b 0, lb ≤ lb 0}〉}

In general, we approximate IC by a single context Iα
C = 〈C(x̄0) � C(x̄), ψ ′〉} such that

∀〈C(x̄0) � C(x̄), ψ〉 ∈ IC.ψ |= ψ ′. This is simply done by replacing ∪ in Definition 7
by a convex-hull operation, and applying a widening operator to guarantee termina-
tion [23]. It is clear that Lemma 2 also holds for such approximation of IC.

6.2 Upper Bounds on Cost Expressions

At this point, we want to use the loop invariant in order to obtain upper bounds,
in terms of the initial call values, for the values in all internal nodes and leaves
in the corresponding evaluation trees. Since the values which appear in the nodes
of evaluation trees correspond to different instantiations of the cost expressions
in the cost equations, we concentrate first on finding upper bounds for those cost
expressions and then combine them to build upper bounds for all internal nodes and
all leaves.

Consider, for example, the expression nat(la − j − 1) which appears in (3) of
Fig. 6. We want to infer an upper bound of the values that it can be evaluated to
in terms of the input values 〈l0, a0, la0, b 0, lb 0〉. We have inferred that 〈C(x̄0) �

C(x̄), ψ〉 where ψ = {l ≤ l0, a = a0, la ≤ la0, b = b 0, lb ≤ lb 0}, is a safe approxima-
tion of the loop invariant IC, from which we can observe that the maximum value
that la can take is la0. In addition, from the local constraints ϕ of (3) we know that
j ≥ 0. Since la − j − 1 takes its maximal value when la is maximal and j is minimal,
the expression la0 − 1 is an upper bound for la − j − 1. In practice, this inference
method can be done in a fully automatic way using linear constraints tools (e.g. [13])
as follow:

1. Compute φ = ∃̄l0, a0, la0, b 0, lb 0, r.(ψ ∧ ϕ ∧ y = la − j − 1), where y is a new
variable;
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2. Syntactically look in φ for an expression that can be rewritten to y ≤ f ′,
where f ′ is a linear expression which (obviously) contains only variables from
{l0, a0, la0, b 0, lb 0}.

Given a cost equation 〈C(x̄) = exp+ ∑k
i=1 C(ȳi), ϕ〉 and a safe approximation of its

loop invariant 〈C(x̄0) � C(x̄), ψ〉, the function below computes an upper bound for
exp by maximizing its nat components:

1: function ub_exp(exp,x̄0,ϕ,ψ)
2: mexp = exp
3: for all nat( f )∈exp do
4: φ = ∃̄x̄0, y.(ϕ ∧ ψ ∧ y = f ) // y is a fresh variable
5: if ∃ f ′ such that vars( f ′) ⊆ x̄0 and φ |= y ≤ f ′ then mexp =

mexp[nat( f )/nat( f ′)]
6: else return ∞
7: return mexp

This function computes an upper bound f ′ for each expression f which occurs
inside a nat function and then replaces in exp all such f expressions with their
corresponding upper bounds (line 5). If it cannot find an upper bound, the method
returns ∞ (line 6).

Example 8 Applying ub_exp to the cost expressions exp3 and exp4, that appear in
(3) and (4) in Fig. 6, w.r.t. the invariant that we have computed in Section 6.1, can be
done by maximizing their nat sub-expressions. Similarly to what we have done above
for la − j − 1, we can find upper bounds for lb − j − 1, la and lb as lb 0 − 1, la0 and
lb 0 respectively. Therefore, the expressions

mexp3 = 38 + 15 ∗ nat(la0 − 1) + 10 ∗ nat(la0)

mexp4 = 37 + 15 ∗ nat(lb 0 − 1) + 10 ∗ nat(lb 0)

are upper bounds for exp3 and exp4.

The lemma below guarantees the soundness of the function ub_exp.

Lemma 3 (soundness of ub_exp) Let 〈C(x̄) = exp+ ∑k
i=1 C(ȳi), ϕ〉 be a cost equa-

tion for C, 〈C(x̄0) � C(x̄), ψ〉 be a safe approximation of the loop invariant
IC, and mexp = ub_exp(exp, x̄0, ϕ, ψ). Then, for any call C(v̄) and for all T ∈
Trees(C(v̄),S), if node(C(w̄), r, _) ∈ T such that r originates from exp, then
[[mexp]]σ ≥ r where σ is a substitution that maps x̄0 to v̄.

Proof The Lemma is trivially correct when mexp = ∞. For mexp �= ∞, given T ∈
Trees(C(v̄),S) and node(C(w̄), r, _) ∈ T, by Lemma 2, there exists a substitution σ ,
over x̄0 and the variables of the equation, such that σ |= x̄0 = v̄ ∧ x̄ = w̄ ∧ ψ ∧ ϕ

and r = [[exp]]σ . Let exp′ be a cost expression obtained from exp by replacing
only one nat( f ) by nat( f ′) (lines 4 and 5 in function ub_exp). Proposition 1 and
the fact that ψ ∧ ϕ |= f ≤ f ′ implies [[exp′]]σ ≥ [[exp]]σ . Since mexp is obtained
by repeating such replacement for all nat components, at the end we will have
[[mexp]]σ ≥ [[exp]]σ = r. ��
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The following lemma is a completeness lemma for function ub_exp, in the sense
that if ψ and ϕ imply that there is f ′ which is an upper bound for f , then by
syntactically looking on φ (line 4 of ub_exp) we will be able to find one, without
guarantees that it will be the tightest one.

Lemma 4 (completeness of ub_exp) Consider line 5 of ub_exp, if there exists f ′ such
that φ |= y ≤ f ′ and φ = {c1, . . . , cn}, then there exists ci which can be worked out to
y ≤ f ′′ (or y = f ′′) where vars( f ′′) ⊆ x̄0.

Proof The lemma follows from: (1) if there exists f ′ such that vars( f ′) ⊆ x̄0 and
ψ ∧ ϕ |= f ≤ f ′ then, φ |= y ≤ f ′, since y = f and y �∈ vars(ψ ∧ ϕ); (2) if φ |= y ≤ f ′
and vars(φ) ⊆ x̄0 ∪ {y}, then y must appear in one of the ci, which obviously can be
worked out to y ≤ f ′; and (3) if there is more than one ci where y appears, then
taking one is safe as they appear in a conjunction. ��

6.3 Concluding Remarks

Using Lemmata 2 and 3, the theorem below concludes by building the upper bound
expression costnr+(x̄0) and costr+(x̄0).

Theorem 1 Let S = S1 ∪ S2 be a cost relation where S1 and S2 are respectively the
sets of non-recursive and recursive equations for C. Let

– 〈C(x̄0) � C(x̄), ψ〉 be a safe approximation of the loop invariant IC;
– Ei = {ub_exp(exp, x̄0, ϕ, ψ) | 〈C(x̄) = exp+ ∑k

j=1 C(ȳ j ), ϕ〉 ∈ Si}, 1 ≤ i ≤ 2; and
– costnr+(x̄0) = max(E1) and costr+(x̄0) = max(E2).

Then, for any call C(v̄) and for all T ∈ Trees(C(v̄),S), it holds that

– ∀node(_, r, _) ∈ internal(T). costr+(v̄) ≥ r; and
– ∀node(_, r, _) ∈ leaf (T). costnr+(v̄) ≥ r.

Proof Follows from Lemmata 2 and 3. ��

Example 9 At this point we have all the pieces in order to compute an upper bound,
as described in Proposition 2, for the CR depicted in Fig. 3. We start by computing
upper bounds for E and D as they are stand-alone cost relations:

h+ costnr+ costr+ Upper Bound
E(la0, j0) nat(la0 − j0 − 1) 5 15 5 + 15∗nat(la0 − j0 − 1)

D(a0, la0, i0) nat(la0 − i0) 8 10 8 + 10∗nat(la0 − i0)

These upper bounds can then be substituted in the (3) and (4) which results in the
cost relation for C depicted in Fig. 6. We have already computed a ranking function
for C in Example 4, and costnr+ and costr+ in Example 8, which are then combined
into:

C+(l0, a0, la0, b 0, lb 0) = 2 + nat(l0) ∗ max({mexp3,mexp4})
By reasoning similarly, we obtain the upper bound for Delete shown in Table 1.
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Table 1 Upper bounds computed automatically

Benchmark Properties Upper bound

Polynomial∗ a,b,c 216
DivByTwo a,b 8log2(nat(2x−1)+1)+14
ArrayReverse a 14nat(x)+12
Concat a,c 11nat(x)+11nat(y)+25
Incr a,c 19nat(x+1)+9
ListReverse a,b,c 13nat(x)+8
MergeList a,b,c 29nat(x + y)+26
Power 10nat(x)+4
Cons∗ a,b 22nat(x−1)+24
MergeSortn a,b,c 2nat(−x + y + 1)(log2(nat(−2x + 2y − 1) + 1) + 1)

EvenDigits a,b,c nat(x)(8log2(nat(2x−3) + 1) + 24) + 9nat(x) + 9
ListInter a,b,c nat(x)(10nat(y) + 43) + 21
SelectSort a,c nat(x−2)(17nat(x−2) + 34) + 9
FactSum a nat(x+1)(9nat(x) + 16) + 6
Delete a,b,c 3 + nat(l) max(38+15nat(la−1)+10nat(la),

37+15nat(lb−1)+10nat(lb))

MatMult a,c nat(y)(nat(x) + 10)(27nat(x) + 10) + 17
Hanoi 20(2nat(x))−17
Fibonacci 18(2nat(x−1))−13
BST∗ a,b 96(2nat(x))−49

7 Improving Accuracy in Divide and Conquer Programs

We have presented in Section 4 an approximation approach, based on bounding
both the number of nodes in evaluation trees and the cost per node, which is able to
provide upper bounds for a large class of programs. However, there is an important
class of programs known as divide and conquer for which the node-count upper
bound does not compute sufficiently precise upper bounds. Intuitively, the reason
for this is that divide and conquer programs have a branching factor greater than
one. Therefore, the number of nodes grows exponentially with the height of the
evaluation tree. However, the size of the input data decreases so quickly from one
level of the tree to the next one that the sum of the local cost expressions in the nodes
at each level does not increase from one level to another.

In this section we propose an approximation mechanism, which we refer to as
level-count upper bound which is based on bounding both the number of levels
in evaluation trees and the total cost per level. It allows obtaining accurate upper
bounds for divide and conquer programs.

7.1 Level-count upper bound

Given an evaluation tree T, we denote by Sum_Level(T, i) the sum of the local cost
of all nodes in T which are at depth i, i.e., at distance i from the root. As before, we
write h(T) to denote the height of T.

Proposition 3 (level-count upper bound) Let C be a cost relation. We def ine function
C+ as:

C+(x̄) = l+(x̄) ∗ costl+(x̄)
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where l+(x̄) and costl+(x̄) are closed-form functions def ined on Zn 
→ R+. Then, C+
is an upper bound of C if for all v̄ ∈ Zn and T ∈ Trees(C(v̄),S), it holds:

1. l+(v̄) ≥ h(T) + 1; and
2. ∀ 0 ≤ i ≤ h(T) . costl+(v̄) ≥ Sum_Level(T, i).

Proof The proposition is trivially correct by the definition of upper bound and
Answers. ��

Similarly to what we have done for h+(x̄) in Section 5, the function l+(x̄) can simply
be defined as l+(x̄) = nat( fC(x̄)) + 1. Finding an accurate costl+ function is not easy
in general, which makes Proposition 3 not as widely applicable as Proposition 2.

7.2 Divide and Conquer Programs

We now provide a formal definition of divide and conquer programs and show that
for all programs which fall into this class it is possible to apply the level-count upper
bound approach. Intuitively, a program belongs to the divide and conquer class when
the local cost of each node in the evaluation tree is guaranteed to be greater than or
equal to the sum of the local costs of its children. As we will see, this guarantees that
Sum_Level(T, k) ≥ Sum_Level(T, k + 1). In that case, we can simply take the local
cost of the root node as an upper bound of costl+(x̄).

Often we have multiple recursive and non-recursive equations for a cost relation.
Checking that the local cost of a node is greater than the sum of those of its children
needs to take into account all possible combinations of cost expressions produced
by picking a recursive equation followed by picking any equation—be it recursive or
not—for each recursive call in such equation. We now define the set of child local-
cost expressions as a set of triplets composed by two cost expressions linked by a set
of constraints which are all those achievable in the combinations explained.

Definition 8 (Child local-cost expressions) The set of child local-cost expressions of
a stand-alone cost relation C, denoted Child_Exps(C), is defined as

Child_Exps(C) =

⎧
⎪⎪⎨

⎪⎪⎩

〈exp,exp′, ψ〉

∣
∣
∣
∣
∣
∣
∣
∣

〈C(x̄) = exp+ ∑k
i=1 C(ȳi), ϕ〉 ∈ S, where k ≥ 1

∀ 1 ≤ i ≤ k. 〈C(ȳi) = expi + ∑ki
j=1 C(z̄ j ), ϕi〉 ∈ S

exp′ = exp1 + · · · + expk
ψ = ∃̄vars(exp) ∪ vars(exp′).ϕ ∧ ϕ1 ∧ · · · ∧ ϕk

⎫
⎪⎪⎬

⎪⎪⎭

Example 10 Consider a CR in which C is defined by the two equations:

〈C(x) = 0, {x ≤ 0}〉
〈C(x) = nat(x) + C(x1) + C(x2), ϕ〉

where ϕ = {x > 0, x1 + x2 + 1 ≤ x, x ≥ 2 ∗ x1, x ≥ 2 ∗ x2, x1 ≥ 0, x2 ≥ 0}. It corre-
sponds to a divide and conquer problem such as merge-sort when the cost model
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used counts the number of comparison instructions executed, which is a usual criteria
for comparing sorting programs and algorithms. The set Child_Exps(C) consists of:

Child_Exps(C) =

⎧
⎪⎪⎨

⎪⎪⎩

〈nat(x), 0, ϕ ∧ x1 ≤ 0 ∧ x2 ≤ 0〉
〈nat(x),nat(x1), ϕ ∧ x1 ≤ 0 ∧ ϕ2〉
〈nat(x),nat(x2), ϕ ∧ ϕ1 ∧ x2 ≤ 0〉
〈nat(x),nat(x1) + nat(x2), ϕ ∧ ϕ1 ∧ ϕ2〉

⎫
⎪⎪⎬

⎪⎪⎭

where ϕ1 (resp. ϕ2) is a renaming apart of ϕ, except for the variable x1 (resp. x2).

The following lemma provides a sufficient condition for a cost relation falling into
the divide and conquer class, i.e., for Proposition 3 to be applicable. It is based on
checking that each cost expression contributed by an equation is greater than or
equal to the sum of the cost expressions contributed by the corresponding immediate
recursive calls.

Lemma 5 (A suf f icient condition for divide and conquer) Let C be a stand-alone
cost relation. If for any 〈exp,exp′, ψ〉 ∈ Child_Exps(C) and any σ : vars(exp) ∪
vars(exp′) 
→ Z such that σ |= ψ it holds that [[exp]]σ ≥ [[exp′]]σ , then for any call
C(v̄), a corresponding evaluation tree T ∈ Trees(C(v̄),S), and a level k, it holds that
Sum_Level(T, k) ≥ Sum_Level(T, k + 1).

Proof Assume the contrary, i.e., the condition holds but there exists a call
C(v̄), a corresponding evaluation tree T ∈ Trees(C(v̄),S), and a level k, such
that Sum_Level(T, k) < Sum_Level(T, k + 1). This means that there exists a
node node(C(v̄), r, 〈T1, . . . , Tn〉) at level k, such that for each subtree Ti =
node(C(v̄i), ri, _〉) it holds r < r1 + · · · + rn. Assume this node was constructed us-
ing an equation E = 〈C(x̄) = exp+ ∑m

i=1 C(ȳi), ϕ〉 ∈ S and that 〈C(ȳi) = expi +∑mi
j=1 C(z̄ j ), ϕi〉 ∈ S was used to match each call Ci(ȳi) in E . Then, there exists σ veri-

fying σ |= ϕ ∧ ϕ1 ∧ · · · ∧ ϕm |= x̄ = v̄ ∧ ȳ1 = v̄1 ∧ · · · ∧ ȳm = v̄m, such that [[exp]]σ <

[[exp1 + · · · + expm]]σ , which contradicts the assumption that the condition holds.
��

The intuition of the above lemma is that for each node in any evaluation tree, there
exists a tuple 〈exp,exp′, ψ〉 ∈ Child_Exps(C) and a substitution σ : vars(exp) ∪
vars(exp′) 
→ Z such that σ |= ψ , [[exp]]σ is equal to its local cost, and [[exp′]]σ is
equal to the sum of its children local costs.

Theorem 2 Let C be a stand-alone cost relation which satisf ies the divide and
conquer condition of Lemma 5, E = {ub_exp(exp, x̄0, ϕ, {x̄0 = x̄}) | 〈C(x̄) = exp+∑k

i=1 C(ȳi), ϕ〉 ∈ S}, and costl+(x̄) = max(E). Then, for any call C(v̄), a correspond-
ing evaluation tree T ∈ Trees(C(v̄),S), and a level k, it holds that costl+(v̄) ≥
Sum_Level(T, k).

Proof It follows from Lemmata 3 and 5. ��
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Example 11 Consider again the cost relation C defined in Example 10. Computing
the set E of Theorem 2 results in {nat(x), 0}, and therefore costl+(x) = nat(x). Using
the techniques described in Section 5 we can automatically compute

l+(x)=�log2(nat(x)+1)�+1

Thus, we obtain the upper bound C+(x) = nat(x) ∗ (�log2(nat(x) + 1)� + 1). Note
that this upper bound is inferred in a fully automatic way by our prototype which
is described in Section 10. By using the node-count approach, we would obtain
C+(x) = nat(x) ∗ (2�log2(nat(x)+1)�−1) = nat(x)2 as upper bound.

8 Direct Recursion using Partial Evaluation

Our approach requires that all recursions be direct. However, automatically gener-
ated CRSs often contain recursions which are not direct, i.e., cycles involve more
than one function.

Example 12 The cost analyzer of [6, 7], in order to define the cost of the “for” loop
in the program in Fig. 1, instead of (8) and (9) (relation E) in Fig. 3, produces the
following equations:

(8’) E(la, j) = 5 + F(la, j, j ′, la′) { j ′ = j, la′ = la − 1, j ′ ≥ 0}
(9’) F(la, j, j ′, la′) = H( j ′, la′) { j ′ ≥ la′}
(10) F(la, j, j ′, la′) = G(la, j, j ′, la′) { j ′ < la′}
(11) H( j ′, la′) = 0
(12) G(la, j, j ′, la′) = 10 + E(la, j + 1) { j < la − 1, j ≥ 0, la − la′ = 1, j ′ = j}

The new E relation captures the cost of evaluating the loop condition “ j < la − 1”
(5 cost units) plus the cost of its continuation, captured by F. In (9’) the relation F
corresponds to the exit of the loop (it calls the auxiliary relation H, which represents
the cost of exiting the loop, i.e., 0 units). Equation (10) captures the cost of one
iteration, which accumulates 10 cost units and calls E recursively.

In this section, we present an automatic transformation of CRSs into directly re-
cursive form. The transformation is done by replacing calls to intermediate relations
by their definitions using unfolding. For instance, given the CRS in Example 12, if we
keep E and unfold the remaining relations in the example (F, G, and H), we obtain
the equations for E shown in Fig. 3.

8.1 Binding Time Classification

We now recall some standard terminology on graphs. A directed graph G is a pair
〈N, A〉 where N is the set of nodes and A ⊆ N × N is the set of arcs. Given a
graph G = 〈N, A〉, a set of nodes S ⊆ N is strongly connected if ∀n, n′ ∈ S we have
that n′ is reachable from n. The strongly connected components of G = 〈N, A〉 is
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a partition of N into the largest possible strongly connected sets. Given a graph
G we write SCC(G) to denote its strongly connected components. Given a graph
G = 〈N, A〉 and a set S⊆N, the subgraph of G w.r.t. S, denoted G|S, is defined as
G|S = 〈S, A ∩ (S×S)〉. Also, given a strongly connected component S, a node n ∈ S
is a covering point for G|S if G|S\{n} is an acyclic graph, i.e., n is a covering point of
G|S if n is part of all cycles in G|S. The problem of finding a minimal set of nodes
to delete from a cyclic graph in order to convert it into an acyclic graph is also
known as the feedback vertex set problem in computational complexity theory. The
feedback vertex set decision problem is NP-complete in general, but for reducible
graphs it is linear [50]. As explained in [50], control flow graphs originating from
structured programming languages are often reducible, since usually there are no
jumps to the middle of a loop. Moreover, since our interest is only in checking if
there exists a feedback set of size 1, when the graph is not reducible, we can solve
it in quadratic time simply by removing a node n from G|S and checking if G|S\{n} is
acyclic.

Note that, when the CRS originates from a structured program (i.e., without
jumps), it is not common to have SCCs without covering points. This is due to: (1)
As done in [6], each structured loop (e.g., while, for, etc.) can be transformed to
a separated method in tail recursive form, and the loop itself is replaced by a call
to this method. Therefore, the program becomes even more structured since nested
loops are not anymore in the same SCC. (2) SCCs of a CRS coincide with those of
the original program (after extracting the loops) and, in structured programs, it is
common that each SCC has a point were all cycles go through (e.g, the entry of loop,
the entry of a recursive method, etc). However, a covering point might not exist in
programs with complex mutual recursion, as we explain in Section 9.

The notion of unfolding corresponds to the intuition of replacing a call to a
relation by the definition of the corresponding relation. Naturally, this process in
the presence of recursive relations might be non-terminating. Intuitively, the trans-
formation proposed removes intermediate relations from the CRS and we achieve
direct recursion if at most one relation remains per strongly connected component
in the call graph of the original CRS. In this section, we find a Binding Time
Classif ication (or BTC for short) which ensures the termination of the unfolding
process by declaring which relations are residual, i.e., they have to remain in the
CRS. The remaining relations are considered unfoldable, i.e., they are eliminated.
To define such BTC, we associate a call graph to each CRS S as follows. Given
a CRS S with C, D ∈ rel(S), we say that C calls D in S , denoted C 
→S D, iff
there is an equation 〈C(x̄) = exp+ ∑k

i=1 Di(ȳi), ϕ〉 ∈ S such that Di = D for some
i ∈ {1, . . . , k}. The call graph associated to S , denoted G(S), is the directed graph
obtained from S by taking N = rel(S) and where (C, D) ∈ A iff C 
→S D. We now
present sufficient conditions under which CRSs can be put into directly recursive
form. In particular, we require that the graph associated to the CRS be of minimal
coverage.

Definition 9 (minimal coverage) A graph G = 〈N, A〉 is of minimal coverage iff ∀S ∈
SCC(G), there exists n ∈ S such that n is a covering point for G|S.

Intuitively, a graph is of minimal coverage if each SCC has a covering point. Let
us see some examples.
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Example 13 Given the CRS S of Example 12, its call graph G(S) is shown on the left
hand side of the figure below. Also, we have that SCC(G(S)) = {{E, F, G}, {H}}.

H

E

F

G H

E

F

G

(11')(11)

The strongly connected component which could be problematic as regards mini-
mal coverage (more than one element) is {E, F, G}. Since there is just one cycle, any
of the nodes is a covering point and therefore G is of minimal coverage. However, if
we replace (11) in Example 12 with (11’) below:

(11′) 〈H( j ′, la′) ← 1 + H( j ′′, la′) + E( j ′′, la′), { j ′′ = j ′ − 1}〉
we obtain the graph to the right of the figure. Now, SCC(G(S)) = {{E, F, G, H}}, i.e.,
all nodes are in the same strongly connected component, and we have three cycles
(〈E, F, G〉, 〈E, F, H〉, and 〈H〉) which belong to such strongly connected component.
Unfortunately, this time there is no node which belongs simultaneously to the three
cycles.

As shown in the example above, there are graphs which are not of minimal
coverage. Therefore, there are CRSs which cannot be put into canonical form.
However, structured loops (built using for, while, etc.) and the recursive patterns
found in most programs naturally result in CRSs whose reachability graphs are of
minimal coverage.

We can now define the notion of directly recursive BTC which ensures both the
termination of our partial evaluation process and the effectiveness of the transforma-
tion (i.e., we indeed obtain direct recursion form). Formally, a relation D is reachable
from a relation C in S iff there is a path from C to D in G(S). A relation C is
recursive iff C is reachable from itself. It is directly recursive if (C 
→S D ∧ D�=C) ⇒ C
is not reachable from D in S , i.e., there cannot be cycles in the reachability relation
(recursion) of length greater than one.

Definition 10 (directly recursive BTC) Given a CRS S with graph G, a BTC btc for
S is directly recursive if for all S ∈ SCC(G) the following two conditions hold:

(DR) if s1, s2 ∈ S and s1, s2 ∈ btc, then s1 = s2.
(TR) if S has a cycle, then there exists s ∈ S such that s ∈ btc.

Condition (DR) ensures that all recursions in the transformed CRS are direct,
as there is only one residual relation per SCC. Condition (TR) guarantees that the
unfolding process terminates, as there is a residual relation per cycle.

A directly recursive BTC for Example 12 is btc = {E}. In our implementation we
include in BTCs only the covering point of SCCs which contain cycles, but not that
of components without cycles. This way of computing BTCs, in addition to ensuring
direct recursion, also eliminates all intermediate cost relations which are not part of
cycles. Coming back to Example 12, our implementation computes btc = {E}. This is
why the CRS shown in Fig. 3 does not include equations for H.
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8.2 Partial Evaluation of Cost Relations

We now present a Partial Evaluation [33] (PE for short) algorithm for transforming
CRSs. Unfolding, in this context, in addition to taking care of combining arithmetic
expressions, also has to combine the linear constraints and to consider a BTC btc to
control the transformation process. The next definition of unfolding, given a call to
a relation, produces a specialization for such call by unfolding all calls to relations
which are marked as unfoldable in btc.

Definition 11 (unfolding) Given a CRS S , a call C(x̄0) such that C ∈ rel(S), a
set of linear constraints ϕx̄0 over the variables x̄0, and a BTC btc for S , a spe-
cialization 〈E, ϕ〉 is obtained by unfolding C(x̄0) and ϕx̄0 in S w.r.t. btc, denoted
Unfold(〈C(x̄0), ϕx̄0〉,S,btc) � 〈E, ϕ〉, if one of the following conditions hold:

(res) (C ∈ btc ∧ ϕ �= true) ∧ 〈E, ϕ〉 = 〈C(x̄0), ϕx̄0〉.
(unf) (C �∈ btc ∨ ϕ = true) ∧ 〈E, ϕ〉 = 〈(exp+ e1 + . . . + ek), ϕ

′ ∧

i=1..k
ϕi〉,

where we have that:

1. 〈C(x̄) = exp+ ∑k
i=1 Di(ȳi), ϕC〉 is a renamed apart equation in S such that ϕ′ is

satisfiable in Z, where ϕ′ = ϕx̄0 ∧ ϕC[x̄0/x̄].
2. Unfold(〈Di(ȳi), ϕ

′〉,S, btc) � 〈ei, ϕi〉 for all i ∈ {1, . . . , k}.

The first case, (res), is required for termination. When we call a relation C which
is marked as residual, we simply return the initial call C(x̄0) and constraints ϕx̄0 , as
long as ϕx̄0 is not the initial one (true). The latter condition is added in order to
enforce the initial unfolding step for relations marked as residual. In all subsequent
calls to Unfold different from the initial one, the constraints are different from true.
The second case (unf) corresponds to continuing the unfolding process. Step 1 is
non deterministic in general, since cost relations are often defined by means of
several equations. Furthermore, since expressions are transitively unfolded, step 2
may also provide multiple solutions. As a result, unfolding may produce multiple
outputs. Also, note that the final constraint ϕ can be unsatisfiable. In such case, we
simply do not regard 〈E, ϕ〉 as a valid unfolding. In the following, we denote by

unf=e

an “unfolding step” performed by unf where an equation e is selected to replace a
function call by its right hand side.

Example 14 Given the initial call 〈E(la, j), true〉, we obtain an unfolding by perform-
ing the following steps.

〈E(la, j), true〉 unf=(8′)

〈5 + F(la, j, j ′, la′), { j ′ = j, la′ = la − 1, j ′ ≥ 0}〉 unf=(10)

〈5 + G(la, j, j ′, la′), { j ′ = j, la′ = la − 1, j ′ ≥ 0, j ′ < la′}〉 unf=(12)

〈15 + E(la, j ′′), { j < la − 1, j ≥ 0}〉

The last call E(la, j ′′) cannot be further unfolded because the relation belongs to btc
and ϕ �= true.
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In the above definition, from each result of unfolding, we can build a residual
equation. Given Unfold(〈C(x̄0), ϕx̄0〉,S,btc) � 〈E, ϕ〉, its corresponding residual
equation is 〈C(x̄0) = E, ϕ〉. We use Residuals(〈C(x̄0), ϕx̄0〉,S, btc) to denote the set
of residual equations for 〈C(x̄0), ϕx̄0〉 in S w.r.t. ϕ. Now, we obtain a partial evaluation
of C by collecting all residual equations for the call 〈C(x̄0), true〉 where x̄0 are distinct
variables.

Definition 12 (partial evaluation) Given a CRS S , a relation C, and a BTC btc for S ,
the partial evaluation for C in S w.r.t. btc is defined as:

⋃

D∈btc∪{C}
Residuals(〈D(x̄0), true〉,S,btc)

The above definition provides an algorithm for partial evaluation of CRSs. In terms
of PE [33], the algorithm we propose is an of f-line PE which at the global control
level is monovariant, since the initial constraint is true for all residual relations, and
at the local-control it unfolds all calls to unfoldable relations and residualizes all calls
to residual relations. Note that, in addition to the relations in btc, we also generate
equations for the initial relation C.

Example 15 The partial evaluation of the equations of Example 12 w.r.t. the call
of Example 14 are (8) and (9) of Fig. 3. Equation (9) is obtained from the unfolding
steps depicted in Example 14 and (8) from an unfolding derivation where the selected
equations are (8’), then (9’) and finally (11). As expected, the resulting CRS is
directly recursive.

The lemma below shows that partial evaluation is an effective way of obtaining
direct recursion. It easily follows by the definition of BTC.

Lemma 6 Let S be a CRS of minimal coverage and let C be a relation. Let btc be a
directly recursive BTC for S . Then,

1. Partial evaluation for C in S w.r.t. btc produces a CRS S ′ which is directly
recursive and,

2. S ′ is obtained in f inite time.

Proof The proof is by contradiction. Let us first prove claim 1. Assume that we
have a relation in S ′ which is not directly recursive. This means that we can have
equations of the form: 〈C(x̄) = exp+ D(ȳ), ϕC〉 and 〈D(x̄) = exp+ C(ȳ), ϕD〉 with
D �= C. As D has not been unfolded, then it must happen that D ∈ btc. We have
that C is in the same SCC as D. Then, by condition (DR) of Definition 10, it must
happen that C = D. This contradicts the initial assumption. Claim 2 follows from
the condition (TR) of Definition 10 by reasoning by contradiction. Let us assume
that S’ is not obtained in finite time. This can only happen because Unfold does
not terminate. Hence, there exists an infinite derivation 〈E1, ϕ1〉 unf= 〈E2, ϕ2〉 unf= . . .

unf=
〈En, ϕn〉 unf= 〈En+1, ϕn+1〉 unf= . . .. Since the number of cost relations in rel(S) is finite
and the sequence is infinite, there is a cycle from some Ei to an En for i < n. By
condition (TR), this cannot happen because there must exist an E j in the cycle with
i ≤ j ≤ n that belongs to btc. ��
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The following lemma guarantees that PE preserves the solutions of CRSs. The
proof basically consists in ensuring the correctness of the basic operators in the
partial evaluation algorithm of Definition 12 to, then, rely on the classical correctness
results of PE proven in the context of logic programming (see e.g. [33, 34, 39] and
more recent formulations like [37, 38]).

Lemma 7 (correctness of PE) Let S be a CRS, C be a relation, and let btc be a BTC
for S . Let S ′ be the partial evaluation of C in S w.r.t. btc. Then, ∀v̄ ∈ Zn, ∀r ∈ R+ we
have that r ∈ Answers(C(v̄),S) if f r ∈ Answers(C(v̄),S ′).

Proof (sketch) The proof can be done by demonstrating that Definition 12 is a
correct partial evaluation as defined in logic programming. Correctness results were
already stated in Theorem 1 of [34] and more recent formulations appear in [37, 38].
In all cases, correctness requires proving:

1. Soundness. The soundness condition ensures that the all answers in the partially
evaluated program are also answers in the original program. It is proven by
demonstrating that each unfolding step in the partially evaluated program
corresponds to a sequence of equivalent steps in the original one. In our context,
it amounts to ensuring that the operator Unfold of Definition 11 preserves the
answers.

2. Completeness. Completeness guarantees that all answers in the original program
are also found in the partially evaluated one. It can be ensured when the set
of terms to be partially evaluated meets the so-called closedness condition [39].
The role of this condition is to ensure that all possible calls that raise during
the execution of a CRS will find a matching relation. In our context, we need
to ensure that the set btc enforces the closedness condition, i.e., answers are
not lost.

Point 1 requires to prove the correctness of operator Unfold of Definition 11. It
indeed trivially holds asUnfold simply replaces in rule (unf) a function call by its right
hand side, with the corresponding propagation of constraints. In terms of evaluation
trees, this step basically merges a node with (some of) its successors.

The closedness of the terms to be partially evaluated, i.e., the elements in the
set btc, follows from the fact that only terms in btc remain in the relation and the
remaining ones are unfolded. This trivially ensures that all possible calls during
execution will be covered by btc, as required by point 2 above. In standard PE,
correctness requires that the partial evaluation process terminates. This is ensured
by Lemma 6. ��

9 Incompleteness in Cost Analysis

When we consider the whole cost analysis which comprises the two phases mentioned
in Section 1, i.e., obtaining a closed-form upper bound from a program—instead of
from a CRS—the problem is strictly more difficult than proving termination. This
is explained by the fact that obtaining a closed-form upper bound of a program
which has a non-zero cost expression associated to each recursive equation implies
the termination of the program from which the CR has been generated. Therefore,
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the approach is necessarily incomplete and might fail to produce an upper bound.
Clearly, this may occur because the resource usage of the program is actually infinite
w.r.t. the cost model used. For instance, a non-terminating program that can perform
an infinite number of steps. When the resource consumption is finite, we can still
fail to produce an upper bound because of loss of precision in one of the two
phases in the cost analysis. This can occur in the first phase, i.e., when the program
is transformed into the CRS since it applies abstract interpretation based analyses
in order to approximate undecidable problems such as aliasing and size relations.
However, the incompleteness in the first part of the analysis is completely outside
the scope of this paper and we refer to [6] for further details.

Certainly, the second part of cost analysis is undecidable as well, i.e., if a given cost
relation admits a closed-form upper bound, so we must accept certain restrictions. In
[16], it is proven that a simpler problem, namely the termination of a special case
of CRS where all equations have at most one call in the body and constraints are
of the form x − y ≤ c, is undecidable. A detailed discussion about decidability of
simple loops with integer constraints can be found in [20]. There are three sources
of incompleteness in our approach, i.e., in the process of obtaining an upper bound
from a CRS by using our techniques.

1. The first one is obtaining directly recursive CRs. For instance, the following CRS
does not have a cover point:

〈C(n) = C(n′) + D(n′), {n > 0, n′=n−1}〉
〈D(n) = D(n′) + C(n′), {n > 0, n′=n−1}〉

Importantly, this phase is complete for CRs extracted from structured loops
and from the recursive patterns found in most programs. The use of features
like break and continue in languages like Java or C have do not pose any
problem, since the control flow graph of the program can be constructed and the
program can thus be turned into recursive form. As it can be seen in the example,
incompleteness might occur in certain types of mutually recursive relations.

2. The second source of incompleteness in our method is in finding ranking
functions. Currently, we use a complete procedure for inferring linear ranking
functions [45]. However, there are CRSs which do not have a linear rank-
ing function as explained in Example 6. Integrating other more sophisticated
ranking functions is possible, but it is probably not required in practice.

3. The third one is finding useful invariants. Sometimes this is not possible by using
linear constraints. This happens for example in this example:

〈C(n, m) = m, {n=0}〉
〈C(n, m) = C(n′, m′), {n′=n−1, m′=2∗m, n>0}〉

The value of m in the base case will be (2n) ∗ m0. In principle, we could use
methods for inferring polynomial invariants, although we would need a different
maximization procedure.

10 Experimental Evaluation

In order to evaluate the practicality of our approach, we have developed a system
that we call PUBS (Practical Upper Bounds Solver), which implements the ideas
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presented in this paper. PUBS is implemented in Prolog and uses the Parma
Polyhedra Library [13] for manipulating linear constraints. We have conducted a
number of experiments which aim at evaluating the applicability of our approach,
the quality of the upper bounds obtained, and the efficiency and scalability of the
system.

In order to test our system on realistic CRs produced by automatic cost analysis,
we have used as benchmarks in our experiments a set of CRs automatically generated
by the cost analyzer of Java bytecode described in [6], using several cost models. The
Java bytecode programs taken as input cover a wide range of complexity classes and
are the result of compiling the corresponding Java source programs. Both the Java
source code and the produced CRs for such programs are available at the PUBS web
interface at http://costa.ls.fi.upm.es/pubs, from where PUBS can be run on such CRs
and also on CRs provided by the user.

Now we briefly describe the programs considered, which are listed in increasing
complexity order and range from constant to exponential complexity, going through
polynomial and divide and conquer. Polynomial is a method for copying polynomials
and has a constant upper bound (on memory consumption). DivByTwo is a loop
which iterates a logarithmic number of times, as its counter is decremented by half
in each iteration. ArrayReverse produces a reversed copy of an array of integers.
Concat concatenates two arrays of integers into a new array. Incr has a loop which
iterates a linear number of times that depends on the run-time type of an input
argument. ListReverse is an in-place reversal of a list represented as a linked list.
MergeList merges two sorted lists implemented as linked lists. Power recursively
computes the power operation. Cons copies a linked list. MergeSort sorts an array
using the Merge Sort algorithm. EvenDigits is a simple for loop with a call to the
DivbyTwo method inside the loop body. ListInter computes the intersection of two
unsorted linked lists. SelectSort sorts an array by Selection Sort. FactSum adds up
the factorial of all naturals from 0 to the input value n. Delete is the running example
in Fig. 1. MatMult multiplies two matrices. Hanoi has a doubly recursive structure,
as the well-known Towers of Hanoi problem. Fibonacci is a naive doubly recursive
implementation of Fibonacci numbers. Finally, BST is a method for recursively
copying a binary search tree. In addition, in the experiments, we have used three
different cost models:

– The heap consumption (in bytes), in those benchmarks marked with “∗”,
– The number of executed comparison instructions, in the benchmark marked with

“n”, and
– The number of executed bytecode instructions, in the rest of benchmarks.

10.1 Accuracy of the Upper-Bounds Obtained

The first set of experiments performed aims at evaluating the applicability of PUBS
and the accuracy of the closed-form upper bounds thus obtained. Table 1 shows
the upper bounds generated by PUBS for the benchmarks described above. The
column Properties shows the properties of the corresponding CR, in such a way
that a, b and c indicate, respectively, that the CR is non-deterministic, that it has
inexact size constraints, and multiple arguments (Section 2.2). As can be seen,
most of the benchmarks have one or more of such properties. If we handle the
complete semantics of programs, including exceptions, even simple programs such as

http://costa.ls.fi.upm.es/pubs
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ArrayReverse are non-deterministic since accesses to arrays may in principle throw
array-out-of-bounds exceptions. As a result, only the purely numerical programs,
i.e., Power, FactSum, Hanoi, and Fibonacci are in a format syntactically acceptable
by Mathematica® or other CAS. In contrast, PUBS has been able to automatically
find upper bounds for all benchmarks considered. This clearly shows that CAS have
rather restricted applicability in CRs obtained from real programs. Column Upper
Bound shows the closed-form upper bound obtained by PUBS. As can be seen,
they are relatively syntactically simple. This is important since, as already mentioned
in [54], one of the problems of cost analysis is that the cost functions produced can
grow considerably large. This can hinder the success of cost analysis since large cost
functions are hard to understand by humans and also difficult to automatically handle
in applications such as resource certification [9], where it is required to compare cost
functions [3].

In order to evaluate the accuracy of the upper bounds obtained using our
approach, Table 2 compares the values obtained by evaluating the upper bounds
generated by PUBS on some concrete input data with the maximum value which
can be obtained by evaluating the input CRs. Column Input indicates the input
data considered for each Benchmark, i.e., given the entry C for a cost relation S ,
it provides the particular C(v̄) used for evaluating both the upper bound and the
associated cost relation.

Then, column Estimated provides the value obtained by evaluating the upper
bound computed by PUBS on the given input data. Column Actual provides the
actual value obtained by evaluating the cost-bound function discussed in Section 3,
which is defined as C+(v̄) = max(Answers(C(v̄),S)). For this we have implemented
an evaluator for CRSs which given a CRS S and an initial call C(v̄) produces
all answers corresponding to all evaluation trees for C(v̄) in S and then obtains
the maximum of them. The evaluator has been implemented in Constraint Logic

Table 2 Estimated versus actual maximal value

Benchmark Input Estimated Actual Accuracy

Polynomial∗ copy_pol(10) 216 216 100
DivByTwo divByTwo(10) 49 38 76
ArrayReverse arrayReverse(10) 152 152 100
Concat concat(10,10) 245 245 100
Incr add(10,10) 218 218 100
ListReverse listReverse(10) 138 138 100
MergeList merge(5,5) 316 279 88
Power power(10) 104 104 100
Cons∗ cons(10) 222 222 100
MergeSortn ms_sort(_,_,0,5) 52 32 62
EvenDigits evenDigits(10) 462 345 75
ListInter listInter(5,5) 486 486 100
SelectSort selectSort(6) 417 315 76
FactSum doSum(10) 1,172 677 58
Delete delete(3,_,_,3,_,3) 297 256 86
MatMult multiply(3,3) 866 866 100
Hanoi hanoi(10) 20,463 20,463 100
Fibonacci fibonacciMethod(10) 9,203 1,589 17
BST∗ copy(4) 180 132 73
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Programming [32] in order to efficiently handle the size constraints which are
accumulated when obtaining the evaluation trees. It is important to note that due to
the highly non-deterministic nature of many of the CRs, this evaluation often results
in a combinatorial explosion which makes evaluation of most CRs unfeasible except
for very small input values. This is why in some cases the input values are smaller
than 10, which was the originally attempted input value for all arguments. We also
use underscore to indicate arguments which do not affect the evaluation of the CR.

Finally, the column Accuracy tries to provide an indication of the accuracy
obtained by showing the value Actual/Estimated × 100. Correctness of the upper
bounds computed requires that Actual ≤ Estimated, which occurs in all cases. Also,
this implies that Accuracy is a number between 0 and 100, with a 100 indicating that
the upper bound computed by PUBS is exact. As can be seen, PUBS obtains the
exact upper bound in a good number of cases. Then there is a group of programs for
which the accuracy obtained ranges from 58% to 88% which we argue is quite good
for many applications. The main reason for loss of precision in these benchmarks is
the occurrence of loops (or recursion) whose body contains computations with cost
which is different in different iterations, since our approach will take the worst case
cost for such computation and multiply it by the number of iterations. Though this
precision loss accumulates with the depth of nesting, it is important to note that it
does not accumulate with the length of programs. Also, this precision loss does not
occur if the cost of inner computations is the same in all iterations. This is why we
obtain full accuracy for MatMult, even though it has three nested loops.

There are, however, some cases where accuracy is low, such as Fibonacci, where
our approach is able to find an upper bound, but its accuracy is 17%. In contrast, this
CR can be solved in Mathematica® and obtain an exact upper bound. However, such
upper bound is syntactically rather complex: −(23−x(151+x − 19(1 − √

5)x + 5
√

5(1 −√
5)x − 19(1 + √

5)x − 5
√

5(1 + √
5)x))/((−1 + √

5)2(1 + √
5)2). The fact that it is

more complex makes it more difficult to use it for the applications discussed in
Section 1.1 and in some cases it is preferable to use a simpler, though less accurate,
upper bound, such as the one obtained by PUBS. Note also that the benchmark
MergeSort falls into the class of divide-and-conquer programs explained in Section 7
where, by using the level-count approach, we obtain the accurate closed-form shown
in the Table 1.

Also, we argue that using CAS for obtaining upper bounds of realistic CRs is
not an option. In fact, it was our own previous experience in trying to obtain upper
bounds with Mathematica®, in the work reported in [8], which motivated this work.
There, we obtained upper bounds for a subset of the benchmarks considered in this
paper, but only after significant human intervention in order to convert the CRs into
a format solvable in Mathematica®, since it has several restrictions that CRs do not
satisfy, namely, (1) we cannot include guards, (2) variables cannot be repeated in the
equation head, (3) all equations must have at least one variable argument and (4)
variables in the equation head must appear in the body.

10.2 Efficiency and Scalability of the Approach

Table 3 aims at studying the efficiency of our system by showing the results of two
different experiments. In the first experiment, we analyze each of the benchmarks in
isolation. Column #eq shows the number of equations before PE (in brackets after
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Table 3 Scalability of upper bounds inference

Benchmark #eq T #c
eq Tpe Tub Rat.

Polynomial∗ 23 (3) 10 385 (97) 388 1,190 4.1
DivByTwo 9 (3) 2 362 (94) 402 1,173 4.3
ArrayReverse 9 (3) 2 344 (88) 387 1,122 4.4
Concat 14 (5) 10 335 (85) 386 1,102 4.4
Incr 28 (5) 23 321 (80) 384 1,046 4.5
ListReverse 9 (3) 4 293 (75) 374 943 4.5
MergeList 21 (4) 17 284 (72) 374 925 4.6
Power 8 (2) 2 262 (67) 366 898 4.8
Cons∗ 22 (2) 6 253 (64) 376 912 5.1
MergeSortn 39 (12) 499 230 (61) 354 805 5.0
EvenDigits 18 (5) 7 191 (49) 130 290 2.2
ListInter 37 (9) 48 173 (44) 126 246 2.2
SelectSort 19 (6) 22 136 (35) 115 169 2.1
FactSum 17 (5) 8 117 (29) 109 143 2.2
Delete 33 (9) 106 100 (24) 102 130 2.3
MatMult 19 (7) 17 67 (15) 69 34 1.5
Hanoi 9 (2) 5 48 (8) 67 16 1.7
Fibonacci 8 (2) 4 39 (6) 63 11 1.9
BST∗ 31 (4) 36 31 (4) 64 8 2.3

PE). Note that PE greatly reduces #eq in all benchmarks. Column T shows the total
runtime in milliseconds. The experiments have been performed on an Intel Core 2
Quad Q9300 at 2.50GHz with 1.95GB of RAM, running Linux 2.6.24-21. We argue
that analysis times are acceptable. In the case of MergeSort analysis time is higher
because its equations contain a large number of variables when compared to those of
the other examples. This affects the efficiency when computing the ranking function
and also when maximizing expressions.

The second experiment aims at studying how analysis time increases when larger
CRs are used as benchmarks, i.e., the scalability of our approach. In order to do so,
we have connected together the CRs for the different benchmarks by introducing a
call from each CR to the one appearing immediately below it in the table. Such call
is always introduced in a recursive equation. The results of this second experiment
are shown in the last four columns of the table. Column #c

eq shows the number of
equations we want to solve in each case (in brackets after PE). Reading this column
bottom-up, we can see that when we analyze BST in the second experiment we have
the same number of equations as in the first experiment. Then, for Fibonacciwe have
its eight equations plus 31 which have been previously accumulated. Progressively,
each benchmark adds its own number of equations to #c

eq. Thus, in the first row we
have a CRS with all the equations connected, i.e., we compute a closed-form upper
bound of a CRS with at least 20 nested loops and 385 equations. In this experiment,
the analysis time is split into Tpe and Tub , where Tpe is the time of PE and Tub

is the time of all other phases. The results show that even though PE is a global
transformation, its time efficiency is linear with the number of equations, since PE
operates on strongly connected components. Our system solves 385 equations in
388 + 1,190ms.

Finally, column Rat. shows the total time per equation. The ratio is quite small
from BST to EvenDigits, which are the simplest benchmarks and also have few
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equations. It increases notably when we analyze the benchmark MergeSort because,
as discussed above, its equations have a large number of variables. The important
point is that for larger CRs (from MergeSort upwards) this ratio decreases more and
more as we connect new benchmarks. It should be observed that it decreases even
if the size of the CRs increases and also the equations have to count more complex
expressions. This happens because the new benchmarks which are connected are
simpler than MergeSort in terms of the number of variables. We believe that this
demonstrates that our approach is scalable even if the implementation is prelim-
inary. The upper bound expressions get considerably large when the benchmarks
are composed together. We are currently implementing standard techniques for
simplification of arithmetic expressions.

Pubs is already integrated within the COst and Termination Analyzer for Java
bytecode, Costa [7]. If one wants to obtain closed-form upper bounds from Java
(bytecode) programs rather than from the cost relations, the Costa system can be
used online at: http://costa.ls.fi.upm.es/costa.

In summary, we argue that our experimental results show that, for many common
programs, our approach provides reasonably accurate results which are syntactically
simple and in an acceptable amount of analysis time.

11 Related Work

As already mentioned in Section 1, the classical approach to automatic cost analysis,
which dates back to the seminal work of [54] consists of two phases. In the first phase,
given a program and a cost model, static analysis produces what we call a cost relation
(CR), which is a set of recursive equations which capture the cost of our program in
terms of the size of its input data. The fact that CRs are recursive make them not very
useful for most applications of cost analysis. Therefore, a second phase is required
to obtain a non-recursive representation of such CRs, known as closed-form. In most
cases, it is not possible to find an exact solution and the closed-form corresponds to
an upper bound.

There are a number of cost analyses available which are based on building CRs
and which can handle a range of programming languages, including functional [18,
36, 40, 47, 49, 53, 54], logic [26, 42], and imperative [6]. Such CRs must ensure that,
for any valid input integer tuple, a value which is guaranteed to be an upper bound
of the execution cost of the program for any input data in the (usually infinite) set of
values which are consistent with the input sizes. There is no unified terminology in
this area and such cost relations are referred to as worst-case complexity functions
in [1], as time-bound functions in [47], and recursive time-complexity functions in
[36]. Apart from syntactic differences, the main differences between such forms of
functions and our cost relations are twofold: (1) our equations contain associated size
constraints and (2) we consider (possibly) non-deterministic relations. Both features
are necessary to perform cost analysis of realistic languages (see Section 2.2). While
in all such analyses the first phase, i.e., producing CRs is studied in detail, the second
phase, i.e., obtaining closed-form upper bounds for them, has received comparatively
less attention.

There are two main ways of viewing CRs which lead to different mechanisms for
finding closed-form upper bounds. We call the first view algebraic and the second

http://costa.ls.fi.upm.es/costa
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view transformational. The algebraic one is based on regarding CRs as recurrence
relations. This view was the first one to be proposed and it is the one which is
advocated for in a larger number of works. It allows reusing the large existing
body of work in solving recurrence relations. Within this view, two alternatives have
been used in previous analyzers. One alternative consists in implementing restricted
recurrence solvers within the analyzer based on standard mathematical techniques,
as done in [26, 54]. The other alternative, motivated by the availability of powerful
computer algebra systems (CASs for short) such as Mathematica®, MAXIMA,
MAPLE, etc., consists in connecting the analyzer with an external solver, as proposed
in [6, 18, 40, 49, 53].

The transformational view consists in regarding CRs as (functional) programs. In
this view, closed-form upper bounds are produced by applying (general-purpose)
program transformation techniques on the time-bound program [47] until a non-
recursive program is obtained. Note that, as discussed in Section 2, it is straight-
forward to obtain time-bound programs from CRs by introducing a maximization
operator (or disjunctive execution). The transformational view was first proposed in
the ACE system [36], which contained a large number of program transformation
rules aimed at obtaining non-recursive representations. It was also advocated by
Rosendahl in [47], who later in [48] provided a series of program transformation
techniques based on super-compilation [52] which were able to obtain closed-forms
for some classes of programs.

The problem with all the approaches mentioned above is that, though they can
be successfully applied for obtaining closed-forms for CRs generated from simple
programs, they do not fulfill the initial expectations in that they are not of general
applicability to CRs generated from real programs. The essential features which
neither the algebraic nor the transformational approaches can handle are discussed
in Section 2.2. The main motivation for this work was our own experience in
trying to apply the algebraic approach on the CRs generated by [6]. We argue
that automatically converting CRs into the format accepted by CASs is unfeasible.
Furthermore, even in those cases where CASs can be used, the solutions obtained are
so complicated that they become useless for most practical purposes. In contrast, our
approach can produce correct and comparatively simple results even in the presence
of non-determinism.

The need for improved mechanisms for automatically obtaining closed-form
upper bounds was already pointed out in Hickey and Cohen [30]. A significant work
in this direction is PURRS [14], which has been the first system to provide, in a fully
automatic way, non-asymptotic closed-form upper and lower bounds for a wide class
of recurrences. Unfortunately, and unlike our proposal, it also requires CRs to be
deterministic. Another relevant work is that of Marion et. al. [19, 41], who propose
an analysis for stack frame size in first order functional programming. They use quasi-
interpretations, which are different from ranking functions and the whole approach
is limited to polynomial bounds.

An altogether different approach to cost analysis is based on type systems with
resource annotations, which does not use CRs as an intermediate step. Thus, this
approach does not require computing closed-form upper bounds for CRs, but it is
often restricted to linear bounds [31], with some notable exception like [25].

A program analysis based approach for inferring polynomial boundedness of
computed values (as a function of the input) has been recently proposed in [17]. It
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infers the complexity of a given program by first obtaining a step-counting program.
This work builds on similar previous works along the lines of [35, 44], and the
main novelty here is that it provides completeness for a simple (Turing incomplete)
language. Compared to this line of research, our approach is more powerful in that
it is not limited to polynomial complexity but, on the other hand, the techniques we
use are inherently incomplete.

12 Conclusions

We have proposed an approach to the automatic inference of non-asymptotic
closed-form upper bounds of CRs produced by automatic cost analysis. For this,
we have formally defined CRs as a target language for cost analysis. Hence, our
method for closed-form upper bound inference can be used in static cost analysis
of any programming language. In spite of the inherent incompleteness, we have
experimentally shown that our approach is able to obtain useful upper bounds for
a large class of common programs. In summary, the use of ranking functions and
our practical method to compute upper bounds for a very general notion of cost
expression (including exponential, logarithmic, etc.) allows obtaining closed-form
upper bounds for realistic CRs with possibly non-deterministic equations, multiple
arguments, and inexact size constraints.

In recent work [11], we have applied our method to obtain closed-form upper
bounds from non-standard CRs, namely from CRs which capture the heap space
usage of programs by taking into account the deallocations performed by garbage
collection, without requiring any change to the techniques presented in this paper.
The way in which cost relations are generated is different from the standard ap-
proach because the live heap space is not an accumulative resource of a program’s
execution but, instead, it requires to reason on all possible states to obtain their
maximum. As a result, cost relations include non-deterministic equations which
capture the different peak heap usages reached along the execution. Importantly,
the additional non-determinism does not pose any problem to the applicability of our
method.
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