
Toward a parallel implementation of Concurrent ML

John Reppy and Yingqi Xiao

University of Chicago

Abstract. Concurrent ML (CML) is a high-level message-passing language that
supports the construction of first-class synchronous abstractions called events.
This mechanism has proven quite effective over the years and has been incorpo-
rated in a number of other languages. While CML provides a concurrent pro-
gramming model, its implementation has always been limited to uniprocessors.
This limitation is exploited in the implementation of the synchronization pro-
tocol that underlies the event mechanism, but with the advent of cheap parallel
processing on the desktop (and laptop), it is time for Parallel CML.
We are pursuing such an implementation as part of the Manticore project. In
this paper, we describe a parallel implementation of Asymmetric CML (ACML),
which is a subset of CML that does not support output guards. We describe an
optimistic concurrency protocol for implementing CML synchronization. This
protocol has been implemented as part of the Manticore system.

1 Introduction

Concurrent ML (CML) [1, 2] is a statically-typed higher-order concurrent language
that is embedded in Standard ML [3]. CML extends SML with synchronous message
passing over typed channels and a powerful abstraction mechanism, called first-class
synchronous operations, for building synchronization and communication abstractions.
This mechanism allows programmers to encapsulate complicated communication and
synchronization protocols as first-class abstractions, which encourages a modular style
of programming where the actual underlying channels used to communicate with a
given thread are hidden behind data and type abstraction. CML has been used success-
fully in a number of systems, including a multithreaded GUI toolkit [4], a distributed
tuple-space implementation [2], and a system for implementing partitioned applications
in a distributed setting [5]. The design of CML has inspired many implementations
of CML-style concurrency primitives in other languages. These include other imple-
mentations of SML [6], other dialects of ML [7], other functional languages, such as
HASKELL [8], SCHEME [9], and our own MOBY language [10], and other high-level
languages, such as JAVA [11].

One major limitation of CML is that its implementation is single-threaded and can-
not take advantage of multicore or multiprocessor systems.1 We are incorporating the
CML concurrency primitives into the functional parallel-programming language Man-
ticore [12, 13], so this limitation must be addressed. In this paper, we take a major step
in that direction by describing a parallel implementation of a subset of CML, which

1 In fact, almost all of the existing implementations of events have this limitation.

type ’a event

val choose : (’a event * ’a event) -> ’a event
val wrap : ’a event * (’a -> ’b) -> ’b event
val guard : (unit -> ’a event) -> ’a event
val withNack : (unit event -> ’a event) -> ’a event

val sync : ’a event -> ’a

val never : ’a event
val always : ’a -> ’a event

type ’a chan
val recvEvt : ’a chan -> ’a event
val sendEvt : (’a chan * ’a) -> unit event

Fig. 1. The core features of CML

we call Asymmetric Concurrent ML (ACML). This subset of CML includes the full
set of CML combinators, but does not support output guards (i.e., send operations in a
choice). We try to provide both an intuitive explanation of the synchronization protocol
that underlies ACML, as well as enough of the nitty-gritty details to help other imple-
mentors. Because of space constraints, much of the implementation is omitted, but an
extended version of this paper will be available as technical report [14].

2 A CML overview

Concurrent ML is a higher-order concurrent language that is embedded into Standard
ML [1, 2]. It supports a rich set of concurrency mechanisms, but for purposes of this
paper we focus on the core mechanisms of communication and events, which are shown
in Figure 1. Communication in CML is based on synchronous message passing on
typed channels. Because channels are synchronous, both the send and receive operations
are blocking.

To support more complicated interactions, CML provides event values, which are
first-class synchronous abstractions. Base events constructed by sendEvt and recvEvt
describe simple communications on channels. There are also two special base-events:
never, which is never enabled and always, which is always enabled for synchro-
nization. These events can be combined into more complicated event values using the
event combinators:

– Event wrappers (wrap) for post-synchronization actions.
– Event generators (guard and withNack) for pre-synchronization actions and

cancellation (withNack).
– Choice (choose) for managing multiple communications. In CML, this combi-

nator takes a list of events as its argument, but we restrict it to be a binary operator
here. Choice of a list of events can be constructed using choose as a “cons” oper-
ator and never as “nil.”

type ’a queue

val queue : unit -> ’a queue
val isEmptyQ : ’a queue -> bool
val enqueue : (’a queue * ’a) -> unit
val dequeue : ’a queue -> ’a option

Fig. 2. Specification of queue operations

To use an event value for synchronization, we apply the sync operator to it.
Event values are pure values similar to function values. When the sync operation

is applied to an event value, a dynamic instance of the event is created, which we call
a synchronization event. A single event value can be synchronized on many times, but
each time involves a unique synchronization event.

In this paper, we describe an implementation ACML, which differs from the in-
terface in Figure 1 in that it does not have the sendEvt event constructor. Instead,
sending a message is supported using the function

val send : (’a chan * ’a) -> unit

This function is still blocking, but does not support sending a message in a choice
context.

3 Preliminaries

We present our implementation using SML syntax with a few extensions. To streamline
the presentation, we elide several aspects of the actual implementation, such as thread
IDs and processor affinity.

3.1 Queues

Our implementation uses queues to track pending messages and waiting threads in chan-
nels. We omit the implementation details here, but give the interface to the queue oper-
ations that we use in Figure 2. These operations have the expected semantics.

3.2 Threads and thread scheduling

As in the uniprocessor implementation of CML, we use first-class continuations to im-
plement threads and thread-scheduling. The continuation operations have the following
specification:

type ’a cont
val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

We represent the state of a suspended thread as a unit continuation

type thread = unit cont

The interface to the scheduling system is represented by two atomic operations:

val enqueueRdy : thread -> unit
val dispatch : unit -> ’a

The first enqueues a ready thread in the scheduling queue and the second transfers
control to the next ready thread in the scheduler queue.

3.3 Compare and swap

Our implementation also relies on the atomic compare-and-swap instruction. We use
the following SML specification for this operation:

val cas : (’a ref * ’a * ’a) -> ’a

Note that cas does not follow the SML equality semantics in that it performs pointer
equality. With this operation, we build spinlocks:

val spinLock : bool ref -> unit
val spinUnlock : bool ref -> unit

For purposes of this paper, we assume that threads are not preempted, so spinlocks are
a reasonable locking mechanism.

4 A parallel implementation of PCML

Our parallel implementation is based on a core subset of the CML event operations,
called Primitive CML (PCML). This subset has an event type with a minimal set of
combinators, a condition-variable type used for signaling, and support for channels
with input events. The signature of PCML is given in Figure 3. Note that unlike full
CML (see Figure 1), there are no guard or withNack combinators. As we discuss
in Section 5, these can be implemented on top of PCML.

4.1 The synchronization protocol

The heart of the implementation is the protocol for synchronization on a choice of
events. This protocol is split between the sync operator and the base-event construc-
tors (e.g., waitEvt and recvEvt). Each base event is represented by a record of three
functions: pollFn, which tests to see if the base-event is enabled (e.g., there is a mes-
sage waiting); doFn, which is used to synchronize on an enabled event; and blockFn,
which is used to block the calling thread on the base event. In the single-threaded im-
plementation of CML [15, 2], we rely heavily on the fact that sync is executed as an
atomic operation. The single-threaded protocol is as follows:

1. Poll the base events in the choice to see if any of them are enabled. This phase is
called the polling phase.

signature PRIM_CML =
sig

(* events *)
type ’a evt
val never : ’a evt
val always : ’a -> ’a evt
val choose : (’a evt * ’a evt) -> ’a evt
val wrap : ’a evt * (’a -> ’b) -> ’b evt
val sync : ’a evt -> ’a

(* condition variables *)
type cvar
val new : unit -> cvar
val set : cvar -> unit
val waitEvt : cvar -> unit evt

(* channels *)
type ’a chan
val channel : unit -> ’a chan
val recvEvt : ’a chan -> ’a evt
val send : (’a chan * ’a) -> unit

end

Fig. 3. Primitive CML

2. If one or more base events are enabled, pick one and synchronize on it using its
doFn. This phase is called the commit phase.

3. If no base events are enabled we execute the blocking phase, which has the follow-
ing steps:
(a) Enqueue a continuation for the calling thread on each of the base events using

its blockFn.
(b) Switch to some other thread.
(c) Eventually, some other thread will complete the synchronization.

We use the term synchronization setup for steps 1, 2, and 3(a) of this protocol.
Because the implementation of sync is atomic, the single-threaded implementa-

tion does not have to worry about the state of a base event changing between when we
poll it and when we invoke the doFn or blockFn on it. In a parallel implementation,
however, the global lock would be a bottleneck, so we must design a more complicated
protocol. This design is further constrained by the fact that a given event may involve
multiple occurrences of the same event. For example, the following code nondetermin-
isticly tags the message received from ch with either 1 or 2:

sync (choose (
wrap (recvEvt ch, fn x => (1, x)),
wrap (recvEvt ch, fn y => (2, y))

))

We must also avoid deadlock when multiple threads are simultaneously attempting
communication on the same channel. For example, if thread P is executing

sync (choose (recvEvt ch1, recvEvt ch2))

at the same time that thread Q is executing

sync (choose (recvEvt ch2, recvEvt ch1))

we have a potential deadlock if the implementation of sync attempts to hold a lock on
both channels simultaneously (i.e., where P holds the lock on ch1 and attempts to lock
ch2, while Q holds the lock on ch2 and attempts to lock ch1).

Our approach to avoiding these pitfalls is to use an optimistic protocol that does not
hold a lock on more than one channel at a time and avoids locking whenever possible.
The basic protocol has a similar structure to the sequential one described above, but it
must deal with the fact that the state of a base event can change before the synchro-
nization setup is complete. This fact means that the commit phase may fail and that the
blocking phase may commit. The parallel synchronization protocol is as follows:

– The protocol starts with the polling phase, which is done in a lock-free way.
– The If one or more base events are enabled, pick one and attempt to synchronize on

it using its doFn. This attempt may fail because of changes in the base-event state
since the polling was done.

– If there are no enabled base events (or all attempts to synchronize failed), we en-
queue a continuation for the calling thread on each of the base events using its
blockFn. When blocking the thread on a particular base event, we may discover
that synchronization is now possible, in which case we can synchronize immedi-
ately.

This design is guided by the goal of minimizing synchronization overhead and maxi-
mizing concurrency.

4.2 The PCML event type

A primitive-event value is represented as a binary tree, where the internal nodes rep-
resent choice and the leaves represent single synchronous operations. This canonical
representation of events relies on the following equivalences:

wrap(wrap(ev, g), f) = wrap(ev, f ◦ g)
wrap(choose(ev1, ev2), f1) = choose(wrap(ev1, f),wrap(ev2, f))

We use this equivalence to maintain a canonical representation of events as trees in
which the leaves are wrapped base-event values and the interior nodes are choice opera-
tors. Figure 4 illustrates the mapping from a nesting of wrap and choose combinators
to its canonical representation.

Another issue that we must deal with is that another thread may attempt to complete
the synchronization before setup is finished. We solve this problem by piggybacking on
the mechanism used in the single-threaded implementation to do “garbage collection”
of completed events. For each synchronization event, we allocate an event-state refer-
ence to hold the state of the synchronization.

choose

choose

wrap

wrap wrap

wrap

recv recv

recv

choose

choose

wrap

wrap wrap

wrap

recv recv

recv
wrap

Fig. 4. The canonical-event transformation

datatype event_status = INIT | WAITING | SYNCHED
type event_state = event_status ref

The INIT state denotes that event setup is in progress, WAITING denotes that setup is
complete and the event is available for synchronization, and SYNCHED denotes that the
event has been synchronized on.

The canonical-event representation is implemented by the following datatype:

datatype ’a evt
= BEVT of {

pollFn : unit -> bool,
doFn : ’a cont -> unit,
blockFn : (event_state * ’a cont) -> unit

}
| CHOOSE of ’a evt * ’a evt

In this type, wrapped base events are represented by three functions: the pollFn is
used to poll an event to test for its availability, the doFn is used to synchronize on
an enabled event, and the blockFn is used to enqueue a suspended thread on the
event. Both doFn and blockFn take resumption continuations as arguments. These
continuations are used to return from the invoking sync operation. Note also that the
blockFn takes a state flag as an argument. This flag is enqueued along with the resume
continuation in the waiting queue maintained by the underlying communication object.

4.3 The PCML sync operation

The implementation of the sync operation is given in Figure 5. It is structured as
three functions that correspond to the items in the protocol description above. Each
of these functions does a walk over the tree representation of the event value to ap-
ply its operation to the base events at the leaves. The poll function polls each base
event and returns a list of doFn functions for the base events that were enabled. The
doEvt function, which is applied to this list, attempts to complete the synchronization

fun sync ev = callcc (fn resumeK => let
(* optimistically poll the base events *)

fun poll (BEVT{pollFn, doFn, blockFn}, enabled) =
if pollFn()

then doFn::enabled
else enabled

| poll (CHOOSE(ev1, ev2), enabled) =
poll(ev2, poll(ev1, enabled))

(* attempt to complete an enabled communication *)
fun doEvt [] = blockThd()

| doEvt (doFn::r) = (
doFn resumeK;

(* if we get here, that means that the

* attempt failed, so try the next one

*)
doEvt r)

(* record the calling thread’s continuation in the

* event waiting queues

*)
and blockThd () = let

val flg = ref INIT
fun block (BEVT{blockFn, ...}) =

blockFn(flg, resumeK)
| block (CHOOSE(ev1, ev2)) = (

block ev1; block ev2)
in

block ev;
(* if we get here, then setup is complete *)

flg := WAITING;
dispatch()

end
in

doEvt (poll (ev, []))
end)

Fig. 5. The primitive sync operation

on one of the base event’s using its doFn function. Since the state of the base event
might have changed since it was polled, it possible for the doFn to fail, in which case
it returns. Otherwise, it will transfer control to the resume continuation. If doEvt is
unable to complete the synchronization of any of the enabled events (or there were no
enabled events), then it calls blockThd. This function allocates the state flag and then
calls the blockFn of each of the base events to enqueue the resumption continuation.
If the state of the base event has changed since polling (i.e., it has become enabled),
then the blockFn will complete the synchronization, otherwise it returns. If all of the
blockFns return, then the event’s state is changed to WAITING and some other thread
is dispatched.

INIT

WAITING

SYNCHED

event owner finishes
setup

another thread
synchronizes on the event

owner synchronizes
during setup

Fig. 6. The state-transitions of a synchronization event.

Because sync does not hold locks on the underlying communication objects, it is
possible that some other thread may attempt to synchronize on one of the base events
before blockThd has completed its work. Our policy is to only allow the owner thread
of a synchronization event (i.e., the caller of the sync operation) to change its state
from INIT, as is shown in Figure 6. To implement this policy, non-owners use the
following utility function to change the state:

fun claimEvent flg = (case cas(flg, WAITING, SYNCHED)
of WAITING => true
| INIT => claimEvent flg
| SYNCHED => false

(* end case *))

This function forces its caller to wait until setup is complete before being allowed to
synchronize on the event. If the state is already SYNCHED, then it returns false.

An obvious simplification of this design would be to combine pollFn and doFn
into a single function. There is a disadvantage of merging these two functions, however,
which is that by polling all of the base events first, it is possible to impose an ordering
on enabled events, such as priorities or to support fairness [2].

4.4 The PCML event combinators

The implementation of the primitive-event combinators is largely straightfoward, with
the exception of wrap, which involves both the continuation hacking needed to hook in
the wrapper function and event canonicalization. The implementation of wrap is given
in Figure 7. When applied to a base-event value, we need to arrange for the wrapper
function (f) to be applied to the values thrown to the resumption continuation by doFn
and pollFn. When applied to a CHOOSE value, it pushes the wrapper down into both
branches as described by the equivalence in Section 4.2.

4.5 PCML channels

The other half of the synchronization protocol is implemented in the base-event values
for the communication objects. The representation of a channel consists of a spinlock, a

fun wrap (BEVT{pollFn, doFn, blockFn}, f) = BEVT{
pollFn = pollFn,
doFn = fn k => callcc (fn retK =>

throw k (f (callcc (fn k’ => (doFn k’;
throw retK ()))))),

blockFn = fn (flg, k) => callcc (fn retK =>
throw k (f (callcc (fn k’ => (blockFn(flg, k’);

throw retK ())))))
}

| wrap (CHOOSE(ev1, ev2), f) =
CHOOSE(wrap(ev1, f), wrap(ev2, f))

Fig. 7. The primitive wrap combinator

queue of blocked senders (with messages), and a queue of blocked receivers (with their
owner’s event state).

datatype ’a chan = Ch of {
lock : bool ref,
sendq : (’a * unit cont) queue,
recvq : (event_state * ’a cont) queue

}

The code for recvEvt is a non-trivial example of a base-event implementation
and is given in Figure 8. The pollFn checks to see if the channel’s sendq is empty.
Since this operation only involves reading the state of the queue, it can be done without
locking. Even if the results are erroneous because of conflicts with other threads, the
fallback code in the doFn and blockFn will ensure correct behavior. The doFn is
called when the sendq is expected to be nonempty. It locks the channel, removes an
item from the sendq and then releases the lock. If the queue was empty (i.e., NONEwas
returned), then the doFn returns. Otherwise, it enqueues the blocked sender and throws
the message to the resume continuation of the sync operation. The blockFn is called
when the sendq is expected to be empty. It also locks the channel and then checks
the sendq in case its state has changed since polling. If there is an item available,
then it is used to complete the synchronization. Otherwise, the resume continuation and
event-state flag are enqueued in the channel’s recvq.

The send operation on channels is given in Figure 9. The body of this function is
a loop that examines the recvq for waiting events. If it finds one, then it completes
the synchronization, otherwise it enqueues its resume continuation and message on the
sendq.

5 Implementing full CML

In this section, we sketch how to build an implementation of the full set of CML event
combinators from the PRIM_CML interface that we implemented in the previous sec-
tion. The basic idea, which was suggested by Matthew Fluet [16], is to move the book-
keeping used to track negative acknowledgments out of the implementation of sync and

fun recvEvt (Ch{lock, sendq, recvq}) = let
fun pollFn () = not(isEmptyQ(sendq))
fun doFn k = let

val _ = spinLock lock
val item = dequeue sendq
in

spinUnlock lock;
case item
of NONE => ()
| SOME(msg, sendK) => (

enqueueRdy sendK;
throw k msg)

(* end case *)
end

fun blockFn (flg : event_state, k) = (
spinLock lock;

(* if we are lucky, a sender may have arrived

* on the channel since we polled it.

*)
case dequeue sendq
of SOME(msg, sendK) => (

(* there is a matching send *)
spinUnlock lock;
flg := SYNCHED;
enqueueRdy sendK;
throw k msg)

| NONE => (
enqueue (recvq, (flg, k));
spinUnlock lock)

(* end case *))
in

BEVT{pollFn = pollFn, doFn = doFn, blockFn = blockFn}
end

Fig. 8. The recvEvt event constructor

into guards and wrappers. Space does not permit a complete description of this layer,
but we cover the highlights.

In this implementation, negative acknowledgments are signaled using the condition
variables (cvars) provided by PCML. Since we must create these variables at synchro-
nization time, we represent events as suspended computations (or thunks). The event
type has the following definition:

datatype ’a event
= E of (cvar list * (cvar list * ’a thunk) PCML.evt) thunk

where the thunk type is

type ’a thunk = unit -> ’a

fun send (Ch{lock, sendq, recvq}, msg) = callcc (fn sendK => let
val _ = spinLock lock
fun tryLp () = (case dequeue recvq

of SOME(flg, recvK) =>
(* there is a matching recv, but we must

* check to make sure that some other

* thread has not already claimed the event.

*)
if claimEvent flg
then ((* we got it *)

spinUnlock lock;
enqueueRdy sendK;
throw recvK msg)

else (* someone else got the event *)
tryLp ()

| NONE => (
enqueue (sendq, (msg, sendK));
spinUnlock lock;
dispatch ())

(* end case *))
in

tryLp ()
end)

Fig. 9. The send operation

The outermost thunk is a suspension used to delay the evaluation of guards until syn-
chronization time. When evaluated, it produces a list of cvars and a primitive event.
The cvars are used to signal the negative acknowledgments for the event. The primitive
event, when synchronized, will yield a list of those cvars that need to be signaled and a
thunk that is the suspended wrapper action for the event. With this representation, the
sync operation is straightforward.

fun sync (E thunk) = let
val (_, ev) = thunk()
val (cvs, act) = PCML.sync ev
in

List.app PCML.set cvs;
act()

end

We start by evaluating the top-level thunk to get the primitive event value, which we
then synchronize on. The result of synchronization will be a list of cvars that need to
be signaled and the wrapper thunk. We signal the nacks by setting the cvars and then
evaluate the wrapper thunk.

The two combinators that are at the heart of the bookkeeping for negative acknowl-
edgments are withNack and choose. The former creates a new cvar when its thunk
is evaluated. This cvar is passed as an argument to withNack’s argument and is added
to the list of cvars for its result.

fun withNack f = let
fun thunk () = let

val nack = PCML.new()
val E thunk’ = f (baseEvt (PCML.waitEvt nack))
val (cvs, ev) = thunk’ ()
in

(nack::cvs, ev)
end

in
E thunk

end

The purpose of negative acknowledgments is to signal that some other event in a choice
was chosen, which means that the choose combinator must associate the cvars of its
left side with the synchronization result of its right side (and vice versa).

fun choose (E thunk1, E thunk2) = let
fun thunk () = let

val (cvs1, ev1) = thunk1()
val (cvs2, ev2) = thunk2()
in (

cvs1 @ cvs2,
PCML.choose (

PCML.wrap(ev1, fn (cvs, th) => (cvs @ cvs2, th)),
PCML.wrap(ev2, fn (cvs, th) => (cvs @ cvs1, th)))

) end
in

E thunk
end

Space does not permit a description of the other mechanisms, but they can be found
in a forthcoming technical report [14].

6 Related work

Various authors have described implementations of choice protocols using message
passing as the underlying mechanism [17–20]. While these protocols could, in prin-
ciple, be mapped to a shared-memory implementation, we believe that our approach is
both simpler and more efficient.

Russell described a monadic implementation of CML-style events on top of Con-
current Haskell [8]. His implementation uses Concurrent Haskell’s M-vars for concur-
rency control and he uses an ordered two-phase locking scheme to commit to commu-
nications. A key difference in his implementation is that choice is biased to the left,
which means that he can commit immediately to an enabled event during the polling
phase. This feature greatly simplifies the implementation, since it does not have to han-
dle changes in event status between the polling phase and the commit phase. Russell’s
implementation did not support multiprocessors (because Concurrent Haskell did not
support them at the time), but presumably would work on a parallel implementation of

Concurrent Haskell. Donnelly and Fluet have implemented a version of events that sup-
port transactions on top of Haskell’s STM mechanism [16]. Their mechanism is quite
powerful and, thus, their implementation is quite complicated.

In earlier work, we reported on specialized implementations of CML’s channel op-
erations that can be used when program analysis determines that it is safe [21]. Those
specialized implementations fit into our framework and can be regarded as complemen-
tary.

7 Conclusion

We have described a new protocol for implementing Asymmetric CML on multiproces-
sors. This implementation consists of a primitive layer that provides basic synchronous
operations, non-deterministic choice, and post-synchronization wrappers. This layer is
implemented using a new optimistic-concurrency protocol. The full set of CML event
combinators is then constructed on top of this primitive layer. One advantage of this ar-
chitecture is that the more complicated upper layer does not directly use locks or thread
scheduling operations.

We have implemented the primitive layer in the Manticore system using the Manti-
core compiler’s BOM intermediate representation [13]. This implementation must also
deal with preemption, which we do by locally masking preemption. Unfortunately,
Manticore is not yet stable enough to be able to run meaningful performance tests,
although we have been able to test the correctness of the implementation on an 8-way
parallel system. We expect that the basic performance of the primitives will be good
when channels are used to implement point-to-point communications (as is common),
but the interesting question will be how they perform in a situation with many senders or
receivers sharing a single channel. We plan to provide preliminary performance results
in a forthcoming technical report [14].

In the longer term, we want to extend the PCML layer to support output guards (i.e.,
sendEvt). In our protocol, adding this event constructor complicates the implemen-
tation in a couple of significant ways. First, it becomes possible to write code that has
matching communications in a single choice, as in the following example:

sync (choose (
recvEvt ch,
wrap (sendEvt(ch, 1), fn () => 2)))

The implementation must detect such cases and avoid having a thread communicate
with itself. The second problem is that committing to a synchronization will require
atomically updating the states of two different synchronization events. Two-phase lock-
ing is one possible solution, but it requires introducing a linear order on synchronization
events to avoid deadlock. Instead, we are exploring the use of implementation tech-
niques from STM [22], but we have not worked out the details.

References

1. Reppy, J.H.: CML: A higher-order concurrent language. In: PLDI ’91, New York, NY, ACM
(June 1991) 293–305

2. Reppy, J.H.: Concurrent Programming in ML. Cambridge University Press, Cambridge,
England (1999)

3. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML (Revised).
The MIT Press, Cambridge, MA (1997)

4. Gansner, E.R., Reppy, J.H. In: A Multi-threaded Higher-order User Interface Toolkit. Vol-
ume 1 of Software Trends. John Wiley & Sons (1993) 61–80

5. Young, C., YN, L., Szymanski, T., Reppy, J., Pike, R., Narlikar, G., Mullender, S., Grosse,
E.: Protium, an infrastructure for partitioned applications. In: HotOS-X. (January 2001)
41–46

6. MLton: Concurrent ML Available at http://mlton.org/ConcurrentML.
7. Leroy, X.: The Objective Caml System (release 3.00). (April 2000) Available from

http://caml.inria.fr.
8. Russell, G.: Events in Haskell, and how to implement them. In: ICFP ’01. (September 2001)

157–168
9. Flatt, M., Findler, R.B.: Kill-safe synchronization abstractions. In: PLDI ’04. (June 2004)

47–58
10. Fisher, K., Reppy, J.: The design of a class mechanism for Moby. In: PLDI ’99. (May 1999)

37–49
11. Demaine, E.D.: Higher-order concurrency in Java. In: WoTUG20. (April 1997) 34–47

Available from http://theory.csail.mit.edu/ edemaine/papers/WoTUG20/.
12. Fluet, M., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Manticore: A heterogeneous parallel

language. In: DAMP ’07, New York, NY, ACM (January 2007) 37–44
13. Fluet, M., Ford, N., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Status report: The Manticore

project. In: ML ’07, New York, NY, ACM (October 2007) 15–24
14. Reppy, J., Xiao, Y.: Toward parallel CML (extended version). Technical report, Department

of Computer Science, University of Chicago Forthcoming.
15. Reppy, J.H.: First-class synchronous operations in Standard ML. Technical Report TR 89-

1068, Dept. of CS, Cornell University (December 1989)
16. Donnelly, K., Fluet, M.: Transactional events. In: ICFP ’06, New York, NY, ACM (2006)

124–135
17. Buckley, G.N., Silberschatz, A.: An effective implementation for the generalized input-

output construct of CSP. ACM TOPLAS 5(2) (April 1983) 223–235
18. Bornat, R.: A protocol for generalized occam. SP&E 16(9) (September 1986) 783–799
19. Knabe, F.: A distributed protocol for channel-based communication with choice. Technical

Report ECRC-92-16, European Computer-industry Research Center (October 1992)
20. Demaine, E.D.: Protocols for non-deterministic communication over synchronous channels.

In: Proceedings of the 12th International Parallel Processing Symposium and 9th Symposium
on Parallel and Distributed Processing (IPPS/SPDP’98). (March 1998) 24–30 Available from
http://theory.csail.mit.edu/ edemaine/papers/IPPS98/.

21. Reppy, J., Xiao, Y.: Specialization of CML message-passing primitives. In: POPL ’07, New
York, NY, ACM (January 2007) 315–326

22. Shavit, N., Touitou, D.: Software transactional memory. In: PODC ’95, New York, NY,
ACM (1995) 204–213

